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ABSTRACT. We compute the inverse of a specific infinite r-dimensional matrix, thus unify-
ing multidimensional matrix inversions recently found by Milne, Lilly, and Bhatnagar. Our
inversion is an r-dimensional extension of a matrix inversion previously found by Kratten-
thaler. We also compute the inverse of another infinite r-dimensional matrix. As appli-
cations of our matrix inversions, we derive new summation formulas for multidimensional
basic hypergeometric series.

1. INTRODUCTION

Matrix inversions are very important in many fields of combinatorics and special functions.
When dealing with combinatorial sums, application of matrix inversion may help to simplify
problems, or yield new identities. Andrews [1] discovered that the Bailey transform [3],
which is a very powerful tool in the theory of (basic) hypergeometric series, corresponds to
the inversion of two infinite lower-triangular matrices. Gessel and Stanton [13] used a bibasic
extension of that matrix inversion to derive a number of basic hypergeometric summations
and transformations, and identities of Rogers-Ramanuj an type. Even earlier, Carlitz [9] had
found, an even more general matrix inversion though without giving any applications.

Gasper and Rahman [10], [25], [II], [12, sec. 3. 6] used another bibasic matrix inversion
together with an indefinite bibasic sum to derive numerous beautiful hypergeometric sum-
mation and transformation formulas.

The most general (1-dimensional) matrix inversion, however, which contained all the in-
versions aforementioned, was found by Krattenthaler [16] who applied his inversion to derive
a number of hypergeometric summation formulas. The inverse matrices he gave are basically
{fn k)n. kez and ($'fc;)fc, ; Z (Z denotes the set of integers), where

fnk =

n-1
n (aj-Ck)

j=k

n^-ck)
j=k+l

;1. 1)
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and

9kl =

k

n. (^'-cfc)
J=t+l

(Gfc - Ck) k-1
m^-ck)
3=1

In fact, the special case aj = aq~3, Ck = q is equivalent to the matrix inversion of Andrews.
and the case aj = ap~j, c^ = qk is equivalent to Gessel and Stanton's. Specializing c^ = qk
we obtain Carlitz's matrix inversion, and aj = (bp~j /a) + ap}, Ck = q~ + bq yields the
inversion of Gasper and Rahman.

Multidimensional matrix inversions were found by Milne, Lilly and Bhatnagar. The Ar (or
equivalently U{r +1)) and Cr inversions (corresponding to the root systems Ar and Cr. re-
spectively) ofMilne and Lilly [21, Theorem 3. 3], [22], [17], [18], which are higher-dimensional
generalizations of Andrews Bailey transform matrices, were used to derive Ar and Cr ex-
tensions [21], [23] of many of the classical hypergeometric summation and transformation
formulas. Bhatnagar and Milne [4, Theorem 5. 7], [6, Theorem 3. 48] were even able to find
an AT extension of Gasper and Rahman's bibasic hypergeometric matrix inversion. They
used a special case of their matrix inversion. an Ar extension of Carlitz's inversion. to derive
AT identities of Abel-type. But none of these multidimensional matrix inversions contained

Krattenthaler s inversion as a special case.
One of the main results of this paper is a multidimensional extension of Krattenthaler's

matrix inverse (see Theorem 2. 1). This multidimensional matrix inversion unifies all the
matrix inversions mentioned so far as it contains them all as special cases. Besides, we
present another interesting multidimensional matrix inversion (see Theorem 3. 1) which is of
different type.

The main motivation for finding a multidimensional extension of Krattenthaler's matrix
inverse came from prospective applications to basic hypergeometric series. These applications
are the contents of section 4. We combine a special case of Theorem 2. 1 and a Cr §07
summation theorem of Milne and Lilly [23] to derive a Dr s4>7 summation theorem, which has
been derived independently by Bhatnagar [5] using a different method. We also derive Ar and
Dr extensions of a quadratic hypergeometric summation formula of Gessel and Stanton [13].
F'inally. we derive a Dr extension of a cubic summation formula of Gasper and Rahman [11].

