
FACTORIZATIONS, TREES, AND CACTI

COLIN M. SPRINGER1

ABSTRACT. The number of ways of factoring an n-cycle in Sn into a minimal number
of smaller cycles is counted combinatorially, both under the condition that all such
factorizations are distinct and under the condition that factorizations which differ
only up to commutation of disjoint cycles are considered equivalent in which case we
enumerate equivalence classes. In the first case, a bijection is given with a class of
cacti (graphs for which every edge is contained in exactly one cycle) which are in
turn counted using a Prufer encoding. In the latter case, a bijection is given with a
class of rooted plane trees.

I. Introduction.
Factorizations of elements of the symmetric group as a product of other elements

turn up in a number of combinatorial circumstances. When the factorizatioa is mm-
imal (in a sense to be defined precisely m section II), it is called short. Every short
factorization of an element a of Sn decomposes naturally into short factorizations
of each cycle in the disjoiat cycle form of a. Hence in some sense it suffices to
consider only short factorizations ofn-cycles in 5n.

There are two natural ways to count factorizations in 5n: either count all fac-
torizatious as being distinct, or consider factorizations which diflFer only up to
commutation of disjoiut elements as equivalent, and count equivalence classes of
factorizations rather than actual factorizatioas. We will refer to the former as an
ordered factorization and to the latter as an inequivalent factorization.

Section II presents some definitions and technical lemmas on the structure of
short factorizations which will be necessary as we proceed.

In Section III we deal with ordered factorizations. The work of Denes (De]
implies that there are equally many ordered short factorizations of an n-cycle into
transpositions as there are labeled rooted trees on n - 1 vertices. Moszkowski [Mo]
and Gouldea and Pepper [GP] later gave direct bijections between these sets.

Our main result of this section will be the following, generalizing the result of
Denes:

Theorem 1. 1. The set of ordered short factorizations of all n-cycles in Sn is bijec-
tive with the set of doubly-labeled oriented cacti through a bijection which preserves
cycle lengths,.

The cacti produced can be enumerated by Lagrange inversion; however we give
a second bijection which simplifies enumeration, generalizing the Priifer code com-
moaly used to count labeled trees. Specifically, we will prove that the number of
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ordered short factorizations of (12 .
for each i is

n) into k terms of which exactly a, are i-cycles

nk-lk\
n.->2°. ''

which is easily seen to specialize to give the result of Denes when k=n-l, a^=k,
and all other a, = 0. While Goulden and Jackson [GJ2] give a more general result,
our method avoids some of the difficult computations they required.

Section IV answers the same questions as section III for inequivalent rather
than ordered factorizations. Eidswick [Ei] and Longyear [Lo] were independently
able to establish analytically that there are 6n_i = ^l-r(3nn_2 ) inequivalent short
factorizations of an n-cycle into transpositions.

If we let R = Sn>i 6"<n' then Longyear's proof of this establishes the functional
equation R= t(l+ R)3, which we immediately recognize as the generating function
for non-trivial rooted plane trees each of whose vertices has degree 3 or 0, with
respect to the number of non-Ieaf vertices. By a rooted plane tree we mean a tree
with a distinguished vertex (the root verier) embedded in the plane. If we direct
each edge of a tree away from its root vertex, the degree of a vertex is defined to be
the number of edges directed away from that vertex, and the set of descendants of
this vertex is the set of yertices reached by these out-directed edges. Vertices with
degree 0 are called leaf vertices; vertices all of whose descendants are leaf vertices
are called preleafs.

The correspondence between inequivalent short factorizations and rooted plane
trees above is more than just a coincidence: Goulden and Jackson [GJ1] proved that
the number of inequivalent short factorizations ofa(fcm+l)-cycle into (A;+l)-cycles
is ̂  ((2^+. \)m). As they point out, this number also counts rooted plane trees on m
non-leaf vertices each of which has degree 2k + I. Our main result of this section
will be the following generalization:

Theorem 1.2. Inequivalent short factorizations of(123 . . . n) into k cycles with
a, i-cycles for each i are byective with rooted plane trees with k non-leaf vertices
all of odd degree, a. of degree '2i - 1 .

