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1 Introduction

The Robiuson-Schensted-Knuth correspondence (RSK, see [8] and Corollary 2. 5 be-
low) is a bijection between pairs of semi-standard Young tableaux of the same shape
with fixed weights and matrices with nonnegative integer entries with prescribed
column and row sums. This correspondence plays an important role in the repre-
sentation theory of the symmetric group and general linear groups, and in the theory
of symmetric functions.

It is possible (see [2, 3, 4, 5, 10]) to construct an analogue of the RSK for
oscillating tableaux, i.e., sequences of Young diagrams o; = (o;(o), ..., Q:(A;)) such that
each Q(, ) and o:(t+i) differ by a horizontal strip.

We present a new approach to the RSK correspondence for oscillating tableaux.
First, we show that the number of oscillating tableaux of a given weight and shape is
equal to the multiplicity of the corresponding irreducible representation in a certain
naturally defined Sm x 5'n-module. This allows us to recover the enumerative results
from [4, 10, 11, 12] (see Section 4). In Section 5, we extend this construction to
oscillating supertableaux. In Section 6, we discuss commutation relations for the
operators which add or delete horizontal or vertical strips (cf. [5, 6]) and give a
generalization of these relations.

In Section 7, we introduce a piecewise-linear analogue of RSK for oscillating
tableaux in the spirit of [lj. We construct a continuous piecewise-linear map which
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establishes a bijection between two convex polyhedra. The restriction of this map
to integer points gives the RSK correspondence for oscillating tableaux.

We are grateful to Arkadiy Berenstein and Sergey Fomin for useful discussions.

2 Oscillating tableaux
First, recall several basic definitions from combinatorics of Young diagrams (see [9]).

Let A=(Ai ^ ... A; > 0) bea partition of an integer n= fA| = ^A.. With the
partition X one can dssociate its Young or Ferrer diagram which is the set of pairs
[i, j)  . N2 such that 1 < j ^ A,, i = 1, 2,..., /. The poset of all Young diagrams
ordered by inclusion is called the Young lattice. The Young graph is the Hasse
diagram of this poset, in other words, we connect two diagrams if their difference
consists of one cell. Let "D" be the partial order on P by inclusion of Young
diagrams. For A D /x, a skew Young diagram X/fi is the set-theoretic difference of
the Young diagrams corresponding to X and fi. A semi-standard Young tableau (also
called column-strict tableau) of shape \/fi is a map from \/fi to nonnegative integers
strongly increasing along the columns and weakly increasing along the rows of A//x.
For example, a semi-standard tableau of shape A//^, A = (6, 4, 4, 1), ^ = (3, 2) is
given below.

The weight of a tableau is the sequence /3 = (/3i,... , ^fc) such that each i appears
in the tableau exactly /3, times. The weight of the tableau in our example is equal
to ,3 = (3, 4, 2, 1). A tableau is called standard if it has weight ̂  = (1,..., 1), i. e.,
each number appears once.

A horizontal (resp., vertical) m-strip is a skew diagram X/fi consisting of m cells
such that each row (resp., column) contains at most one cell of \/ y..

We can view a semi-standard tableau as a sequence of partitions A = Q:(O) D
Q(i) D .. . D Q(fc) = /^ such that o:(, _i)/a(, ) is a horizontal /?t-strip for?" = 1,... , fc. In
other words, a semi-standard tableau is a path in a certain graph Y. The vertices
of y are Young diagrams and diagrams \ and fi are connected by an edge in V if
A/^ or ^1\ is a horizontal m-strip for some m ^ 0. We call V the extended Young
graph because it. is obtained from the Young graph by adding edges connecting non-
adjacent levels. It is clear that Young tableaux correspond to decreasing paths in
the graph V. An oscillating tableau is an arbitrary path in Y.
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Definition 2. 1 Let A, /z be partitions and 0 = (^i, ^2i . . . , 0k)   Z*. An oscillating
tableau a of shape (A, /jt) and weight ^ is a sequence of partitions (ct(o), Q(I), ..., Q(fc)),
Q!(0) = A, Ot(k) = f^, such that for all i = 1, 2,.. ., k the following conditions hold:

1- !f Pi ̂  0 then Q:(, _I) D Q:(;) a7i<f a(, _i)/Q;(t) is a horizontal /3, -strip,

2. If /3i < 0 then Q(, ) D o'(t-i) o"<^ <^(«)/<^(i-i) is a horizontal (-/3i)-strip.

By OT{\, p., /3) we will denote the set of all oscillating tableaux of shape (A, /z) and
weight 13. If /3, = ±1 for all i then an oscillating tableau of weight /3 is called
standard. Clearly, standard oscillating tableaux correspond to paths in the Young
graph.

