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Abstract

The roots of the general equation of degree n satisfy an A-bypergeometric system
of differential equations in tAe sense of Gelfand, Kapranov and Zelevinsky. We
construct the n distinct A-bypergeoinetric series solutions for each of the 2n-l
triangvdations of the Newton segment. This works over any 6eld whose cbarac-
teristic is relatively prime to the lengths of the segments in the triangulation.

1. Solving the Quintic

A clzissical problem m matheinatics is to find a formula for the roots of the general equation
of degree n in terms of its n + 1 coefficients. While there are fonnulas in terms of radicals
for n < 4, Galois theory teaches us that no such formula exists for the general qmntic

asa;5 + a4Z4 + a-sx3 + 0,2^ + oi® + °o 0. (1. 1)

An alternative approach is to expand the roots into fractional power series (or Puiseux
series). In 1757 Johann Lambert expressed the roots of the trmomial equation xp +X+T
as a Gauss hypergeometric function in the parameter r. Series expansions of more general
algebraic functions were subsequently given by Euler, Chebyshev and Eisenstein, amoug
others. The poster "Solving the Quintic with Mathematica" [12] gives a nice introduction
to these classical techniques and underlines their relevance for symbolic computation.

The state of the art m the first half of OUT century appears in works of Richard Birke-
land [2] and Karl Mayr [10]. They proved that the roots are multivariate hypergeometric
functions (in the sense of Horn) m all of the coefficients and they gave series expansions
for the roots and their powers. The purpose of this note is to refine the these results.

Our point of departure is the fact that the roots satisfy the ^4-hypergeonietric differ-
ential equations introduced by Gel'fand, Kapranov and Zelevinsky [6], [7]. Here A denotes
the configuration of n + 1 equidistant points on the affine line. It foUows fcom recent work
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of McDonald [11] that there are 2"~ distinct complete sets of series solutions, one for each
of the 2n- triangulations of A. We shall construct these series solutions explicitly.

Let us illustrate our general construction for the example of the quintic (1. 1). Here the
set A has 16 distinct triajigulations. The finest triangulation divides A into five segments
of unit length. The coarsest triangulation of A is just a single segment of length 5.

For the finest triangulation we get the following expressions for the five roots of (l. l):

^=-[^], ^,_, =-[^] + [^], ^, -, =-[^+[^,
^=-S'+Si- x5 -l=-^+[Si-

Each bracket represents a power series having the monomial in the bracket as its first term:
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Note that the last bracket is just a single Laurent monomial. The other four brackets
[a_ij can easUy be written as an explicit sum over N4. For instance,

^1
i,J,k, l>.0

(_l)2i+3j+4fc+5! (2z+3j+4fc+5Z)! a;+2-'+3fc+4'+14^a^^
i\j\kU\(i+2j+3k+4l+l)\

a^a^a^as
a

2t+3j+4fe+5i+l

Each coefficient appearing m one of these series is integral. Therefore our five series
solutions of the general quintic are characteristic-free. They work over any bzise field.

The situation is different for the coarsest triangulation of A. Here we must assume
that the characteristic is different from 5. The five series solutions of (1. 1) are

r°S/5i ^ 1. ̂ 2f ai i ^ . 3f a2 ^ -] ̂  ^r_^_^ _ ^xs's = ('[y + i' ^t^FS J + rla?^J + rla;^F1 - l^J
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where ^ runs over the five roots of the equation ^5 = -1. The brackets denote the series
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Each of these four series can be expressed as an explicit sum over the lattice points in a
4-dimensional polyhedron. The general formula will be presented in Theorem 3.2 below.

2. The Roots are\4-hypergeometric

Our problem is to compute the roots of the general equation of degree n,

f(x) = ao + aix + a-iX2 + ... + an-ixn~1 + anxn. (2. 1)

Each root of /(a;) is an algebraic function in the indeterminate coefficients:

X = JT(ao, ai, a2,..., an-i, an).