This will be proved through a direct bijection, reflecting the combinatorics of
the functional equation implied by Longyear's work (and its generalization to the
case where we include larger cycles than just transpositions). It should be noted
that a completely different bijection can be constructed based instead on Eidswick's
paper. His work amounts to proving the functional equation R(t(. l - t}2) =t -t2,
which somewhat surprisingly also counts these trees. Only the first of these two
bijective proofs will be presented here.

Note that the number of rooted plane trees of the type specified in this theorem
is known (see Erdelyi and Etherington [EE]); there are exactly

(E. >i(2^-l)^)!
(i+E. >2('2T-Y)a. )'n. >ia>!

such trees, hence exactly this number of inequivalent short factorizations of a cycle
into prescribed cycle types.
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II. Preliininaries.
We call a factorization of (12- . -n) (or any other cycle of length n) into a, 2-

cycles (i = 1, 2,... ) short if E.>2(2 - l)a' = " - 1. For example, (12345)=
(23)(45)(135) is a short factorization of (12345) into two 2-cycles and one 3-
cycle. To prevent confusion, we shall use the term cycle to denote a cycle (in the
usual sense of the word) for which we desire a factorization; irreducible terms in
this factorization will be called factors.

Two factorizations are considered equivalent if one may be obtained from the
other through a sequence of steps, where each step consists of switching the order
of two adjacent non-overlapping (i.e. on mutually disjoint sets of elements) factors.
For example, the factorization above is equivalent to the factorization (12345)=
(45)(23)(135).

If c is a cycle, we use the notation [c] to denote an arbitrary short factorization
of c. Thus the first example above is of the form [(23)][(1 345)] while the second
is not (although it is certainly equivalent to a factorization of that form).

The following result is well known (see for example [Ei]):
Lemma 2. 1. Ifci,... , Cr are disjoint cycles of lengths ni,... , "r, respectively,
then the product ci . . -Cr ca^ be written as a product of no fewer than (Y^^ ";) -
r tra-nspositions. Moreover, any factorization ofci . . -Cr into exactly this many
tra.nspositions is equivalent to one of the form [ci][c2J . . -[cr].

The second part of this lemmais the most powerful. In essence, it states that we
need only be concerned about short factorizations of a full cycle since factorizations
of any other element p of Sn decompose naturally, up to equivalence, into the
product of short factorizations of the cycles in the disjoint cycle form of p.

For our purposes, we require the following generalization of this lemma (to the
case where factors other than transpositions may be used):

Lemina 2.2. Jfci,... , Cr are disjoint cycles of lengths ni,... , nr respectivety, then
whenever the product cic; . . -Cr is written as the product of a, i-cycles for each i, we
must have (^^i n,)-r <, ̂ >-,{i-i)ai. Moreover, any factorization ofcics . . .Cr
for which equality holds above~is equivalent to one of tAe form [ci][c2J . . . [cr].
Proof, Given a factor (ai a; ... ai) where ai < a, whenever 2^ t ^ /, we say
its canomcal decomposition into transpositions is (ai Q2)(a2a3) . . -(aj-i a;) (which
is well-defined since ai is the minimal element in our factor). We extend this
definition by concatenation to a product of factors.

Suppose CIC^CB .. -Cr = (aij Oi, ; . . . ai, ;J(a2, i . . -a;, ;, ) . . -(afc. i . . . afc, ;J is a fac-
torization ofcic; . . . Cr into factors, a, of which are i-cycles for all'!". Replacing each
factor by its canonical decomposition into transpositions, we can apply Lemma2. 1:

(E"')-r^E(/'-l)=E(!-l)a-
>=1 «=1 i>2

Now. if equality holds here then by Lemma 2. 1 the transpositions of the canonical
factorization into transposit. ions may be rearranged to give ci. c;.... . Cr in that
order.
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Since the cycles ci, cz,... , Cr are disjoint, transpositions which arose from the
canonical decomposition of one factor all correspond to a single cycle Cj. Then
within the set of transpositions giving cj, we may again rearrange so that the trans-
positions giving the original factor are adjacent in the same order as before (since
they were initially adjacent). Replacing these transpositions by the factor from
which they arose, and repeating this process for all of the original factors, we have
constructed an equivalent rearrangemenfc of the initial factors of the decomposition
of the form [ci][c2J . .. [cr]. .