An analogous definition was given in [10, Definition 4. 4. 1]. Standard oscillating
tableaux were earlier considered in [12, Definition 8. 1].

Definition 2. 2 Let /3 = (/?i,. .., /?jc)   Zfc 6e a sequence such that ̂ ;/?, = 0. An
intransitive graph of type 0 is an oriented graph F on the vertices 1, 2,... , A; (multiple
edges allowed) such that:

1. If {i, j) is an edge of T then i < j.

S- If /3, >. 0 then in-degree of i is /3. and out-degree of i is 0.

3- If ̂ i <. 0 then out-degree of i is -^ and in-degree of i is 0.
Denote by G!(/3) the set of all intransitive graphs of type ft.

For example, a graph from G'(-2, -1, 1, -2, -1, 3, 2) is shown below.

Theorem 2.3 Let /?   Zfc, ^,,3, = 0. T/ien the number of oscillating tableaux of
shape (0, 0) and weight /3 is equal to the number of intransitive graphs of type 13

|(9T(0, 6^)|=|G'(/3)|.

Here 0 denotes a unique partition of 0.
For example, it is not difficult to check that |OT(-2, -1, 1, -2, -1, 3, 2)| =

|G(-2, -1, 1, -2, -1, 3, 2)|=12.
This theorem in slightly different notation was proven by T. W. Roby [10, Theo-

rem 4. 4. 3] who generalized S. Fomin's results [3, 4, 5 . Roby constructed a bijection
between the two sets in Theorem 2.3. The following special case was earlier found
in [12, Lemma8. 3j.
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Corollary 2. 4 The number of paths in the Young graph from Q to Q of length 2k is
equal to {2k - 1)!! = (2k - l)(2k - 3)... 1.

For weight ^ = (^1, ^2,.. ., /?fc) such that /3i,..., ^m ^ 0, ^+i,..., /3fc ^ 0,
Roby's result yields the classical Robinson-Schensted-Knuth correspondence [8].

Corollary 2. 5 Let f3 ̂ Z^ and 6 ^ Z^.. Then the number of pairs (P, Q) of Young
tableaux of the same shape and with weights /3 and 6 respectively is equal to the
number ofmxn-matrices A = (a,j) such that

1. All entries a;j are nonnegative integers;

^ Sj a«j = ^. /or? = 1, 2,..., m;

3. ^. ay=^/orj=l, 2,..., n.

3 SmX S'n-module M(m, n, f3)
In this section we study a permutational representation of Sm'xSn on the linear
space generated by intransitive graphs. MultipUcities of irreducible components in
this representation are given by the numbers of oscillating tableaux.

Let m, n   Z+, ,3= (^i,.. ., /3fc)   Zfc such that m-n = ^. ^; A^ =m+ fc+n;
and let G'(m, ra, /3) be the set of intransitive graphs of type ̂  = (<$i, <$2,..., S^), where

for i = l,..., m,
for ? = m-(- l,..., m + fc,
ioTi=m+k+l,..., N.

The direct product of two symmetric groups Sm^Sn acts on the graphs F  
G(m, n, /?) as follows: the group Sm permutes the first m vertices in T and the
group Sn permutes the last n vertices in T.

Let M(m, n, /9) be the vector space over C with basis {up}, T   G{m, n, /3). There
is a natural action of the product for two symmetric groups SmXSn on M(m, n,
given by w :vr ̂  Vw-lr» for w   Sm^Sn- Thus we have a structure of S^xSn-
module on M(m, n, /9).

Denote by TT\ the irreducible 5'm-module associated with a partition A I- m (see
[7, 9]). Every irreducible representation of the group SmXSn is of the form TT\ (g) TT,
where |A| = m and \{z\ = n.

til

Theorem 3. 1 The multiplicity O/TT^ ® TT^ m M(m, n, /3) t's egua/ fo f/ie number of
oscillating tableaux with shape (A, /x) and weight /3, i. e.,

M(m, n, /3) ̂  ^3 |OT(A, ̂ , ^)| . TT, ® TT,

where the direct sum is over all partitions A h- m and ̂  I- n.