We are sure that our multidimensional matrix inversions are very useful in the theory of
basic hypergeometric series of type Ar, Cr, and Z?r, respectively. and will lead to the discovery
of many more new identities. This claim is heavily supported by the fact that identities
derived in this paper already lead to new Cr and Dr extensions of Bailey's very-well-poised
io<?i>9 transformation [2]. This is ongoing research undertaken jointly with Bhatnagar [7].

Two determinant evaluations, which are elegant generalizations of the classical and -tsym-
plectic" Vandermonde determinants, turn out to be crucial for our computations in sections
2 and 3. We decided to give them in a separate appendix.

Full details and proofs of all the results in this paper are included in our preprint [27]. This
work is part of the author's thesis, being written under the supervision of C. Krattenthaler.
The author feels especially indebted to his supervisor who patiently has provided a lot of
help and ideas.

Finally, we explain what we mean by "multidimensional matrix inversion". Let F =
(/nk)n. ke3r (as before. Z denotes the set of integers) be an infinite lower-triangular r-
dimensional inatrix: i.e. /nk = 0 unless n ^ k. by which we meaii ri{ ̂  ^-, for all / = 1 /'.
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The matrix G = (5fki)k. iez is said to be the inverse matrix of F if and only if

Y, /ak5kl = ^nl
n>k>l

for all n, l G Zr, where Sni is the usual Kronecker delta.

2. A MULTIDIMENSIONAL MATRIX INVERSION

For convenience, we introduce the notation |n| = ni +"2 + ... +"T-

Theorem 2. 1. Let (at)tez, (c, (f, ))(, 6z, i=l,..., r be arbitrary sequences, b arbitrary, such
that none of the denominators in (2. 2) or (2. 3) vanish. Then (/nk)n. kezr a'nd (5rkl)k, l6Zr arc

inverses of each other, where

/nk =
ln, ("<-&/n^^(^))
t=|k|

r |n|-l
n n("t-c. (^))
1=1 t=|k]

n n (c^-b/n^c^))^^ n^(c, (^, )-c, (^))
(2. 2)

t=l (, =*:,+! 1, J=1 t, =fc, +l

and

g^= n (C, (^)- , (/, ))
1<1<1<. (^(^)-^(^))

(&-a|l|n^i^(^)) n (a|i| - c. (/, ))
x i&^^rCT^yy.y (^iki - c. (fcj)

Ikl .... ^ W
n (a(-&/n^c, (fc, )) n n^(at-c, (^))

t^lll+1' . --. --.. - .=lt=)ll+l

n "n(c, (ti) - 6/n^i c, (^)) n^ ;n;(c, (f. ) - c, (^))
1=1 (, =(, ' t,J'=l t, =t,

(2. 3)

Remark 2. 4. The special case a< = 0. c^(kj) = xjlq~k^ is equivalent to the Ar Bailey trans-
form of Milne and Lilly [21], [22], the specialization a< = 0, Cj(^) = xjlq-k' + x^. b = 0
is equivalent to their Cr Bailey transform [22], [17], [18]. The limiting case a< = baq~t.
Cj{kj) = xjlq~k}, then b -> 0, is equivalent to a second Ar Bailey transform of Milne [21,
Theorem 8.26]. The specialization Cj(kj } = xjlq~k' is equivalent to the A, matrix inverse

of Bhatnagar and Milne [4, Theorem 5. 7], [6, Theorem 3.48]. Moreover, the r = 1 case is a
restatement of Krattenthaler's matrix inversion (eqs. (1. 1) and (1. 2)). Due to the fact that
Theorem 2. 1 covers all known Ar matrix inversions (to the author's knowledge), we view
Theorem 2. 1 as an Ar matrix inversion theorem (also see Remark 3. 4).

Another important special case of Theorem 2. 1 is a new multidimensional bibasic hyper-
geometric matrix inversion, stated seperately as Theorem 4. 10 in section 4, which we utilize
in our applications.