Our next lemma gives a useful description of any factors which may be commuted
to either end of a short factorization of(12 . . -n). Notice that this result depends
critically on the shortness of our factorization; without this assumption, the lemma
is false.

Leinina 2.3. Suppose (12 . . .n) = cciCs ... Ci; or(12 . . . n) = cicz . . .CjfcC areshort
factorizations. Then we always have c = (<i<2 .. .<() for some / and 1 ^fi <<2 <
... <ti <n.

Proof. We will consider only the case where (12 . . -n) = ccic; . . .C(;, as the other
case follows similarly.

Let c = (<i<2 .. . <(). We may certainly assume <i < (, for all i > 1. Suppose
there is some j < I for which tj > tj+i, where without loss of generality we may
choose the smallest possible j; we will reach a contradiction of the fact that the
fact. orization was short.

Under our assumption, for some m we must have <i <(; < ... < tm-i < tj+\ <
tm < ... <tj. Note that j > I since <i was the minimal element of the cycle. Then
we have:

((j+l(j-2---(;-l<<)ClC2---C(:
=((, +l<,... t2^)(12. -. 7l)
= (12-- -<i - Kj+l<j+l + l. -. <m - 1 <m-l<m-l + 1 . . -tj+1 -lt, ---n)

(<1<1 + 1 ... <2 - !).. . (<m-2<m-2 + 1 . . -<m-l - 1)
(<m tm + ltm+1 - 1) . . . (^. -1 ̂ -1 + 1 ... (;. - 1).

Now, the right hand side of this last expression cannot be written as a product
of fewer than n- j + I transpositions. If (<i fs . . -((-i ̂ )ciC2 . . -Ck is short, then
(<j+i <j+2 . . -<;)ciC2 . . . Cfc is also short. However the latter expression requires only
n- j - 1 transpositions, so our factorization could not have been short. .

III. Ordered Factorizations and Cacti.
Denes was able to enumerate ordered short factorizations (as opposed to inequiv-

alent short factorizations) of an n-cycle in Sn into transpositions by producing a
bijection between ordered short factorizatioas of all n-cycles in Sn into transposi-
tions and labeled, edge-labeled trees on n vertices. In this section we extend his
result to deal with arbitrary ordered short factorizations into cycles (not necessarily
just transpositions).

An oriented labeled cactus is a connected directed graph on n vertices which are
labeled 1, 2.... . n such that each edge is contained in exactly one directed cycle (it
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follows easily from the definition that there can be at most one edge from vertex
a to vertex 6, but there certainly could additionally be an edge from b to a). An
oriented doubly- labeled cactus is an oriented labeled cactus with * directed cycles
which are labeled 1, 2,... , A;. An example of an oriented doubly- labeled cactus is
given in Figure 3. 1 (cycle labels are inside the corresponding cycles, vertex labels
are by the corresponding vertex):

;.*>...<^t
;<L

r'^,
FIGURE 3. 1. An oriented, doubly-labeled cactus

We will show that short factorizations of full cycles in Sn of prescribed cycle
structure and oriented doubly-labeled cacti with prescribed cycle lengths are bijec-
tive. The latter will be counted using an extension of the usual Priifer coding for
labeled trees. We begin by establishing the connection between ordered factoriza-
tions and oriented cacti.

Theorem 3. 1. The set of ordered short fa.ctorizations of all n-cycies in Sn is
bijective with the set of oriented doubly-labeled c&cti on n vertices. Moreover
this bijection preserves cycle structure: a sAort fa.ctorization containing exactly a,
i-cycles produces a cactus with exactly ai i-cycles, and conversely.
Proof.
Factorizaiions ~-* Cacti. Given a short factorization

(aias-- -an) = (aiiai2---ai;J---(atiajfc2---ai;iJ

we correspond the directed graph with vertices {01, 03,... , fln} and directed cycles
a^ - a,2- ... - a-u, - a, i for i = 1, 2,... , Ji;. Label the cycle containing the
a.j's by z. Figure 3. 2 shows a factorization which produces the cactus given earlier:

(1 6)(2 11 7 39)(4 6 10)(1 5 12 8)(3 6)

=(151286921173104)

<^
K>.