^1
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Consider several examples:
1. Clearly, Theorem 2. 3 is a special case of Theorem 3. 1 form =n = 0.
2. Let m = n and let /3 = 0 be the empty sequence. Then graphs from G{n, n, 0)
can be identified with permu-tations in 5'n. In this case M(n, n, 0) is the the group
algebra C[Sn] viewed as an Sn x 5'n-module on which one copy of 5'n acts by left
multiplication and the other copy of Sn acts by right multiplication. Theorem 3.1
gives the following well-known identity.

C[5n]=^7T,
Al-n

v\- (1)

3. Let n = 0 and /3. ̂  0 for all z = 1, 2,..., k. Then a graph T   G(m, 0, /3) can be
identified with the word w = wiWs.. . w^ such that the vertex j is connected with
w; +m in F, j = l,..., m. For i = 1,. .., A;, the word w has /3, i"s. The symmetric
group Sm acts on such words w by permuting the letters w,. The representation
Mp = M(m, 0, /3) is a well-known monomial representation, see [7], i.e., M/) =
Indfm. . c- 1 (induced from a parabolic subgroup in Sm). By Theorem 3. 1 we get

x-

Mp = M(m, 0, /3) = ® Tab(A, ̂ ). TTA, (2)
Ahm

where Tab(A, ̂ ) is the number of semi-standard tableaux of shape A and weight /3.
This is the classical Young's rule for decomposition of the monomial representation
M^, see [7, 9].

In order to prove Theorem 3. 1 one can check it first for ^ of length 1 (using
Pieri's rule) and then deduce the general statement by induction on the length of j3.

4 Combinatorial theorem

A sequence r = (ri, T2,... , Tjc)   Zfc is called raormo/ if Ti, T2,..., T; > 0 ; T,+i =
.. =r; =0 ; r;+i, ..., Tfc < 0 for some 0 ^i ^i ^l. For a sequence /3  

Zfc, let nor(/3) be the normal sequence obtained from j3 by shifting all positive
entries of 0 to the beginning and all negative entries to the end. For example,
nor(0, -3, 1, -1, 0, -2, 0, 1, 3) = (1, 1, 3, 0, 0, 0, -3, -1, -2).

For ̂ , <$   Zfc, the notation 5 ^ /? means that <5, is between 0 and /3. for all
?. =!,..., fc, i.e., 0< (5. ̂ /3, orO ^6. ^ /3,.

It is not difficult to deduce the following result from Theorem 3. 1.

Theorem 4. 1 Let \, fi be partitions, 0   Zfc. Then

|OT(A, ^/3)| = ^ |G(<?)|. |Or(A, ^nor(^ - <5))|,
where the sum is over all 6 G. Zk such that ̂  8i = 0 and S -^, /3.
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An analogous result but in different notation was obtained in [10, Theorem 4. 4. 6].
Clearly, Theorem 2. 3 is a special case of Theorem 4. 1 for A =/x= 0.

It is possible (see [10]) to construct a bijection $A^ between the two sets in
Theorem 4. 1. This construction is based on certain local operations (see Section 6).

We complete this section with an example. Let A = (3), p, = (2, 1) and
^ = (-2, -1, 3). Then we have |OT(A, ^/3)[ = 6, |C>r(A, ^, (3, -2, -1))| = 1,
|Or(A, /x, (2, -l, -l))| = 2, |OT(A^, (2, 0, -2))| = 1, |Or(A, ^, (l, 0, -l))| = 1, and
[OT(A, ^, (0, 0, 0))| =0. Theorem 4. 1 implies that 6= l-l+l-2+l-l+l. l+l-l+l-O.

5 Superanalogue

In this section we outline "superanalogues" of the definitions and theorems from
Sections 2-4.

Let /?  Z, £ = (£i,..., £yk)   {!, -!} . By /3£ we will denote the sequence
b = (&i, &2r . . ? ^ic) in the alphabet {m, m [ m 6 Z} such that b, = /3, if £, = 1 and
6, =^, if£, =-l.

Definition 5. 1 Let \, fJ, be partitions. An oscillating supertableau of shape (A, ^)
and weight b = 0e is a sequence of partitions (0(0), o'(i), . . ., a(k)), 0(o) = ^, "(fc) = /^.i
such that for all i = 1, 2,... , fc the following conditions hold.