Proposition 2. 1. (Karl Mayr [10, p. 284]) The roots of the general equation of degree
n satisfy the foHowing system of linear partial differential equations:

Q2X 8i2X

E'».3± =-^

whenever i+ j = k+l,

and
^ ax

. al^- = °-
i=0

9ai

(2. 2)

(2. 3)

The system (2. 2)-(2. 3) is a special instajice of the class of <4-hypergeometric differential
equations introduced by Gel'fand, Kapranov and Zelevinsky [5], [7]. Namely, (2. 2)-(2. 3) is
the .4-hypergeometric system with pzirameters (-^) associated with the integer matrix

0123 -.. n-l n
"- Vii i i ... i i}' (2. 4)

The column vectors of A are homogeneous coordinates of n + 1 equidistant points on the
line. Their convex hiiU is a line segment: it is the Newton polytope of /(a;).
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The Euler-type equations (2.3) follow readily from the homogeneity relations

X(ao, ta-i, t'ia2,..., tn~lan--i, tnan) = y . X(ao, ai, a2,... , an-i, an),
X(tao, tai, t{i'i,..., tan-i, tan) = X(ao, ai, a2,..., an-i, an).

The equations (2. 2) appeared in Karl Mayr's 1937 paper [10, equation (2) on page 284].
I shall present two proofs different proofs. The first one was shown to me m the spring of
1992 by Jean-Luc Brylinsld. See [3] for an appearence of (2. 2) in differential geometry.

Brylinsky's proof of (2. 2): It uses implicit diflferentiation and works over ajiy base field.
We consider the first derivative f'{x) = Si=i ia»a; and the second derivative /"(a;) =
SF=2i(z ~ l)aizt-2. Note that /'(-X') 7^ 0, since ao,..., an are mdeterminates. Differen-
tiating the defining identity ^^g a,X(ao, ai,... , an)z = 0 with respect to a,-, we get

X^ + f{X) ax
9a,

0. (2. 5)

We next differentiate QX/Qaj with respect to the indeterminate af.

92X 6-(-J^-} =
ft I

wxlx^fl (xr2 - jx^-l^-f\xr\
Qa^Qa, - Qa^~7(X~y ~ 9a. " J ^' ./" ^J

Using (2.5) and the identity a^m = -f^ . Xi+iXi-1, we can rewrite (2.6) as

(2. 6)

Q2X
QaiQdj

-f"(X)Xi+3f\X)-3 + (i+j)Xi+j-lf'(X}-2. (2. 7)

The expression (2. 7) depends only on the slim of indices i+j. This proves (2. 2). .
A complex analysis proof of (2.2): Suppose we are working over the field of complex
numbers C. Consider the logarithmic derivative [log{f(x))}' = /'(a)//(a;). We view it as
a rational function in ao, ai,... , 0n and difFerentiate with respect to these variables:

^^W = (7$y)'.
This shows that [log(f{x})}' satisfies the quadratic ^4-hypergeometric equations (2. 2).
Proposition 2. 1 follows by differentiating under the integral sign in Cauchy's formula

2̂7TI Jf
^'(^) dz,Jr W

where F is a sufficiently smaU loop m the complex plane.

(2. 8)
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^, vy~ ^

^o,v)^ (^
0

3. Series Expansions

For any rational number u and any integer v we abbreviate

u ^.- U^-l^

7(u, v) :=
u(u-l){u-2)---(u+v+l) ift;<0,

,
1., , ^_, ", if .u > 0 and the nuraerator is non-zero,(u+l)(u+2).. -(u+t>)

0 if u is a negative integer and u>^ -v.

Let jC denote the integer kernel of A. This is the (n - l)-dimensional sublattice of Zn+l
spanned by {e, -i - 2e, + e^+i : i = 1,.. ,, n-l}. Consider any monomial a^°a^1 . . . a^"
with rational exponents m the coefficients of f{x). We define the formal power series

[C^Ul
. <"] := E nc^^-x-"")-

(vo, -, Vn)eCi=0

(3. 1)

This series satisfies the quadratic differential equations (2.2), and it satisfies the linear
equations (2. 3) with their right hand sides -X and 0 replaced by ̂ X and ̂ X.

Lemma 3. 1. ([5, Lemma 1]) The series [a^o---a^»] is a formal solution of the
A-bypergeometnc system with parameters (^) = A-{uo, ui,... , Un) .

Gel'fand, Kapranov and Zelevinsky constructed a complete set of series solutions for
each regular triangulations of the set A. We shall adapt their general construction to our
special case. Extra care must be taJcen, however, because our equations (2. 3) do'not satisfy
the non-resonzmce hypothesis which is necessary for [5, Theorem 3] to hold.