;<L
r'^.

L

FIGURE 3. 2. The cactus associated with a factorization
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We claim that the digraph produced by this method is an oriented doubly-labeled
cactus. Certainly the graph is connected and each edge is contained in at least one
cycle. We must show each edge is on exactly one cycle.

The proof is by induction on k, the number of terms in our factorization. For
A = 1, the result is clear. Suppose that the result holds for all short factorizations
into fewer than k terms. Then if our factorization is as given above,

(ai a-s---an)(akii. . --ak^Ctki) = (an a^-- . ai;i) . . . (ajfc-ii ... at_i;t_J

From Lemma 2. 3, we may assume without loss of generality that a^i -< a^z -<... -<
akit in the order defined byai -<a2 -<... <; an, so the left hand side is seen to
be a permutation consisting of lk cycles in its disjoint cycle form. By Lemma 2. 2,
the terms on the right may be partitioned into lk groups, each group multiplying
to give the corresponding cycle in the disjoint cycle form on the left. By induction,
each subgraph corresponding to a cycle in the disjoint cycle form is an oriented
doubly-labeled cactus, so since the graph in question consists of these cacti (which
are disjoint) and the cycle a^ - ak2 - ... ̂  akti. -^ ati, each edge is on exactly
one cycle, and hence the graph in question is indeed a cactus as claimed.

Cacii -^> Fa.ctonzattons. Given an oriented, doubly-labeled cactus with k cycles,
the t'th of which is a, i - a,, - ... - a, i, -» aii, we correspond the ordered
factorization

(aii ai2 . . -ai;, ) .. -(afci . . -akii,)

in 5,i. Ill Figure 3. 2, it's clear that this map is just the inverse of the map demon-
strated there, however in general it's not clear that the factorization produced by
this map is a short factorization of a full cycle in 5n. We now show this is indeed
the case by induction; again, for <. = 1 the result is clear.

Suppose the result holds for cacti with fewer than k cycles. Removing the cycle
with highest label then gives a set of lk smaller oriented doubly-labeled cacti (pos-
sibly trivial). By induction, each corresponds to a short factorization of a full cycle
on its vertex set. Since these cacti are disjoint, the terms of the product giving this
set of cacti may be rearranged in the order

(aii ... aiij---(ajfc-ii ... ajfc_i^_J

Multiplying by (a^i ... a<;;k) on the right joins these disjoint cycles into one full
cycle (since each smaller cycle has exactly one element in common with the new
cycle). Hence the factorization does indeed correspond to a short factorization of
a full cycle in Sn .

The maps given above are easily seen to be mutually inverse, so the sets they map
are bijective. Moreover, since the maps preserve cycle structure, short factorizations
into a given cycle structure are bijective with cacti of that same cycle structure. .

We now enumerate labeled oriented cacti (from which it is easy to enumerate
doubly-labeled oriented cacti and hence, from the theorem just proved, ordered
short factorizations).
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Theorena 3.2. There are exactly

n*-l. (n-l)!
n. ^a.'

labeled oriented cacti on n vertices with a total of k directed cycles, a, of length i
for each i = 2, 3, 4,....

Proof. To a cactus on n vertices with exactly k cycles, a, of length z, we associate a
sequence ci, C2,... , Ct-i of length k - 1 whose values are in [n] = 1, 2 ... , n and a
set of k ordered tuples such that there are exactly a, (t - l)-tuples and the tuples,
viewed as unordered sets, form a partition of [n] - {cj|;_i}.

Our proof will bijectively associate labeled oriented cacti with these objects.
Note that these are easy to count: there are nk~'i such sequences and J",^1, . such
sets of tuples, so the result will follow once our encoding is verified.