Sketch of proof of Theorem 2. 1. We use the operator method of [15] extended with a multi-
diniensional corollary (see [27, Corollary 2. 4]). Proceeding this way we arrive at a particular
system of operator equations which we solve by application of Lemma A. l. D
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3. ANOTHER MULTIDIMENSIONAL MATRIX INVERSION

Theorem 3. 1. Let (c, (<;))(, gz> i = l,..., r, be arbitrary .sequences, b arbitrary, such that
none of the denominators in (3. 2) or (.3. 3) vanish. Then (/nk)n. k Z- and (g'uh. ie^ are
inverses of each other, where

_ ^n(i-6c, (^/n^c, (A:, )) , n;(i-c, (^(^))
^=n^-----n^-

and

p.i= n

'=\^, SC^-b/^=i^(k, ))^^ n (c, (^. )-c, (^))
ti=k,+l . ---.. (, ='^+1

(C, (/, )- , (/, )) (1-C, (/, )C, (/, ))
^<r V(C. (^) - C, (^, )) (1 - C, (A-. )C, (^)),

^(l-c, (/. )2)^c, (/,)

(3. 2:

n n^(l-C, (^)2)^c, (^)
fc, k.

x n
n^(i-^. (^)/n^c, (^)) , n^(i-c, (<. )c, (^))

(, =;, +1 n t, =;,+l

1=1 , n(c. (^)-6/n^c, (A;, )) ^ n;(c. (^, )-c, (^, ))
(.. ='. ' (, =;,

(3. 3)

Remark 3. 4. The special case Cj(kj) = xjlq-kj is a Cr generalization of Bressoud's matrix
inversion formula [8], as pointed out in [18, second remark after Theorem 2. 11]. Setting, in
addition, 6=0 yields a Cr Bailey transform which is equivalent to the one derived in [18].
Therefore, we view Theorem 3. 1 as a Cr matrix inversion theorem.

Sketch of proof of Theorem 3. 1. We proceed as in the proof of Theorem 2. 1 but utilize
Lemma A.3 instead of Lemma A. l. D

4. APPLICATIONS TO Ar AND Dr BASIC HYPERGEOMETRIC SERIES

Probably, the most important application of matrix inversion is the derivation of hyperge-
ometric series identities. There is a standard technique for deriving new summation formulas
from known ones by using inverse .matrices (cf. [1],. [13], [26]). If-(/nk)n, k Zr and (^ki)k, lez-
are lower triangular matrices being inverses of each other, then of course the following is
true:

if and only if

/nk0k = &n
0<k<n

^ Skibi = ak.
0<Kk

(4. 1)

(4. 2)

We expect that applications of our matrix inversions in Theorems 2. 1 and 3. 1 will lead to
many new identities for multidimensional (basic) hypergeometric series. As an illustration.
we use special cases of our Theorem 2. 1 to derive Ar and Dr extensions of a terminating
quadratic summation of Gessel and Stanton [13], Dr extensions of Jackson's g<p- summa-
tion [14], and a Dr extension of a cubic summation of Gasper and Rahman [11].
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We recall the standard definition of the rising ^-factorial (cf. [12]). Define

(";9)cc:=n(i-^),
J^O

and for any integer k,

k-1

(a;<)t:=g(l-°(J)=^ (4. 3)

Theorem 4. 4 (An Ar quadratic sum). Let 3:1,..., a;r, a, b, and d be indeterminate. let
n-i...., nr be nonnegative integers, let r ^ 1, and suppose that none of the denominators in
(4. 5) vanish. Then

^ fl-ax^k'^\\ ^ (\-q2 k'-^x, lx, \ ^ {q-^x^x. -. q2^
O^n, V ̂  Y 1 - ^. y i^<L<. v i - ^7^- y ,^i (92^y^; 92)^.
;=!,...,r

^ ^ (^, 92)., (a2z. 91+21nl/^ q2\ ^ (a^. ; 9)|k|
, 2 /A. ^21. i ^, h^. ^. ^.2

(4. 5)