We write 0, 1,..., n for the points in our configuration A m (2. 4). It has 2n-l tri-
angulations, all of which are regular. Each triangulation is indexed by a subset I of
{l,..., n - 1}. Writing the complementary subset as {0, 1,... , n}\J = {0 =io <ii <
i2 < ... < tr-i < ir = n}, the triangulation of A indexed by I consists of the r seg-
ments [io, t'i], [11^2],..., [^r-i^r]. See [8, Sections 7.3.A and 12.2.A] for details. If r = n
(resp. r = 1) then this is the finest (resp. coarsest) triangulation referred to in Section 1.

We are now prepared to present the main resiilt of this note. In the remainder of
Section 3 we shall be working over the field of complex numbers C. Fix any of the 21

triangulations of A. For j = l,..., r we write dj := z, - tj-i for the length of the j-th
segment in that triangidation. Clearly, di+d^+... +dr = n. Let ̂  = (-1)1/^ be anyse;

of the dj-th roots of -1. We define the ̂ 4-hypergeometric series

^ - 4t^] . i.E^. l-^^] . i. [^]
If j = 1 then the expression [^-] appears in the rightmost summand. We define it to be
zero. Note that by vzirying j and $ we have defined n distinct series in total.
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Theorein 3.2. The n series Xj^ are roots of the general equation of order n, that is,
f(Xj^) = 0. There exists a constant M such that all n series Xj^ converge whenever

|ai, _JtJ-fc . \a, i, \k-i'-1 ^ M . \ak\dj foraJl 1 ^j ^r and k^ {ij-i, ij}.

Proof: Consider fhe open convex cone

(3. 2)

C = {w

  
R"+ : (ij-k)-Wi^_^+{k-ij--i)-w^ < dj-Wk for j = l,..., r, k ^ {ij-_i, ij}}.

This is the outer normal cone to the secondary polytope S(^4) at the vertex corresponding
to the triangulation I of A (cf. [8, Theorem 12.2.2]). Equivalently, the cone C consists of
aU. vectors w = (wo, Wi,. .. , Wn) which induce the triangidation in question.

Let ft be the region in the coefEcient space Cn+ defined by the inequalities (3. 2) for
M > 0. There exists a vector V   Rn+l such that (log(\ao\),... , log(\an\)) - V   Cfor
all (ao,... , an) in U. Let 7^ be the space of all complex-valued functions on U which are
^4-hypergeoraetric with parameters (~o). The ̂ 4-hypergeometric system is holonomic of
rank n and its singular locus, the discriminantal locus of /, is disjoint from U (see [5]).
Hence 'H is a. complex vector space of dimension at most n. We shaU identify n linearly
independent elements in T-C, which wiU imply that 'H has dimension exactly n.

It follows from [5, Proposition 2] that the series [a^° . . . a^"] defined in (3. 1) converges
m U provided at inost two of the exponents u, are non-integers. Each of the summands in
the defimtion of Xj^ has this property. Therefore Xj ̂  converges in U. Using Lemma 3. 1,
we conclude that the n series Xj^ He in the vector space /H.

We fix an vector w = (wo,... , Wn) m C such that all coordmates Wi axe integers and
such that no two of the Imes spanned by pairs {(wi, i), {wj, j)} in R are parallel. The
weight of a monomial a'Q°a[1 . . . a^" (with rational exponents) is defined to be wo?o +wiZi +
. . . + Wnin. We replace the input equation by its toric deformation

ft(x) = aotwo + aitwlx + a2twlx2 + ... + an-itwn-lxn~1 + anttwnxn. (3. 3)

We shall study the n roots as an algebraic function of t. For t close to the origin the n
roots split into r groups, one for each segment [tj-_i, ij], for j" = 1,... , r. (This is a special
case of the multivariate construction in [9, §3]. ) The roots m the j-ih group possess a
Puiseux expansion of the form

^, $(<) = ^ . a.?-l . ̂  . t^{v"'-l~w'1} + higher terms in <,

where ^ satisfies ^5 = -1. We shall prove that y'j, $(l) = Xj^ for all (ao,.. ., an)   ̂ /. To
this end we first determine the second lowest term in the series ^)j, ((<). After modifying
the weight vector w by an affine transformation Wi i-» aw i + /3, which does not alter the
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structure of the series, we may assume that w,. = w,. _^ = 0, and there is a unique index
r with Wr = 1, and w; > IforZ   {0, 1,... , n}\{t'j, ij_i, r}. An explicit calcidation reveals