Given an oriented labeled cactus on more than one cycle, an extreme cycle is a
cycle which, when removed, leaves a smaller connected cactus (an extreme cycle
is the analogue of a leaf vertex in a tree). Note that there is always at least one
extreme cycle.

Suppose ao -ai -a; - ... -ai -ao is the extreme cycle, attached at ao to
the rest of the cactus, for which ai is minimal. For example, in the initial cactus
given in Figure 3. 4, this cycle would be 1 ^5- 12-4^ 1. Then we add
ao to the sequence, (01, 02,... , a;) to the set of tuples, and continue recursively
with the rest of the cactus. Eventually the cactus will consist of only one cycle
()Q_ d^ -^ ... - 6^ -fcg, where bo is the point of attachment of the last removed
extreme cycle. Adding (<>i, &2,... , 6m) to the set of tuples completes our encoding
of the cactus. Note that the sequence formed does indeed have length k - I, and
each vertex except bo appears in exactly one removed cycle, so the tuples have the
required structure. Figure 3. 4 demonstrates this process for a sample cactus.

To reverse this process, scan for the lexicographically least tuple (01, 03,... , a;)
which contains none of the entries in the sequence ci, C2,... , Cfc_i (existence of
such a tuple is guaranteed by the pigeon-hole principle). This corresponds to
the cycle ci - ai -> 02 - . .. -^ ajb - Ci. Remove ci from the sequence
and (ai, a2,... , ait) from the set of tuples, and contmue recursively. Eventu-
ally, only one tuple (61, ^2, ... , <>m) will remain; this corresponds to the cycle
Ck-l -^ 61 -63 -»... -> frm -+ Cfc-1-

The resulting graph is a cactus since, considering the created cycles in reverse
order, at each stage we adjoin a cycle to a vertex of a smaller cactus. This map
is also clearly the in verse of our cactus decomposition map. Hence the sets are
bijective. and so the number of labeled oriented cacti is as claimed. .

As mentioned earlier, this encoding method is closely related to the usual Priifer
code used to count labeled trees. In fact, in the case where our cactus consists only
of cycles of length 2, a labeled cactus is isomorphic to a labeled tree (associating
a pair of directed edges in opposite directions from the cactus with an edge in
the tree). The coding given above is then just a sequence of length n - 2 where
each value is chosen from [n], since the set of tuples in this case is determined by
the sequence. Indeed, the sequence associated to our labeled cactus in this case is
exactly the same as given by the usual Priifer correspondence.

L^'
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10

.<^'

{(1). (5, 12. 8)}
.Q;"

-4' 1..
1, {(5, 12, 8)}

.<^T
<-^

/^< 163
, K {(1), (5, 12, 8), (9, 2, 11, 7)}
'^>

r>. 1636
{(1), (3), (5, 12, 8), (9, 2, 11, 7)}

1 636

{(1), (3), (5, 12, 8), (9, 2, 11, 7), (10, 4)}

FIGURE 3. 4. The recursive encoding procedure

We note also that this result can easily be proved by writing down a recursive
definition for the generating function of a labeled, oriented, rooted cactus, applying
Lagrange inversion. and dividing by n (to undo the effect of having chosen a root
for our cactus).

Corollary 3.3. There are exactly

, k-l k\
0^2 °.'

sAort ordered factorizations of (1 23 . . -n) into k terms, each a, cycle of some length,
with exactly a, i-cycles for each i.

Proof. By Theorem 3. 2, there are exactly " ^ ̂ ^i doubly-Iabeled oriented cacti
on n vertices and k cycles with exactly a, i-cycles for each i (since there are k\ cycle
labelings for each labeled cactus). But by Theorem 3. 1. this gives the total number
of ordered short, factorizations of full cycles into the given cycle structure. Since
there are (n - 1)! full cycles in Sn, exactly one in (n - 1)! of these factorizations
gives a factorization of (12- . n), giving our result. .
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More generally, Goupil and Bedard [GB] have given an explicit expression for the
number of ordered short factorizations of any n-cycle in Sn into two factors of given
cycle structure. Goulden and Jackson [GJ2] subsequently gave an expression for
the number of such factorizations into an arbitrary number of factors of given cycle
structure, a more general result than that given by Corollary 3.3. In fact, they
give a bijection with plane edge-rooted cacti, which are then enumerated using
Lagrange in version. Although our bijection also deals with cacti, a different class of
cacti are considered. By restricting our attention only to factorizations into cycles
(as opposed to arbitrary elements of the symmetric group), we are able to count
the resulting cacti with a simple encoding, as opposed to the relatively complex
computation required in [GJ2] for the general answer.

