
r

GENERALIZED LYASHKO-LOOUENGA MAP,
RAMIFIED COVERINGS OF THE SPHERE, AND
ENUMERATION OF EDGE-LABELED fc-TREES

B. SHAPIRO*, M. SHAPIROt, AND A. VAINSHTEINt

* Dept. of Mathematics, Univ. of Stockhokn, S-10691,
Stockhohn, Sweden, shapiroflmatematik. s'u. se

1 Dept. of Mathematics, Univ. of Arizona, Tucson,
AZ 85741, USA, shapiroflmath. arizona. edu

f Dept. of Mathematics and Computer Sdence, Univ. of Haifa,
Moiint Carmel, Haafa 31905, Israel, alekflmathcs2.Iiaifa.ac. il

ABSTRACT. Let M be a Riemann surface of genus g, f: M -*Cbe a, meromorphic
function of degree n with I poles of orders HI ̂ nz > . "^ n;, S<=i n« = n- The
generalized Lyashlco-Looijenga map takes / to the polynomial Q whose roots are
critical values of /. This mapping is a covering (up to the action of Aut M) on the
complement of the discruxunant, that is, when all critical values of / are sinaple and
distinct. Our aim is to find the multiplicity fi^, i/= (ni,. .., n(), of this covering.

0. INTRODUCTION

The dassic Lyashko-Looijenga map [A, L] takes a polynomial P = zn+On-2Zn-2+
... 4- aia; + ao to the polynomial Q whose roots are critical values of P. This map
is a covermg on the complement of the swallowtail (which. is the discriminant in
the target space), and its multiplicity is equal to n"~3. One observes easUy that
this nuiaber coinddes with the number of edge-labeled trees on n vertices (see
[AFPR]), and [L] presents a construction, which explains this coincidence. In this
note we extend this construction to a general case of a meroiaorpluc function on
a Rieniami siirface and find explidt expressions for the niunber of edge-labeled
graphs in several simple cases.

Let At be a Biemann siirface of genius g, /: M-»Cbe a meromorphic function
of degree n with I poles of orders ni ̂ ns ̂  ... ̂ TI(, Si=i ni == n- ̂ e generalized
Lyashko-Looijenga inap takes / to the polynomial Q whose roots are critical values
of /. As m the case of polynomials, this inapping turns out to be a covering on
the coinplement of the discriminant, that is, when all critical values of / are siinple
and distinct (more precisely, it is a covering up to the action of Aut M). Our aim
is to find the multiplicity /^f, v = (ni,.. . , n(), of this covering.

In order to take mto account the action of Aut M m the cases g = 0 and p = 1,
one shoiild introduce additional constraints. For g = 0 the group AutM is 3-
dimensional, and thus it suffices to fix one pole at the infiiaty, the leading coefficients
of the numerator and the denominator at the tmity, and the suin of the roots of the

Typeset by AMS-TEJX

421



B. SHAPIRO, M. SHAPIRO, AND A. VAmSHTEIN

nuraerator at the origin. For g = 1 the group is 1-diinensional, thiis it siiffices to
fix one of the poles. For g ^2 the group Aut M is discrete ([FK, p.242]); for g =2
(a hyperelliptic surface) it is isoinorphic to Z 2, and for a general Rieiaann surface
it may be assiuned to be trivial.

Observe that our problein is mtiinately related to the Hnrwitz problem, of coimt-
ing all ramified coverings of the sphere by a Riemann siirface of genus g with a given
set of rzLinification orders. References [Ml, M2] contain a solution to the Hurwitz
problem; however, the expression for the number of coverings presented there is
extremely difficult to use and substantial efforts are needed to derive more suitable
fonaulas for particular cases [M2].