±=\ {ax, q2 /b;q^k, (^x^q2 )^ ^ {ax^^';q)w

^ {^q)\k\(q/b;q)w ^-lkl+2F;_,. fc,'
(ag/^;<7)[k](^-21nl/a;9)|k|
{aq2 /bd;q2 )^(abq/d;q2 )\^ ^ {axiq;q)^

{aqld; q)^\ ^ (ax, q2 /b; q2)n, (abx, q; q2)n,

Remark 4.6. This quadratic summation formula is an Ar extension of

^ 1 - aq3k (a:qW;qUq/_b, q)k {d;q2}, (a2ql ^n/d;q2 ), (q-2n;q2^
^o l-a (q2 ^'2)kW/^q^, (abq;q^k {aq / d: q) k(dq-^ / a; q) k[aq2 n^: q) k q

[aq;q)2n {abq/d; q2 )n{aq2 /bd; q2 )n
{aq/d;q)^ (aq2 /b\q2 )n(abq;q2)n

due to Gessel and Stanton [1.3, eq. (1. 4), q -». q2}, to which it reduces for r = 1. Many
identities like (4. 7), involving bases of different powers of q, are known. Hypergeometric
series with several bases were extensively studied by Gasper and Rahman [10], [25], [11]. [12.
sec. 3. 8].

Proof of Theorem 4A. If we substitute c, (<, ) i-^ q~'2t'/x^ i = l,..., r, Gt ^ a^', and & i->
afbx-i . ...z'n in Theorem 2. 1 (this special case can be also obtained from the inversion [6.
Theorem 3.48] of Bhatnagar and Milne) we see that the following pair of matrices are inverses
of each other:

(4. 7^

_^(\-q^k'^a^ld\ ^ (\-q^-^x^x^
Jnk = ,y <,^T^, a^73-/i ,, y<, ». ^-^,'

(az. glnl;9)2fc,n

1<i<]<r

(9-2n^, /.z:, ;g2),, n
92E:^'^.

^ {q2 x, lx^q^ ^{a^q^^'/d;q2 )w (^2-lnt/^ <?)2|k|
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and

T

9ta=T[
1=1

'l-a^2'-+lll'
1 - ax,

n
l^i<j<r

'\-qll^x^x, \ ^(g^^/^A
1 -x, lx, ) ^ (q'2x, /x, ;q2)i,

^ fr (^. ; 9)111 fj (a2^1+21kl/(f; <?2), ^ (a2. r, Q/^; 92)|k|
'^(ax^^;q^^\ (a^x^/d^^ ^ (ax^q)^

^ (l-gl+IIIg/c?) (<f/a<?;$)[i|(<?a/c?;(?)2|k| 111+2 ̂̂ ^<;
{\-qald) (q^-Wa/d-. q^ <? '-"-^=I-"-

Now (4. 1) holds for

and

6,

a, = {baq/d, q2)^ (aq2 /bd:,2^ f[ ,
^.

ja^^kl,
^ {axiq'^/b;qz)k, (abx,q;q)k,

(q2 -w/b;q2 }w(bq1-^ q2)^ ^ {a2x,q3 /^q2 )^ (dx, /a; 92)n,
(a^-l°l/rf; q2)^ (dq-W/a; q^\ 1,1 (ax^/b^ q2)^ {abx^, q^

by means of an Ar extension of Jackson's g^-sum. taken from [20. Theorem 6. 14] (or in
more convenient notation [24, Theorem A12]). This implies the inverse relation (4. 2) which
is easily transformed into (4. 5). D

It is not hard to see from a polynomial identity argument that Theorem 4. 4 implies the
following summation theorem.

Theorem 4. 8 (An Ar quadratic sum). Let Xi,..., Xr, Ci,..., Cr, a, and d be indetermi-
nate. let N be a nonnegative integer, letr >^ 1, and suppose that none of the denominators
in (4. 9) vanish. Then

E |n
ki,..., kr>0 \ t=l
0<|k|<^V

1 - ax^q.2k. +\k\-
n

K)<j<r

.