In fact, note that Theorem 3. 1 can be extended to deal with this more general
problem. Our proof of this theorem implies the following result:
Corollary 3.4. Ordered short fa.ctoiizations of all n-cycles in Sn into factors with
cycle-structure Ai, ^;,... , ^k respectively (where A, = la-2°- . . . is a partition of
n) are bijective with oriented labeled cacti with exactly a3, j-cycles labeled i such
tAat no two adjacent cycles have the same label.

While this result is in fact stronger than Theorem 3. 1, it is not clear how to
extend the encoding of Theorem 3.2 to give a purely bijective enumerative result
for the general case. The relative simplicity of the general answer in [GJ2] gives
some hope that such a bijective proof may indeed exist, however.

TV. Inequivalent Factorizations and Plane Trees.
Having enumerated ordered factorizations, we now turn our attention to the enu-

meration of equivalence classes offactorizations. As mentioned in the introduction,
we have actually found two distinct approaches, only the more natural of which is
presented here.

Longyear's derivation of the number of inequivalent short factorizations of(12 . . . n)
into transpositions [Lo] depended heavily on the decomposition

(12. -. n) = (23-. . a)(b + lfr+2 .. -n 1)(1 a)(a a+ 1. -. 6)
which holds forl < a< i>< n. From this decomposition, it is not entirely surprising
that there are as many such factorizations as there are ternary trees: a ternary tree
decomposes into a root vertex and three subtrees just as a factorization decomposes
into a transposition and three factorizations of shorter cycles.

Her decomposition extends nicely to the general case under consideration here:

Lemma 4. 1. Any short factorization of(l 2 . . -n) may be written uniquely (up to
equivalence) in the form

[(2 3 . -. ai)][(6i + 16i +2.. . 02)] -. -[(^ + I .. . nl)](la^a2-. -Ok)
[(aiai+l. --6i)]--. [(atait+l---<>fc)]

for some k and l<ai ^61 < as ^63 < ... <afc <^fc ^" depending only on the
facton'zatioji.

Proof. Suppose the rightmost factor which moves the element lisr = (laia; . . -a^)
(certainly this factor does not depend on the equivalent factorization chosen). Com-
mute as many factors as possible to the right of T, and let a- be the product of all
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factors to the right of r in the resulting equivalent factorization. Of course, these
terms form a. short factorization of cr since the original factorization of the full cycle
is short. Suppose that the cycle in the disjoint cycle form of <T which includes the
element a, is (fl, g a,, . . . 0, 1 ) where /i ̂  0 and io < ij for I ^J ̂  ^.

Then we can foim a new short factorization of(12 . . -n) of the form

(3. 1) (12. --n) = .. -(lai -. .at).. . (a,,, a,,.. . a., ^)

by replacing the factors forming (a, g . . . a,,J with this cycle. Note that this cycle
may in fact be commuted to the rightmost position; as a result of this we must
have a,o < a, ^ < . . - < a,, by Lemma 2.3. The other factors in (3. 1) besides
(a, o a,, . . . a,, ) form in turn a short factorization of(12 . . . n)(a, i . . . a,,, ), which is

(3. 2) (12 .. -a. ^ a,,. + 1. - - n)(a. <, + 1. .. a,, )... (a;;_i + 1 . . -a.,. ).

Since r contributes only to the first cycle in (3.2) by Lemma 2.2, we must have
z'o = z. Furthermore, since (a^, a,, . . . a,, ) was a cycle in the disjoint cycle form of
o-, all of the other cycles in (3.2) must be trivial. As a result, a;, = a, + s for all
s. so the cycle of <r involving a, is of the form (a»ai + 1 .. -&i) for some 61 uniquely
determined by the factorization.