^(<) = ^^
+ L . ̂r+l~il~1 . ar . a^+!~ij)/dj . a^-l-r-l)/d} . t + higher terms in t. (3. 4)

d,

By varying w within the cone C we can arrange that the role of r is played by any index
in the set

({0, l,..., n}\{ii, i2,..., ^}) U {^-1, ^+2}. (3. 5)

Note that the cardinality of this set is at least dj - 1. Consider the linear map that
extracts from a series in ao,.. ., an all those terms which are lowest or second lowest with
respect to the grading defined by some w   Ct. Call this map T. Consider the iinage of a

root V'j, ((l) under T. This is a polynomial (with fractional exponents) having at least dj
distinct terms, one for the lowest term in (3.4) and at least dj - 1 for the distinct values
of r coming from (3. 5). The coeffidents of these terms are distinct powers of ̂ . These
considerations imply that the images of the roots ̂ j, $(l) under T are linearly independent.
Therefore the roots themselves are linearly independent over C. Moreover, they all satisfy
the ̂ 4-hypergeometric system with parameter (-o)» ̂ Y Proposition 2. 1. We conclude that
the space H is n-dimensional and the roots V'j,$(l) forin a basis for 'H.

We wish to prove ^>j,$(l) = -X'j, $. It suffices to show T(^j^(l)) = T(Xj^) because
the functional T defined above separates the space 7^. Equivalently, given any generic
w in C, we must show that, m the w-grading, Xj^ has the same first two terms as
^.^(1). This is clear for the first tena, so we only need to look at the second tenn
_^+l-i, -x . ̂  . ̂ +l-i, )/d, . ̂ -i-r-D/d^ ̂ ^ ̂  ^^^ ̂ g monomial. Let fc be the
unique mteger between 1 and dj such that r is congruent to ij-i -1 +fc modulo dj. If fc = 1
then av equals the second lowest term (with respect to w) of the series ^ . [o'i. ^a'i, }. If
2 ^k <^dj -1 then av equals the w-lowest term of the series indexed by k in the central
sum m the definition otXj^. For k = dj there are two subcases: ifr> ij-i then av equals
the w-lowest term of the series indexed by A; = dj in the center sum; if r < ij-i then av
equals the w-lowest term of the rightmost series ^-[a^. _^_i/a^. _i]. In each of these four
cases av is the second lowest term in Xj^. This completes the proof of Theorein 3. 2. .
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4. Integrality Issues
To prove the identity f(Xj, () = 0 in Theorem 3. 2 we used the complex numbers. But,
a posteriori, there is no need to stick with an algebraicaUy closed field of characteristic
zero. If K is any integral domain such that the equation ̂ d} = -1 has dj distinct solutions
and the coefficients of Xj^ are defined in K, then f{Xj^~) = 0 is a valid identity in a
suitable fractional power series ring over K. The following result shows that K can be an
algebraically closed field of characteristic p, provided p is relatively prime to d^-- -dr.
The proof of Theorem 4. 1 using Hensel's Lemma was suggested to me by Hendrik Lenstra.
Theorem 4.1. AJ1 coe&cients of the series Xj^ lie m the ring Z[^7][^].

Proof: The series V'j, $(<) in (3.4) lies m the fractional power series ring Ai[[f^j], where

Pl == Q[^][a, :^{b-i, z, }][^$, a^].
This holds because w is integral and each term of Xj, xi = -0j, $(l) lies in Ri. To prove
Theorem 4. 1, it suffices to show that -0j, $(<) is an element of the subring -R2[[<37]]» where

R2 := Z[^-][^[a, =^{z,-i, i, }][a^, a^].'
l'j

We shall apply Hensel's Lemma [5, Theorem 7.3] to the integral domain ^[[t^]]. This
domain is complete with respect to the prindpal ideal m := (<3^), and it contains all
coefficients of the polynomial ft (v) in (3. 3). The constant term of ^j, $(<) lies m JZz; we

J-

denote it by A := ̂ if_, a'i, d} . It is an "approximate root" m the sense that /i(A)   m
and fi(A} is the sum of a unit in JRs and an element of m. By Hensel's Lemma there
exists a unique element B m ^[[^j] such that ft(B) =0 andA-B   m. By repeating
the uniqueness part of this application of Hensel's Lemma for the coefficient domain Ri
instead of R^, we conclude that B must be equal to our Puiseux series ̂ j, $(f). .