1-^, -2/c, ^. /^.' n {c, x, lxj;q2)k,
1 - ax, ) i<t^<r \ 1 - ^. /^ ) .,^1 (922-<7^; .?2)/c,

^ (dxi;q2 )k. (a2Xiq/dTV^ c, ;q2)k. n. (ax^q)\^n n
,-L1 (a^2+yv;g2)., (a^l-N;92)., ,-L1 (ax. 9/c, g)|k|

_(9:'v;9)tk|(91+7v;9)|k|
(a9/c?;9)|k|(^n, r=iCj/a;Q)|k|

, -iki+2ELi tA.

{dq/a; q2)M(aq2 /d^^ Cj; q2)M TT (ax,q2 : ^^^(c^/az. ; 92)M
{aq2 /d;q2)M{dq]Y^Cj/a:q2 )M f^ (q/ax, :q2 }M(ax, q2 /c, ;q2)M

(<f/a; q2)M{aq/d]}^ c^q2)^ ^ {ax,q;q2)M{c, /ax^q2 )M
I (a9/^; 92)A/r(^n^=i c, /a;92)M <^ (l/a. c, ;92)M(aa"^/c<; 92)M

(.V = 2M).

(.V = 2M - 1).

(4. 9)

Proof. First we write the right sides of (4. 9) as quotients of infinite products using (4. 3). Then
by the b = q~N case of Theorem 4. 4 it follows that the identity (4. 9) holds for Cj = q~2nj.
j = l..... r. By clearing out denominators in (4. 9), we get a polynomial equation in ci.
which is true for q~2nl , ni = 0, 1,.... Thus we obtain an identity in Ci. By carrying out this
process for 02, Cs,... , Cr also, we obtain Theorem 4.8. D
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By another specialization ofTheorem 2. 1 we obtain an interesting bibasic hypergeometrir
matrix inversion. We use this inversion to derive Dr basic hypergeometric summation for-
mulas. For explanations why we associate Dr with these formulas the reader is referred to
[5].
Theorem 4. 10. Let

/nk = -7
n |(aplkl^-. r, ;p)|n|_|k| (aplklg-^/. r. ;p)|n|-|k|
t=I

n_ [(q^-^Xi/x^q)^, (ql+k^x, x, -, q)n^]
2,J=1

(4.1

and

^=(-i)lkl-!li^lk'^ n (l-"ta;J^)gu=[~irl "'q' ' / , <u<. (1 - x^q^)

^ (l-aplll9^. )(l-aplV-/^)
^{l-apWqk'x^\-apWq-k'/x,)

x

H |(apl+lllgfc.. r, p)|k|-|i| (apl +lll<?-<;. /.r, ;p)|k|_|i||
1=1

^^ [(^+'. -'^, /^;g)fc, _;, {ql+l'+^x^q)k, -i.}
l,J=l

(4. 12)

Then (/nk)n, k Zr an<^ (5kl)k, l6Zr O^C infinite lower-triangular r-dimensional matrices being
inverses of each other.

Proof. In Theorem 2. 1 we set 6= 0, Q( = ap( + P-t/a, and c, (<. ) = 2-, ^t' + q~t'/x, for
i = l,..., r. After some elementary manipulations we obtain the inverse pair (4. 11) and
(4. 12). D

Remark 4. 13. The inversion in Theorem 4. 10 is'a Dr extension of Gasper and Rahmans
bibasic matrix inversion [12, (3. 6. 19) and (3. 6. 20)], to which it reduces for r = 1.

Theorem 4. 14 (A D^ Jackson's sum). Let x^..., Xr, a, b. and c be indeterminate. let
ni,..., 7ir be nonnegative integers, let r ^ 1, and suppose that none of the denominators in
(4. 15) vanish. Then

^ f 1 - ax, qkt+W\ ^ f\-qk'-^x, /x, \ ^ , _ _ . _, -iE, (n (l-iTL )..B. (x7-.r,7z FJ J ̂ n. j^^)^
0<fc, <n, \t=l\ ^ - u-^t / l<, <j<r \ ^-^-t/^j / KKj^r
«=!,...,7-

