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ABSTRACT. Let M be a Riemann surface of genus g, f: M — C be a meromorphic
function of degree n with [ poles of orders n; >ng 2 2Ny, £=1 n; = n. The
generalized Lyashko—Looijenga map takes f to the polynomial Q@ whose roots are
critical values of f. This mapping is a covering (up to the action of Aut M) on the
complement of the discriminant, that is, when all critical values of f are simple and
distinct. Our aim is to find the multiplicity s, v = (n1,...,m1), of this covering.

0. INTRODUCTION

The classic Lyashko-Looijenga map [A, L] takes a polynomial P = z™ +@p_2z™ 2+ ’
.«- 4+ a1z + ao to the polynomial @ whose roots are critical values of P. This map
is a covering on the complement of the swallowtail (which is the discriminant in
the target space), and its multiplicity is equal to ™. One observes easily that
this number coincides with the number of edge-labeled trees on = vertices (see
[AFPR]), and [L] presents a construction, which explains this coincidence. In this
note we extend this construction to a general case of a meromorphic function on
a Riemann surface and find explicit expressions for the number of edge-labeled
graphs in several simple cases.

Let M be a Riemann surface of genus g, f: M — C be a meromorphic function
of degree n with [ poles of ordersny = ng = -+ 2 1y, Ei=1 n; =n. The generalized
Lyashko-Looijenga map takes f to the polynomial Q@ whose roots are critical values
of f. As in the case of polynomials, this mapping turns out to be a covering on
the complement of the discriminant, that is, when all critical values of f are simple
and distinct (more precisely, it is a covering up to the action of Aut M). Our aim
is to find the multiplicity g, v = (n1,...,n1), of this covering.

In order to take into account the action of Aut M in the cases g =0 andg=1,
one should introduce additional constraints. For g = 0 the group Aut M is 3-
dimensional, and thus it suffices to fix one pole at the infinity, the leading coefficients
of the numerator and the denominator at the unity, and the sum of the roots of the
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numerator at the origin. For g = 1 the group is 1-dimensional, thus it suffices to
fix one of the poles. For g > 2 the group Aut M is discrete ([FK, p.242]); for g = 2
(a hyperelliptic surface) it is isomorphic to Z2, and for a general Riemann surface
it may be assumed to be trivial.

Observe that our problem is intimately related to the Hurwitz problem of count-
ing all ramified coverings of the sphere by a Riemann surface of genus g with a given
set of ramification orders. References [M1, M2| contain a solution to the Hurwitz
problem; however, the expression for the number of coverings presented there is
extremely difficult to use and substantial efforts are needed to derive more suitable
formulas for particular cases [M2].

Here we use the classic approach suggested by Hurwitz [H| for the case of holo-
morphic functions and rediscovered recently in the conformal field theory [D, GT].

The problem, along with several conjectures concerning the values of ug for cer-
tain g and v, was communicated to the authors by V. Arnold in summer, 1995.
Later we had several stimulating discussions with him on various aspects of the
problem. We cannot overestimate the role of T. Ekedahl, who explained to us the
essence of the classic approach, and taught us several useful facts in the represen-
tation theory of the symmetric group. We are also grateful to S. Natanzon, who
pointed out the references [M1, M2].

1. EDGE-LABELED k-TREES

Let G = (V, E) be a multigraph without loops, |V| = n, |E| = m. To each edge
e € E we assign a mapping w.: V — V that transposes the ends of e. Assume now
that the edges of G are labeled by the numbers 1,...,m. We then define a mapping
wG: V — V as the product of the transpositions 7. in the increasing order of labels.
To represent mg as an element of the symmetric group S,, one have to choose a
numbering of the elements of V. Evidently, all the permutations obtained in such
a way for different numberings of the same graph belong to the same conjugacy
class, and thus have the same cycle type. This cycle type is said to be the cycle
type of the edge-labeled graph G. In the same way we define the cycle partition
of G. Finally, if v = (n;,...,n) is the cycle partition of an edge-labeled graph G,
" then [ is the cycle length of G.

We say that G is a k-tree if it is connected and its cyclomatic number equals k,
that is, k = m —n+ 1. The following proposition can be proved by induction on k.

Theorem 1. Let G be an edge-labeled k-tree, then the cycle length of G can assume
an arbitrary value in the set {j: 1< j<k+1, j#k mod 2}.

Let NF denote the number of edge-labeled k-treesonn = Z:=1 n; vertices whose
cycle partition is v = (n1,...,n;). The Riemann-Hurwitz formula and a straight-
forward generalization of the Lyashko-Looijenga construction yield the following
proposition.

Theorem 2.
1+2g—
pl =N 2071 n>3,
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2. ALGEBRAIC COMPUTATIONS

Let Z denote the center of the group algebra of the symmetric group. It is well
known that Z, as an algebra, is generated by the conjugacy classes of Sp (or, more
exactly, by the sums of all the elements of a conjugacy class). Therefore, for each
z € Z one can define §(z) as the coefficient of the unity in the decomposition of z
in a weighted sum of conjugacy classes.

Let now N* denote the number of edge-labeled graphs (not necessarily con- '
nected) on n = Z:=1 n; vertices and n + k — 1 edges whose cycle partition is
v = (n1,...,m1). The following proposition is an easy consequence of the above

definitions.