1. If £, = 1 then (a) for 0i >, 0 we have Ct(i-i) D Q(, ) and Q(, _I)/Q!(, ) is a
horizontal ^i-strip;

(b) for /3i < 0 we have Q(;)Da(, -_i) and Q(, )/a(, _i) is a horizontal (-0i)-strip;

2. //£, = -1 then (a) for ft, ~^ 0 we have Q(, _I)DQ(, ) arac? Q:(, _I)/Q(;) is a vertical
/3i-strip;
(b) for /3i <0 we have a(i)DQ(, -i) and Q(t)/a(, _i) is a vertical (-/3i)-strip.

The set of all oscillating supertableaux of shape (A, fi) and weight 6 = /3£ is denoted
byOST(\, ^b).

Definition 5. 2 Let ^   Zfc and e = (ci, £2r . . , £fc)   {1, -1}. An intransitive
graph of type d = 6£ is an oriented graph T on the set of vertices {1, 2,..., A;}
satisfying the conditions 1-3 of Definition 2. 2 and also the condition:

4. If  i -^  j then T contains at most one edge (i, j)-
Let SG{SC) be the set of all such graphs.

Let m, n   Z+, ^ = (A,..., ^)   Zfc, £ = (£i,..., £fc)   {1, -!}^ & = /3£,
and ^, a?   {1, -!}. Let 5'G'(m^', na', /3c) be the set of intransitive graphs of type

396



d= (rfi, ̂ 2, . . . , C?N), where TV = m+ A-+" and

-1 if^= 1, z = 1,.. ., m,
-1 if0 =-1, ? = l,..., m,

di = { bi-m for i = m + l,..., m+ A;,
1 iftj= 1, z=m+^+l,..., Ar,
1 ifu=-l, i=m+k+l,..., N.

Consider the formal variables a;;j, l <:i < j ^k with relations xijXim =
{-lY'}olmximXij, where

a. = <? ° £t = £J'<7U = 11 ^+ ̂ .

In other words, the Xij with a-, j = 0 are even variables and the Xij with aij = 1 are
odd variables.

Let mp denote the product of a;,-/s over all edges (z', j) of a graph F; and let
M(mv', nu, /?£) be the linear span of mp for F 6 SG{m^, nw, /3£).

The group Sm'xSn acts on this space, cf. Section 3. The symmetric group Sm
permutes the first index i of variables Xij with 2 = 1, 2,... , m and Sn permutes the
second index j of variables X{j with j = m+A;+l, ..., m+k+n.

For a partition A   Pand^   {1, -1}, let A</' =A if^= 1 and \^ = X' (the
conjugate partition) if ̂  = -1. Now we can present a superanalogue of Theorem 3. 1.

Theorem 5.3

M(m^, nu, /?£) =. ® \OST(\^ ^, /3£)| . T, ® TT,,
where the direct sum is over all partitions A I- m and /x I- n.

The following example is an odd analogue of (1). Let^£ = 0 be the empty
sequence, m == n, and i/» = -u = 1. Then Altn := M(n, n', 0) is the representation
of Sn^-Sn on the group algebra C[Sn] such that for (o-, 7r)   .S'nX^'n and /   C[5'n],
(<7, 7T) . / = Sgn((77T-l) <7/7T-1. By Theorem 5. 3, we have

Altn = ^7TA(g)'7TA'.
Ahn

It is not difficult to deduce this formula directly from definition of Altn.

We can give a "superanalogue" of Theorem 4. 1. Let b = (&i, 621 .. . i 6fc) == 0 'i an<l
let nor(6) denote the word obtained from the word b = (&i, &2r . ., h) by shifting all
negative entries to the beginning and all positive entries to the end. For example,
nor(0, 3, -l, I, 0, 2, 0, -I, -3)=(-l, -T, -3, 0, 0, 0, 3, l, 2).

Theorem 5. 4 Let X. fi^P be partitions, /?  Zfc, £   {1, -1}A. T/ien

\OST{\^^e}\ =^\SG(S£)\ . |05r(A^, nor((/3-^)£))|.
6^13
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One way to prove this theorem is to deduce it from Theorem 5.3. It is also
possible to construct a bijection $^ between the two set from Theorem 5.4 using
the operations ̂ 3 and ̂ 4 from Section 6 below.

For \ = p, =0 Theorem 5. 4 implies the following result.