.pT (q~n3Xi/x^q)k, (:XiXjq^;q)k, ̂  {axi;q)\k\(aq/Xi;q}^\-k.
^ {qxi/x, ;q)k. ^(aql +n'Xi;q)\k\{aql-n'/x, ;q)^

{b:q)\k\{c:q)w{a2q/bc;q}^
n [(aa-, 9/6; $)fc, [ax, q/c;q}k, (6ca;;/a; 9)^,]

qL:-.^
t=l

^ (axiq;q)n, {ax,q/bc;q)n, {bx, /a:q)n, {cx, /a\q)n, ^ ^
^ (x, /a:q)^ (bcx, /a;q}n, (ax, q/b;q)n, (ax, q/c\q)n,

Remark 4. 16. For r = 1 Theorem 4. 14 reduces to Jackson's very-well-poised 3^7 summation
formula [14], [12, (11. 22)].
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Proof of Theorem 4. 14. Setting p = q m Theorem 4. 10 (i. e. here we consider a Dr extension
of Bressoud's matrix inverse [8]) we see that the following pair of matrices are inverses of
each other:

(1 - ^. -^2:^)0 -x^,qk-^) ^ (1 -x2q2 k')
Jnk ~ KJ<1<. (1-X, /X, )(\-X^) , n (1-^)

TT {<l~n3^1xj;q~)kAxix]'^}k. TT (aa;;?'"'; 9)fc, . ^T^ .k,
. ^ {qx^/x^q^ {x^q^;q)k. ^\ (.r. ^-l"l/a; <?),,

and

g»= n (l-^-^. /z, )(l-. r, ^-+^)
K.J<L-<r (l-Xi/X, )(l-XiX,)

x
^ {q-^x, lx, :q^{x, x^:q^ ^ (1 - a9'll+^. )( 1 - ^l1'-'-/^:
^ [qx. lxj; q}i, (x, x, q; 9);, ^ (1 - a.c, )(l - a/x,)

^ -p^ W^q}^ yj (a3-. ; 9)|l| (a/2:l: 9)lll . gELi '. '..
,-L1 (ax, q;q)k, .-L1 (a^+^a-. ; g)|i| (a91-':-/. r, :g)|i|

Now (4. 1) holds for

^r (6.r, /a; g)fc, (cz. /a; g)fc, (ax,qlbc\ q)k,
ak = u (aa-,9/6; q)k. (a^. 9/c; <?)fc, (6ca;. /a; $)^,

and

^n=n {x]q;q)n. n (x. Xjq;q)n,
^\ (6c^, /a;9),, (x^-W/a:q)n, ^^ (x, x, ql ^:q)n,

(6cg-lnl/a2:9)|n|(91-lnl/^9)|n|(c;9)|n|
n [{axiqlb:q}n, (cq-n'/ax, -, q)n,}
t=l

by Milne and Lilly's Cr s<f>7 summation [23. Theorem 6. 13]. This implies the inverse relation
(4. 2) which is easily transformed into (4. 15). D

By using a polynomial argument we get

Theorem 4. 17 (A Dr Jackson's, sum). Let X],..., Xr, ci,..., Cr, a, and b be .indetermi-
note. let N be a nonnegative integer. let r ^ 1, and suppose that none of the denominators
in (4. 18) vanish. Then

^Jn (L^^) ,<". (i^3^) ,<"<^-<)-
^-i.. ". >o\r=i \ 1 ~axl ) i<r<^r ^ i - .rl/-rJ > \^<]^r^. 1.
0<]k|<;V
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^ (CjXi/Xj;q}k, (xiXj/Cj-, q)k, -pr (aa;:; 9)|k| (a<?/^. ; 9)|k|-fc,
{qXi/Xj;q)k. ^ (az, 9/c, ;9)|ic[ (ac. 9/z, ;9)|k|

x
(&;g)|k|(aV+/v/6;9)|k|(9-N;9)|k|

n [(a^, g/6;9),, (6.r, g-N/a; <?)^, (a.z-,9i+^; 9),,]
,E:=, ^.

