VERTICAL STRIP TABLEAU GAMES

GLENN TESLER

ABSTRACT. We introduce two new tableau games. Instead of numbers moving
along single insertion/deletion paths as they do in the Robinson-Schensted
algorithm, evacuation, and the jeu de taquin, they move through vertical
strips. We describe their relation to evacuation and the jeu de taguin, and
also describe how a non-deterministic variation of them describes certain con-
figuration problems in the invariant subspace lattice and, more generally, in
semi-primary lattices.

This work is based on a portion of the author’s Ph.D. thesis [5]; full details and
similar analysis of other tableau games and configuration problems may be found
there.

1. INTRODUCTION

In the well-known evacuation and jeu de tagquin tableau games, a “hole” is placed
in a tableau, and a number slides into it, leaving a hole in its stead. Another number
slides into that hole, and another into the hole created by that number, according
to certain rules, until a certain termination condition is reached, at which point the
hole is removed from the tableau. The cells through which numbers move form a
single path called a deletion path. In Sections 2 and 3, we introduce two new tableau
games, LP and RP, in which numbers in a tableau P percolate either leftward (£)
or rightward (R) through the tableau as a vertical strip of holes percolates through
in the opposite direction. We also introduce non-deterministic variations L and R
of these games that allow multiple options for where numbers and holes move at
each step. ’ ;

In Section 4, we next consider flags f = (fo < --- < fn) in the lattice of all
subspaces of an n-dimensional vector space that are invariant under the action of a
nilpotent transformation N; in the lattice of subgroups of an abelian p-group; and
most generally, in semi-primary lattices. Here, z < y means £ < y and nothing is
between them, and £ < y means z < y or z = y. In Section 5 we describe how these
non-deterministic games describe the possible types of the flags (N fo,..., N fy)
and (Afo,...,Afn), where Az is the kernel of N on the space f,/z, and analogous
statements for the other lattices. The games £ and R describe the dominant
configuration in a topological sense if the vector space is over an algebraically
closed field, and in an enumerative sense if it is over a finite field. This is similar to
Steinberg’s [4] relation between the relative position of two flags and the Robinson-
Schensted algorithm, and to Hesselink [1] and van Leeuwen’s [6] relation between
flag cotypes and the evacuation algorithm. ‘

Finally, in Section 6, we describe the relationship of these new games to evacu-
ation and the jeu de taquin.
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2. THE LEFTWARD VERTICAL STRIP GAME, LP

Background on partitions, tableaux, and common tableau games may be found,
for example, in Sagan [3]. A partition A of a nonnegative integer n is a sequence
of weakly decreasing nonnegative integers (A1, A2, ..., Ax) whose sum is n. We also
write [A| = n or A - n. Two partitions are regarded as equal when they have the
same sequence of nonzero entries, so if the sequence has length k, we implicitly set
); = 0 for i > k. The Young diagram of a partition A is a pictorial representation
as a left-justified array of || squares, with A; squares (or cells) on the ith row from
the top. A skew partition is a pair of shapes, denoted A/pu, such that u; < A; for
all i, and its cells are the cells of A not also in u. We regard a tableau of shape
) to be a Young diagram of shape A with a number (entry) placed in each cell in
such a fashion that the numbers weakly increase from left to right in each row and
top to bottom in each column. A skew tableau of shape A/ is similarly defined
by filling the cells of the Young diagram of p with the symbol e, and the cells of
A/u with numbers constrained as before. A tableau or skew tableau is standard
when all the numeric entries are distinct. A skew tableau of shape A/u has outer
shape A and inner shape p.

In the course of playing our games, we will consider tableaux with “holes,” which
are cells with an “entry” . We use this symbol for holes instead of the traditional
e because we also require the traditional use of e for cells of the inner shape. A
number k slides to a specified hole by placing k at that hole and a hole x at the
former position of k. In previous tableau games, slides occurred between adjacent
cells; while we do not require the cells to be adjacent, we do require that the
resulting tableau still has all its numeric entries increasing from left to right and
top to bottom. :

We begin with a standard skew tableau P on a subset of the numbers 1,...,n
(or more generally, a subset of some totally ordered index set), and form a sequence
P™ .. PO of tableaux with holes according to the following rules. Set P(*) :=
P. To transform P®) to P*=1) for k = n,...,1, if there is no k in P®), let
P(k-1) .= P(*¥) and otherwise do one of the following, depending on which game

LorLis being played.