Proposition 3.

s 1 _
&) RE = 285740 a),
where zy is the class of transpositions and z, is the class with the cycle partition v.

To evaluate the right hand side of (1) we use certain results in the representation
theory of the symmetric group. As follows from the main theorem of this theory,

§(2) = — S (F*Fwal2),

° pkn

where the sum is taken over all Young diagrams of length n, f* is the multiplicity
of the representation labeled by p, 9, is the central character corresponding to this
representation. Applying the Frobenius theorem ([Ma, p-64]), we get the following
result.

Proposition 4.
m 1 / m v
(2) 8z z) = = > fP(h(e) = h(P))"ICuIxy,
pEn

where h(p) = 3(i—1)pi, p' is the diagram conjugate to p, C, s the conjugacy class
with the cycle partition v, x), is the value of the character of the representation
labeled by p on the class C,,.

A typical expression one encounters while trying to evaluate the right hand side
of (2) is

otpra) =3 (1) om@=mp,

m
m=0
where p,t € N, a € R. We introduce the generating function

o
zP

S(t,a;z) = Y_o(t,pa)
p=0 P

and obtain the following proposition.
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Proposition 5.
(3) B(t,a5z) = e**(1 — e~ %)%

It is easy to see that X(¢,a;z) has a zero of order ¢ at the origin. Thus, intro-
ducing coefficients A(a) by

oo _ e
> Aja)et = e (120

q=0

we can rewrite (3) as
(4) o(t,p,a) = plA}_(@).
3. ENUMERATION

Now we are ready to start computing N* for several simple cases. The simplest
situation occurs when ! = 1 and v = (n), which corresponds to meromorphic
functions with one pole. In this case the permutation ¢ is a cycle, and thus graph
G is forced to be connected. Thus, Nf¥ = ]V,’f As an immediate consequence of
Theorem 1 we get N29*! = 0 for g = 0,1,...; so we are now interested only in
N2?9, g = 0,1,..., which, by Theorem 2, are just uf,. A close examination of (2)
reveals that in this case we are dealing with the sum o(n — 1,p, 25*). This fact
was actually proved in [J] by the same representation-theoretic methods as above
(see also [G] for a direct combinatorial proof). Thus, the generating function of

Ap~Y(251) is just
sinh 2\
&)
2

and we get the following result.

Theorem 6.

2g —1)! =]
pl = N29 = pn+29-2 (_'f_t;g'___)-A;g-l("__), n>3.

In particular, from Theorem 6 we get
Corollary 7. Let n > 3, then

- g =n" (Lyashko-Looijenga)
n*(n? —1
Hn = ( 24 )7
2 _ "2 (n? —1)(n +3)(n+2)(52 - 7)
Hn = 5760 '

Let us now consider the case when the cycle length of mg equals 2, which cor-
responds to meromorphic functions having two poles. In this case G is either con-
nected, or contains exactly two connected components. Let v = (n —r,7), r < n/2.
From Theorem 1 we immediately get N:{_,.,,,. =0,g =0,1,.... For the case of an
odd cyclomatic number one gets the following result.
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Proposition 8.

g9+1

=2g+1 2g+1 |, 3 n+2g 29+2—2

N'"'g-""" = Nnir’r+z (T+28—1)N38Nn{-r a’ 0<r<n-r
‘8=0

Taking into account Theorem 6, we get the following

Theorem 9.

N 2g)!
Ilf.-r,r = N2t = N29T - (:) o __g) pT—2 (n— 7‘)n—r+29 X

n—r,7 n—r,7 n!
g+1 A\ 28
r 1fr—-1 ey [R—7-1 : ,
§ () s () (25).werenr

In the case = n — r the sum in the right hand side of the above expression
should be taken over s varying from 0 to |12 ].

In particular, for g = 0 we are dealing with a linear combination of the sums
o(t,p,a) for a = (n = 7)/2, (n—-35)/2, (n —1)/2, (n+ 1)/2and p < n+ 5. We
thus get from Propositions 3-5 and Theorem 9 the following

Corollary 10.

, 0<r<<n-—r,

n) " (n — )"

0 — w1 —
I‘n—r,r - Nn—r,r‘ - (1' n

27\ 7271
#g‘,"‘:Nf]",T: (r> 4 *

Observe that an expression for the total number of edge-labeled 1-trees, that is,
for $°°} N}_, ., was obtained earlier in [AFPR]. Comparing the two results we
get the following identity.

Corollary 11.

e LT Sl
= k! e k! (n—k)
According to Proposition 8, in order to find N k for graphs of cycle length 2, we
need to know these numbers for graphs of cycle length 1. In the same way, NE for
the case I(v) = 3 can be expressed via the same numbers for smaller /. Since the
calculations become more and more involved, we state here only one result.

Proposition 12.

(rn—2)""2n(n? — 1)
#2—2,1,1 = erz—z,l,l = 2 , mn>3.

Added in the final version: An anonymous referee kindly pointed out two im-
portant references of which we were unaware previously. Reference [CT] contains
a simple explicit expression for uJ., and a recent preprint [GJ] offers a general for-
mula for p¢ for an arbitrary partition v, which generalizes both the result of [CT]

and several results of the present paper (Proposition 12, Corollary 10, and the first
part of Corollary 7).
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