1=1

=nZT {axiq; q)N {aq/Xi; q}^ (a.c;9/6c, ; q)^ (ac. g/fcz, ; 9)^
^1 (aq/bxi; q)^ (aXiq/b; q)^ (aCiq/x, ; q)^ (axiq/c, : q)^

(4. 18)

Limiting cases of Theorem 4. 14 or Theorem 4. 17 include various Dr summations. By
reversing the multisum in Theorem 4. 14 we obtain another Dr Jackson's sum which was
independently derived by G. Bhatnagar [5] using a different method. Dr extensions of
many of the classical basic hypergeometric summation theorems are given in [5]. Further
consequences of the new Dr s<f>7 summations, such as Cr and Dr extensions of Bailey's
very-well-poised 1009 transformation formula [2], [12, (III.28)] will be given in [7].

The remainder of this section is devoted to Dr quadratic and cubic summation formulas.

Theorem 4. 19 (A Dr quadratic sum). Let x-i,..., Xr, a, and b be indeterminate, let
ni,..., nr be nonnegative integers, let r ^ 1, and suppose that none of the denominators in
(4. 20) vanish. Then

,
E (n (^^) ,n, (^0^) ,<nj-2'-0<i^'<n, \^=l ^ l ~ axi I 1<^^ '< x ~ .C87'i''"' / 1$'<^'-0<fc,"

i=l,....r

^ (Q-2n^, /z, ;92)fc, (z.. i;^2n^92)fc, T^ (a.c, ;9)|k](a9/a;<;9)|k|-2fc,
x ,ui ~{^x. lx^q1^ i=l (a.c. 91+2n-;9)|k[(agl-2-/. r. ;g)|k|

^ (a2<7;g2)iki(&;g)iki(g/&;9)iki ^_^^|k| ̂ 3;^. . ̂ (k)-(ik^)+2^,. fc,
H[(abx^q2 )h. {ax,q2 /b;q^,}
t=l

=n (axiq;q)2n. (a;ig/a6; g2)n, (^. /a; 92)n,
^ (.r.. /a;g)2n, (a6a:,g;92)n, (aXiq2 /b:q2)n,

where C2(k) is the second elementary symmetric function of {ki, ... , kr}.

(4. 20)

Remark 4. 21. This quadratic summation formula is a Dr extension of Gessel and Stanton s
summation [13, eq. (1. 4)], displayed in (4. 7), to which it reduces for r = 1.

Proof of Theorem 4. 19. Doing the replacements q-^ q2, p-^ q\Ti Theorem 4. 10 we see that

the following pair of matrices are inverses of each other:

(1 - q^-^x^x, )^ - x^, q2k'^}_ ^ (l-.r2^-)
Jnk=, <n<. (l-^, /., )(l-^, ) L=\ {1-xD

^ {q-^x, lx, :q^^x, :q2}k, ^ {ax^-. q)^ . , 2 EL, ^-.

^ (9^7^g2),, (x^q2 +2n^. q2)k, ,-L1 (^. 91-lnl/"; 9)2.,
x

u
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and

^1= n (l-^'-2^t/^)(l--c^^+2/J)
Ki<j<r (1 - 2;<'Aj )(l - XiXj)

TT ^~2k3x^x^q2\{x, x^;q^ ^ (1 - aq^2l'x,){\ - a^l1!-2'. /^.]
.,̂ i (92^7^;92);, (^^2;92);, .I-; (l-a.r, )(l-a/r,)

x

-pT (a-, /a; 9)2*, ^. (a.r. ;g)[i|(a/^;g)|i|r[(aL, 9;9)Z' n (^1+2^;9)|«| (^^^^^ ' 9 l=It/l-
Now (4. 1) holds for

_ 
TT {x,q/ab;q2 )k. (bx, /a;q'2)k,
^(^. 9;92k(^. g2/6;92k

and

&"=n (^92;92)n. n (x, Xjq2 ;q2)^
^ (abx,q;q^ (^-W/^q2 ^ ^^ {x^q^^;q^

(^l-lnl;92)|n|(?2-ln'/6;92)|n|(a29;92)|n|
n [(az, g2/6;^)^ (^l+l°l-2n, /^. ;g2^J
t=l

by Milne and Lilly's Cr ̂ 7 summation [23, Theorem 6. 13]. This implies the inverse relation
(4. 2) which is easily transformed into (4. 20). D

Remark 4.22. By reversing the multisum in (4. 20) we may obtain another, differently look-
ing, extension of Gessel and Stanton's quadratic summation formula (4. 7).