(£): Slide k to the bottom leftmost * in a column strictly right of k, provided
there is such a x; if there is not, replace k by *.

(E): If the cell right of k has x, slide k into it; otherwise, choose either to slide &
into the bottommost * in any column right of k, or to replace k by x without
putting a new k anywhere.

Finally, replace all *’s with e’s in PO to obtain LP or LP.
Full details and proofs regarding this game may be found in (5, Ch. 8.1].

Example 2.1. We will compute all possible values of LP for

4/6]

-

P=pPO® =

ICJVODI\D’—-
oo
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We begin with k£ = 8. There is no * in the tableau, so there is nowhere to slide 8,
so 8 is replaced by x.

1/4]6]
2|7
3|x

P =

5

There is no * in any column right of 7, so 7 is replaced by %, and similarly, the same
then happens with 6. '

1/4]6] 1]4]x]
6) = |2]* ¢ = |2]*
PO == PO =
5 9 |

Both columns right of 5 contain %. For LP, there are choices as to how to proceed,
which we’ll examine later. To compute LP, slide 5 to the lower * of column 2,
obtaining

4[*]

*
5

- p@ =

Iic.ow.—-

Next, the cell just right of 4 has %, so slide 4 there.

1]*[4]
@) —|2[*
P 315
x|
The column right of 3 has two *’s; slide 3 to the lower one.
1[x|4
2 1213
P = =15
k4
The column right of 2 has a x, where we slide 2.
1124
M - |*13
P = 15
ol
There are no *’s in columns right of 1, so 1 is replaced by x.
*x[24]
© _[*]3
PY = 15
| %]
Replace the x’s by e’s to obtain
' °|2]4]
LP =}~ :_;
°|5
2
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There are several places we could have made non-deterministic choices. The first
was at k = 5; to compute LP, we put 5 in the lower * of column 2, but to compute
LP, we can either do that, slide 5 to the % in column 3, or replace 5 by * without
sliding 5 somewhere else. In the second case, we have ‘

4]5]
*
*

P®) =

I*WMD—‘

There is no  in columns right of 4, so 4 is replaced by *.

*|5|
*
*

P® =

I*C»JM»—A

Each of 3, 2, and 1 in turn have x just to their right, so we are successively forced
to have

1[*]5] 1[x][5] x[1]5]
2) —|2]* () —|*{2 (0) _|*|2
P-*3 P_*3 P—*3
[ * | el [ * |

Finally, replace the %’s by e’s to obtain another possible value of LP.
We list all possible choices in Figure 1.

Example 2.2. Now consider the skew tableau

6]
i
8

P=

[n]efe]e

regarded as having entries that are a subset of {4, ..., 8} instead of {1,...,8}. The
movements of k = 8,7, 6 are similar to the previous example, since the entries larger
than 5 are in the same positions in both tableaux.

P P® P®)

ole[6] [e[e|6] |o]e]x
e|7 ®|x @ | *x
o x o % o x
[4] 4] 4

There is no 5, so P4 = P(5). Next, 4 has the same position and possible holes as
5 in the previous example, so for P®) we have three choices.

olo|x||eo]o il oo *I
o|x °|x °|x
el|4 ®|x o |x

- T
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k=28 7 6 5
1]4]6] (1]4]6] [1]4]6] [1]4]x
P& {1917 217 2 [ * 2]
3 3| * 3|* 3*x
5 | 5] 5 |
4 3 2 1 0
140x) [1]*]4] [1xM4] [d2]4] [x[2]4]
2 [ 2 [x 213 *|3 *|3
315 5 *|5 *15 *|5
2 7 I 3 B £ B
14| [*]1]4]
*|3 *|3
*|5 *|5
EI R
1[x[4] [1[x[4] [#]1]4]
2 Ix *|2 *|2
*x|5 *|5 *15
kd kd Ll
104l5] [1]=[5] [1]*]5] [1[xh5] [x[1]5]
2% 21 % 210x *|2 *|2
3% 3l *|3 *13 *|3
Ld ki | %] [* ] kad
1[4x) [1]*]4] [1]x[4] [10[xh4] [*x]1]4]
2% 2| % 2 Ix *| 2 *x |2
3|* 3lx *{3 *|3 *|3
kd [* ] kadl ke | *]