Here we use the dassic approach suggested by Hurwitz [H] for the case of holo-
morphic functions and rediscovered recently m the conformal field theory [D, GT],

The problem, along with several conjectzires concemiiig the values of p.g, for cer-
tain g and i/, was conuniuucated to the authors by V. Arnold m simuner, 1995.
Later we had several stunulating discussions with him on various aspects of the
problem. We cannot overestimate the role of T. Ekedahl, who explamed to us the
essence of the dassic approach, and taught us several useful facts m the represen-
tation theory of the synunetric group. We are also grateftd to S. Natanzon, who
pouited out the references [Ml, M2].

1. EDGE-LABELED fc-TREES

Let G = (V, J&) be a multigraph without loops, \V\ = n, |JB| = m. To each edge
e E E vre assign a mappmg n-e: V -» V that transposes the ends of e. Assiune now
that the edges of G are labeled by the numbers 1,... , m. We then define a mapping
VG : V -^V as the product of the transpositioiis ffe m the mcreasing order of labels.
To represent WG as an element of the symmetric group Sn, one have to choose a
niunbering of the elements of V. Evidently, aU the permutations obtained m such
a way for different nuinbermgs of the same graph belong to the saine conjugacy
class, and thus have the same cycle type. This cyde type is said to be the cycle
type of the edge-labeled graph G. In the same way we define the cycle partition
of G. Finally, if i/ = (ni,... , n;) is the cycle partition of an edge-labded graph G,
then I is the cycle length of G.

We say that G is a k-tree if it is connected and its cyclomatic niunber equals k,
that is, Jfc = m- n+1. The following proposition can be proved by induction on k.

Theorem 1. Let G be an edge-labeled k-tree, then the cycle length of G can assume
an arbitrary value in the set {j'-l^:j^:k+l, j^k mod 2}.

Let N^ denote the niunber of edge-labeled fc-trees on n = Si=i ni vertices whose
cycle partition is v =. (ni,... , ni). The Riemann-Hurwitz formula and a straight-
forvffard generalization of the Lyashko-Looijenga construction yield the following
proposition.

Theorem 2.

x^=^+^-1, n^3.
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2. ALGEBRAIC COMPUTATIONS

Let Z denote the center of the group algebra of the symmetric group. It is well
known that Z, as an algebra, is generated by the conjugacy dasses of Sn (or, more
exactly, by the sums of all the elements of a conjugacy dass). Therefore, for each
z   Z one can define S(z) as the coef&dent of the unity m the decomposition of z
in a weighted suin of conjugacy dasses.

Let now N^ denote the niunber of edge-labded graphs (not necessarily con-
nected) on n = ^^ n, vertices and n+fc - 1 edges whose cyde partition is
v = (ni,..., n(). The following proposition is an easy consequence of the above
definitions.

Proposition 3.

(1) AT-fc - -L^/^n+fc-1/^ = .^°{Z2" " ~zv)f
'.

where zz M the. class of transpositions and z^ is the class with the cycle partition v.
To evaluate the right hand side of (1) we use certain results m the representation

theory of the symmetric group. As follows from the main theorem of this theory,

^)=^EOT2 ^(2)'
phn

where the sum is taken over aU Young diagrams of length n, fp is the multipHdty
of the representation labeled by p, if/p is the central character corresponding to this
representation. Applying the Frobenius theorem ([Ma, p.64]), we get the foUowing
result.

Proposition 4.

(2) S{z^z^) =^ f>(h(p1) - h(p))m\C^ p>
pl-n

where h(p) = S(t'-l)pi, P' " the diagram conjugate to p, Cy is the conjugacy class
with the cycle partition v, \v is the value of the character of the representation
labeled by p on the class Cy

A typical expression one encounters while trying to evaluate the right hand side
of (2) is

.((, p, a)=S(l)(-l>"(a-'»>'.
m=0

where p, t   N, a R. We introduce the generatmg function
00

S(<, a;z)=^<r((, P, Q;)^,-
p=0

and obtain the following proposition.
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Proposition 5.

(3) S(<, a;z)=ea2(l-e-2)t.