By a polynomial argument we may obtain some more quadratic summation theorems from
Theorem4. 19.

Finally, we derive some cubic summations.

Theorem 4. 23 (A Dr cubic sum). Let x^,..., Xr, and a be indeterminate, let ni...., n^
be nonnegative integers, let r ^ 1, and suppose that none of the denominators in (4. 24)
vanish. Then

s fnf1^^
0<fc, <n, \ i=l
i=l,...,r

1 - ax,,
(l-^-^. /^ ^ (,.,, <,3,,,,[XiXj;q-)^-^

i<j<r \ .. ^zl-^3 / l<t<j<r1<'<J<

^ (q~3n}Xz/x^q3 )k, (x, x, q3n';q3 )k. ^ (cix^q)^(aq/x^q)^\-3k.n n.,̂ i (^. /^;93),, 1,1 ((x. r, <71-3n-;g)|k| (a^-3". /^;^)|k|

x (l/a2;9)|k| (a2?, g)2|k| ̂ iki ]:J^-2*, . ̂ (k)-(2lk^l)+3EL, ^.
n(a^. ^;^),.
i=l

t=l

_ 

^ {ax^q}^ (x, /a3:q3 )n,
_ 

^ ^

'.-Ll(z. /a;9)3n, (a3.r, 93;93)n,' v""
where e^(k) is the second elementary symmetric function of {k-i,. .., k^}.
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Remark 4. 25. This cubic summation formula is a Dr extension of

^ 1 - aq^k (a; g), (6;9), (g/6;9)2. ("2^3n; ̂ 3). (9-3n; 93)fc ^
& l-a {q3\q3 }kWlb;q^{ab:q}^W-3nlab;q)k{aq^^q)kq

(aq;q)3n {ab2;q3 )n (4. 26)
(a6;9)3n(a93/&:93)n

due to Gasper and Rahman [11, eq. (4. 1), c -^ i], to which it reduces for r = 1.

Sketch of proof of Theorem 4. 23. We replace q-> q3, p -* q'm Theorem 4. 10 and proceed as

in the proof of Theorem 4. 19. D

Remark 4. 27. By reversing the multisum in (4. 24) we may obtain another, differently look-
ing, Dr extension of Gasper and Rahman's cubic summation formula (4. 26).

Finally, by a polynomial argument, we may derive some more Dr cubic summation theo-
rems from Theorem 4. 23.

APPENDIX A.

Here we provide two determinant lemmas which we needed in the proofs of our Theo-
rems 2. 1 and 3. 1. Our lemmas are interesting generalizations of the classical Vandermonde
determinant evaluation

^w-]) = n ̂ (z. - a:, ),
l;;!'^r Kt<j'<r

and the "symplectic" Vandermonde determinant evaluation

,
^_(. rrJ -^+J)= n (.r. -. r, ) H (1 - ^),

r ^ ^-^- ^/ - 1 ^'.'Kt. j< !<!<j<r l^t^'^r

respectively.

Lemma A. l. Let x-i,... , Xr, yi,..., yr, a, and c be indeterminate. Then

-^(^-^^n^)
=^t^n^n-A(-)- (A'2]

Lemma A. 3. Let .ci,... , a;r, 1/1,... . yr, and c be indeterminate. Then

(xr^-3 
- 

x3-(x^^m^^- n {xl ~ ys\
KaT^ [xt 

' 

~ xi (i-^/n^^) lJi (i-^),

_^(i-^/n^,, )^^ ^^=ytTT^7C^U(l-'c?)yI-
xIKl-^. y, )-1 H [(^-^)(l-^, )(l-y^)]. (A. 4)

i.]=l K'<J'^r
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