Corollary 5. 5 Let /?   Zfc anrf e   {l, -l}fc. TAera </ie number of oscillating
tableaux of shape (0, 0) and weight b = /3£ is equal to the number of intransitive
graphs of type b

\OST(0^b)\=\SG(b)\.

Corollary 5. 6 Let /3   Z^? a.nd 8   Z^.. Then the number of pairs of tableaux (P, Q}
with conjugated shapes and with weights /3 and 6 respectively is equal to the number
ofnxm-matrices satisfying the conditions 1-3 of Corollary 2. 5 with all entries equal
to 0 or 1.

Knuth [8 also constructed a variant of RSK which gives a bijection between the
set of mxn-matrices and the set of pairs of tableaux (P, Q) from Corollary 5. 6. In
this case the bijection $^ coincides with Knuth's correspondence.

6 Local operators
Let n   Z+. Consider the operators I(n), I(n), D(n), D(n) in the space of formal
linear combinations of partitions such that 7(n) (respectively, J(n)) deletes a hori-
zontal (respectively, vertical) n-strip and D(n) (respectively, D(7i)) adds a horizontal
(respectively, vertical) n-strip. These operators were considered by I. Gessel in [6].

Let b   {n, 7T [ n   Z}; and let A(6) denote the operator 7(6) if6 ^ 0 or the
operator D(-&) if & ̂  0. Then

A{h)A(b^) . .. A(6i)(A) = ^ |05T(A, 6, /. )[ /..
A'

In the following theorem [x, y] denotes the usual commutator xy - yx.

Theorem 6. 1 Let m, n   Z+. The following commutation relations hold:
1. [J(m), J(n)] = [7(m), J(^)] = [Z)(m), Z)(n)] = [D(m), £»(n)] = 0.
2. [J(m), J(n)]=[P(m), Z)(n)]=0.
3. [J(m + 1), D{n + 1)] = 7(m)D(n), [7(m~TT), D(nTT)] = J(^)P(n-).
4. [I(m + 1), £>(rT+T)] = P(rT)J(m), [7(m47T), P(n + 1)] = P(n)J(77?).

Clearly, this theorem follows from

Proposition 6. 2 Let m, n ^ 1. There exist bijections between the following sets
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1. ^ : YT(\/^ (m, n)) ̂  yT(A/^ (n, m)),
2. ^2 : ST(\fv, (m, n)) ^ 5T(A/^ (n, m)),

3. ^3 : OT(A, ̂ , (-m, n)) -. L[o$^nun(nz, n) OT(A, ̂  [n-k, -m+fc)),
4. ^: OST(\, ^ (-m, 7?)) -^ Uteo, i 05T(A, t/, (n-A, -m+fc)).

Here YT(\/v, /3) and ST(\/v, /3) denote the sets of Young tableaux and supertableaux,
resp., of weight /3

It is not difficult to construct these four bijections. As an example, we will show
how to construct the bijection ̂ 3 (see [6]).

Let a = (\, fi, v)   (9T(A, /i, (-m, n)) , A = (Ai, A2,... ), ^ = (^1, ^2,... ), and
i/ = (i/i, !/2,... ). In the following diagram an arrow x -> y denotes the inequality
x>. y.

AI \2 AS .
^\ / \ ^

fll fi2 ^3
\^ \ ^ \

1^1 1/2 t/3

A, A,+i
\ /

^. +1
/ \

^. Vi+1

Let a. = min(A,, i/, ) and &. = max(A. +i, i/,+i), i = 1, 2.... Set /7; = a. + ^ - [Zi+i,
i = 1, 2,... and k = ^ -min(Ai, ^i). Clearly, 0 <: k ^ min(n, m). Now JI =
(?i, ?2, ---) is a partition and a = (A, ^I, i/)   OT(A, /x, (n - fc, -m + fc)). Define
^,3: a h-^ 3. Then ^3 gives a bijection between the sets (9T(A, ^, (-m, n)) and
Ujc OT{\, fJ., (n - k, -m + Jk)), 0 <: k ^ min(m, n). Indeed, if we have a partition
Jl = (^1, ^2, ... ) and 0 ^ fc ^ min(m, n) then we can reconstruct fJ, setting ^i =
k + min(Ai, 1^1) dnd /x, +i = a, + 6, - /.(" 2=1, 2,....

Remark 6.3 We can assume that A., /x;, i/,, m, n, and k are arbitrary nonnegative
real numbers. Thus one can construct a continuous analogue of the bijection ^3.