From this, after commuting disjoint cycles of <r which commute with r to the
left of r, we see that our factorization may be rearranged to give an equivalent
factorization of the form

(12.. -n)=... (lai. -. a, )[(ai... 6i)]... [(at.. -^)].

But then we have

(12-.. n){(lai. -. at)(ar. -6i)---(af--(>t)}-1
=(23. --ai)(6i+l... a2)---(6t+l---nl),

so any factorization of (12- . -n) must indeed decompose in the manner stated in
the lemma. .

Having proven this lemma, we are in a position to give a direct bijective proof
of the main theorem for this section.

Theorem 4.2. TAere is a bijection between inequivalent short factorizations of
(123 .. -n) into k cycles with a, i-cycles for each i and rooted plajie trees with k
non-leaf vertices, all of odd degree with a, of degree '2i - 1.

Proof.

Factomations ~~* Trees. The null factorization of a null cycle corresponds to a tree
consisting only of a root vertex.

For any other factorization, we may use Lemma 4. 1 to decompose (12---n)
uniquely in the form

[(23 .. -ai)][((>i + 16i +2.. . a;)] .. . [((>* + 1 . . . " !)](! a, a; . . . ^.)
[(aiai+1...6i)]... [(atat+l-.. 6^. )]
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..-'" (12345878)

»(1S6)(7«X123X6«X34)
typ. K2)]((3)][(S 6 7 8 1)K1 2 3»«2)]«3 4)1
'.-...

"X" ^...- (1i87»)

s(1StX7W)
'... «yp« KS)]K6)l[(i)Ki s WSSW i e>]

,-' I^OO ..'

...." (678)
^78X68)

'Vtyp«((71]Kt)](68)tC)]

... ^

FIGURE 4. 1. The tree corresponding to (12 34567 8) =(1 5 6)(78)(12 3)(68)(34)

This corresponds to the tree with root degree 2k+1, whose subtrees correspond,
from left to right, to the trees determined by the factorizations [(23- . -ai)],... , [(afc ak+
l---bk)] respectively.

This procedure is demonstrated in Figure 4. 1.
Trees ~-» Faciorizations. A tree consisting only of a root vertex corresponds to the
null factorization of a null cycle.

For any other tree, suppose the root vertex has degree 2k + 1 and the 2k + 1
subtrees, 'read from left to right, have 2;i - 1, 2/s - 1,... . 2/2it+i - 1 leaf vertices
respectively.

Then we correspondingly decompose (12 - . -n) as
[(2 3 . . -ai)][(fri + l<>i +2 .. . 02)] . . -[(bk + 1 . . . " 1)](1 aia; . . . at)

[(aiai+l---<>i)]---[(atat+l---<>)fc)]

where the first k+1 cycles have lengths /i, ,2, ... ik+i respectively and the last k cy-
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cles have lengths lk+2, . . -, hk, /2t+i respectively (note that the values of ai, a;,...
and 61, 62. ... are determined uniquely from these cycle length restrictions).

To complete the factorization, we now determine a factorization of each of the
2k+1 subcycles in the factorization above as given by the respective subtree of the
given tree. Note that the term (1 ai a; . . -ajfc) above is a factor in the factorization
we seek, not a cycle to be decomposed further.

The maps above are each well-defined and inverse to one another. Hence they
give a bijective proof of our theorem. .

Theorem 4.2 shows that to enumerate inequivalent short factorizations of(12 . . -n)
into smaller cycles it is sufficient to enumerate rooted plane trees with a specified
number of internal vertices of given degrees. However, this question has been an-
swered in full generality by Erdelyi and Etherington [EE]. Applying their result
gives the following answer to our problem of this section:

Corollary 4.3. TAere are exactly

(D>i(2»-l)°. )!
(l+E. >2(2i-2)a.. )!n, ^a,!

inequiva. lent short fa.ctoiiza. tions of (1 2 .
exactly a, i-cycles for each i.

. n) into smaller cycles such that there are
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