A case of special interest is the finest triangulation, where I = {l, 2,..., n-l}, r =n,
dj == 1 for allj". Theorem 4. 1 unplies that in this case our construction is characteristic-free.
In other words, the series solutions -X'j, -i have integer coefficients. These series are

-YJ, -1 = - aJ-l| i |a2Z2.
aj .

a]-l
for j=l, 2,...,n (4. 1)

^herg [a4=-L1 is the sum over all Laurent monomials
fl t

(-1)IJ b-
ij-i + 1 \ii ... Zj-iij+i ... t,

.
i0/, il . . . r, i)-1 /,^-l+l ni'+1 . . . ni"0-0'al ' ' ' a/-2 aj-l aj+l '"a~n_

^+1 (4. 2)
a.
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(4. 3)

n?

where z"o, ti, ... , t'n arc non-negative integers satisfying the relations

»0 +»1 +t'2 +»3 +... + Zj-1 - ij + ij+1 + .. . +ln = 0
ii + 2z'2 +3ts .. . + (j - l)^-i - jij + (j + l)ij+i + .. . +nin = 0.

For generating the series [a^7i] on a computer it convenient to rewrite (4. 3) as follows.

Z'j-l = -J'tO - (j - l)»l - (j - 2)i2 - . .. - 2ij-2 + ij+i + 2zj+2 +... + (n - j)^
ij = -{3 - l)zo - (J - 2)ii - ... - ^-2 + 2^+i + 3ij+2 + ... +(n-j + l)in.

These equations ensure that the midtinomial coefficient in (4.3) is divisible by i'j-_i + 1.

5. Multivariate Outlook

Consider a system of n polynoinial equations m n variables, where the term's m the i-
th equation have their exponent vectors m a fixed set Ai C Zn. (This is ^he meaning
of "sparse" in [9]). By Bernstein's Theorem, the system has mixed volume/many roots
{Xi,..., Xn). Each coordmate Xi is an algebraic function in aU the coefficients. It is
natural to wonder whether Xi satisfies the ̂ 4-hypergeometric differential equations where
A is the configuration arising from the "Cayley trick" (cf. [7, 2.5], [8, page 273]):

-.- ^

2nA := Ai X{d} U ^2 X{C2} U ... U ^InX {en} C Z'

The answer is no. The coordinates of the roots (Xi,..., Xn) are not . 4-hypergeoinetric.
For exainple, let (X^, X^) be the unique solution of the system of two linear equations

Then we find

ao + aia;i + 0222 = &0 + ^iSCi + &2a;2 =

Q'tX-i , 92X^

0.

QagQbi Qa^Qbo

Note ako that Mayr's differential equations (40) and (45) in [10] are no longer buioniial.

The correct generalization of Proposition 2.1 to higher dimensions is the foUowing.
Let J(a;i,... , a:n) denote the Jacobian det{j^-) of the given equations /i = -.. =/n =0.

Proposition 5.1. 'For any integers ui, uz,.. ., Un ^Ae aJgebraic fu-nctioji

x^x^---x^n
J(Xi, Xt, - .. »^n)

(5. 1)

satisfies the A-bypergeometric differential equations arisiag froin the Cayley trick.

Over the field of complex numbers, we can derive Proposition 5. 1 from Theorem. 2. 7 in
[7] using Cauchy's forraula in several variables. An alternative algebraic proof foUows from
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the construction in [1, §2]. The quantity m (5. 1) should be thought of as a local residue on a
tone variety [4]. The sum over all (mixed volume many) local residues is the global residue
associated with the monomial x^ . . . x^n relative to the given equations /i = ... =/^ ==0.
The global residue is a rational function. It is of importance in elimination theory. We
plan to extend the techniques in Section 3 to the setting of Proposition 5. 1 m a subsequent
joint work with E. Cattani and A. Dickenstein. The goal of that project is to develop
new formulas and algorithms for computmg local and global residues. Another interesting
question is whether explicit Puiseux series expansions of (5. 1) might be useful to improve
the numerical component in the homotopy algorithm proposed in [9].
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