It is easy to see that S(<, o;;z) has a zero of order t at the origin. Thus, intro-
during coeffidents A^(a) by

we can rewrite (3) as

(4)

00 , 1 --Z\t

SA;(a)z. =e"(^)',
g=0

o-(<, p, OE)=p!A^(a).
3. ENUMERATION

Now we are ready to start computing N^ for several sunple cases. The sunplest
situation occurs when 1=1 and v = (n), which corresponds to meroinorpliic
functions with one pole. In this case the permutation n-c is a cyde, and thiis graph
G is forced to be connected. Thus, N^ = N^. As an unmediate coiisequence of
Theorem 1 we get N^9+l = 0 for g = 0, 1,... ; so we are now interested only in
JV2», g = 0, 1,..., which, by Theorem 2, are just ̂ . A dose examination of (2)
reveals that in this case we are dealing with the sum <r(n - l, p, 2j:l). This fact
was actually proved in [J] by the saine representation-theoretic methods as above
(see also [G] for a direct combinatorial proof). Thus, the generatmg function of
A^-l(2f1 -) is just

/smIxfY-
\~T

and we get the followmg result.

n-1

Theorein 6.

^^y, ^-. (»+^-l)'^('^), n?3.
In particular, froin Theorem 6 we get

Corollary 7. Let n ^ 3, fAen

(Lyashko-Looijenga)^="n-3,
1 "n("2 -1)

ttn= 24'
2 nn+2(n2-l)(n+3)(n+2)(5n-7)

/An= 5760
Let us now consider the case when the cyde length of VQ equals 2, which cor-

responds to meromorphic functions having two poles. In this case G is either con-
nected, or contzuns exactly two connected components. Let i/ = (n -r, r), r ^ n/2.
From Theorem 1 we immediately get N^g_^r = 0, 5 = 0, 1,.... For the case of an
odd cycloraatic nuinber one gets the following result.
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Proposition 8.

^2ff+l ^ jy2 <,+l_ + y f n + 2ff /t N2SN^
""-^ = Jln-r'r ~r Z^ ^r+2s - iy"r "n-r

ff+l
0 < r <n-r.

'<=0

< r < n-r.

Taking into account Theorem 6, we get the following
Theorein 9.

^ 
" 

= ^21-t1, = ^t1, - (n} (n+2^)!rr-2(n - r)n-+^ x^n-r, r = ^n-r, r = -lTn-r, r ~ \y } "»"

^T^(^)w^^1)' °<
In the case r = n-r the sum m the right hand side of the above expression

should be taken over s varying from 0 to [2^1J .
In particular, i.oi g = 0 we are dealing with a linear combmation of the sums

<r(<, p, a) for a = (n - 7)/2, (n - 5)/2, (n - 1)/2, (n + 1)/2 andp ̂  n+ 5. We
thiis get from Propositions 3-5 and Theorem 9 the foUowing
Corollary 10.

-s^=(:)r:fi4r)r:. °
<-^= (')'?-

< r < n-r,

Obserye that an expression for the total number of edge-labeled 1-trees, that is,
for ̂ ^ ̂ _ , was obtained earUer in [AFPR]. Comparing the two results we
get the following identity.
Corollary 11.

n-2_fc n-1
n" v^ fc- (n - fcj" ~

^, 'fet-^fet-(n-fc)''
According to Proposition 8, m order to find N^ for graphs of cyde length 2, we

need to know these numbers for graphs of cyde length 1. In the same way, N^ for
the case l(v) = 3 can be expressed via the same numbers for smaller I. Since the
calculations become more and more mvolved, we state here only one result.

Proposition 12.

^n-2, 1, 1 = Jvn-2, l, l =
(n - 2)n-2n(n2 - 1) n >3.

Added in the final version: An anonymous referee Idndly pointed out two im-
portant references of which we were unaware previously. Reference [CT] contains
a simple expUdt expression for f^n, and a recent preprint [GJ] offers a general for-
mula for ̂  for an arbitrary partition v, which generaUzes both the result of [CT]
and several results of the present paper (Proposition 12, Corollary 10, and the first
part of Corollary 7).
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