The construction of the bijection ̂ \^ mentioned in Section 4 is based on the op-
eration ̂ 3. Let a = (Q(Q), ..., Q(fc)) be an oscillating tableaux of weight (/?i, ..., ̂ fc).
We need to apply ^3 repeatedly to "subtableaux" of the type (Q(, _I), Q;(, ), Q:(,+I))
(see [10]) such that ̂ , ̂  0 and ̂ ,+1 < 0 (at least one of the inequalities is strict)
until we get a tableau a' of a normal shape /3/. In the same way, using the operations
^3 and ̂ 4i one can construct the bijection $^er from Section 5.

In the end of this section we give a generalization of Theorem 6. 1. Let A be
the ring of symmetric function of infinitely many variables x-i, x^..., see [9]. Schur
functions s\(x), A  P (see [9]) form a linear basis in A. Thus we can identify A with
the space of formal linear combinations of partitions. Consider the non-degenerate
symmetric bilinear form on A such that s\(x) form an orthonormal basis with respect
to this form. Consider the linear operator on A given by S\/^ : f -> £), /" . f. Let
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S^^ be the conjugate operator with respect to the bilinear form. Then the operators
Z)(n), D(n), 7(n), and 7(n") coincide with Sn, Sin, S^, and S^n, respectively (Pieri's
rule). In general, we have the following commutation relations for the operators S\
and 5;.

Theorem 6.4
S^S\= ^ Sx/i, S^/^.

(tCAni/

7 Continuous analogue

In this section we sketch a continuous piecewise-linear analogue of the RSK corre-
spondence for oscillating tableaux.

Using the bijection ^3 from the previous section (see Remark 6. 3) it is possible to
construct a continuous piecewise-linear volume-preserving map ̂  : A-^ B between
two convex polyhedra. Rather than rigorously state the theorem we will give an
exainple.

Consider an array {p.-j} whose shape is a Young diagram, say

Pn

P21

P31

Pl2

P22

P32

Pl3

P23

Pl4

where all entries pij are nonnegative real numbers weakly decreasing from left to
right and from top to bottom. Each diagonal in this array is a decreasing sequence
of nonnegative real numbers, i.e., it is a "continuous partition". Thus we can view
the array {pij} as a "continuous oscillating tableau"

a = ((?3l), (?21, P32), (?11, P22), (Pl2, ?23), (pis), (Pl4)).

Consider the polyhedron A which consists of all such arrays with fixed diagonal-
sums: p3i = 7ii P2i +P32 = 72, Pii + P22 = 73, Pl2 + ?23 = 73> Pl3 = 75, Pl4 = 76-

Consider another array {g.j} of the same shape where all entries q,j are nonneg-
ative real numbers. (We drop the monotonicity requirements for the entries. ) Let B
be the polyhedron of all such arrays with fixed column and row sums 911+921+931 =
/?li 9l2 + 922 + 932 = ,32, 9l3 + ?23 = 03, 9l4 = /?4, ?3l + 932 = ^1, ?21 + 922 + $23 =
^2, 911 + gi2 + 9l3 + 9l4 = ^3.

Suppose that the parameters {.7, } and {0j, 6k} satisfy the following relations:
7i = A, 72 = 7i + /^2, 73 = 72 - <5l, 74 = 73 + /?3, 75 = 74 - <?2, 76 = 75 + ^4.

Repeatedly applying the operation ^3 from the previous section, one can con-
struct a continuous piecewise linear volume-preserving bijection $ between the poly-
hedra A and B. In particular,
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(a) Vol(A) = Vol(B),
(b) The number of integer points in A is equal to the number of integer points in B.

As we mentioned before the elements of A are "continuous oscillating tableaux".
Analogously, the elements of B are "continuous intransitive graphs". If we restrict
ourself to the case when all p{, and qij are integer, we can recover the RSK corre-
spondence for oscillating tableaux (see Theorem 2. 3).

In the end we consider a simple example. Suppose

$: Pn

P21

Pl 2

P22

911

$21

9l2

922

where pii ^ piz > 0, p2 i ^ p2 2 ^ 0, pii >: p2 i ^ 0, pi2 ^ p22 ^ 0, and 9,j ^ 0.

Then the map $ is given by gii = pii - min(pi2, p2 i)) 9i2 = Pi2, 921 = ?2i, and

^22 = min(pi2, p2 i) - ?22 (cf. construction of ^3 in Section 6).
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