A missing tableau abbreviates the tableau above it. The possible transformations
of P() to P(E=1) are indicated on P(¥): either slide k to a [] or change m to
Finally, replace x’s by e’s in P(%) to obtain LP. The first game is LP.

FIGURE 1. All possible non-deterministic leftward vertical strip games.
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Replace all x’s by e’s to obtain the possible values of ZP, the first of which is LP.

ooo‘oo4looo]
e |4 e|e e|e

3. THE RIGHTWARD VERTICAL STRIP GAME, RP

Again let P be a row and column strict tableau of skew shape on a subset of
the numbers 1,...,n, with all entries distinct. We form a sequence of tableau
PO .. P®). Set PO := P. To transform P*-1) to P*) for k = 1,...,n,
if there is no k in P*-1 let P®*) := P(-=1) and otherwise do the following,
depending on which game is being played.

(R): Slide k to the % that’s upper rightmost in the columns strictly left of k,

~provided there is such a x; if there is not, replace k by x.
(R): If the cell left of k has x, slide k into it; otherwise, choose either to slide
k into the topmost % in any column left of k, or to replace k by *x without
putting a new k anywhere.

Finally, delete all the cells with x from P(™) to obtain RP or RP.
See Figure 2 for an example. Full details and proofs regarding this game may
be found in [5, Ch. 8.2].

4. LATTICES

We consider some lattices that are known to have similar enumerative properties,
and a uniform theory in which they may be considered simultaneously. We also
introduce two new operators on lattices; they have wider applicability than we
discuss here, but we only evaluate them for examples applicable here. Further
details may be found in [5, Ch. 3]. Recall that a lattice is a partially ordered set in
which each pair of elements z,y has a unique least upper bound z V y (read “z join
y”) and unique greatest lower bound z A y (read “r meet y”). For our purposes, a
modular lattice is a graded lattice with a minimum element 0, maximum element
1, and a rank function p satisfying p(z V y) + p(z A y) = p(z) + p(y). An interval
[z, 9] is the sublattice of elements { z : £ < z < y } with the induced ordering, and
the length of an interval is p(z,y) = p(y) — p(z). We write y > z (read “y covers
z”) when y >z and p(y) = p(z)+1,and y > z wheny >z ory ==z.

Definition 4.1. Let £ be a lattice and z € L. Let

AI:\/y

y2z

be the join of all elements covering z, or z if £ is maximal, and let

Cx:/\y

y<z

be the meet of all elements covered by z, or z if  is minimal. If £ < z are both in

L, let
A= v Y

v z<y<s
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k=0 1 2 3 4 5
e(e|3 e|o|3 ° ® * ° * ®|o|x
P(k) ele|4 oo |4 e|lo|4| (e|e |4 o0 |%x |0 | %
e |15 e|%x|5 ) 5 (315 |3 |3 |x
2] 2 = : 4[4
ele|x ofo|x
olo|x| [e|e]x
o3 |5) [¢[3]*
3 Kl
° *
®|Q | %
o3| %
hadl
° * |0 |%x @0 | %
o e (4 A RE ®|o|%x
° 5 e |41 5 e |4 |*x
- B B
|0 | % |0 | %
o|le|x| [o]|e|x
o x5 e (5| %
3] 3]
[ AK BE 4 ®|® % @0 | %
e|e |0 |x @ |0 | %
e x|l 5 e |4 e|4|%x
* * i
oo |x
|0 | %
e |4 |x
| X
®| @ |x ® |0 | x
A missing tableau abbreviates the Y s R T
tableau above it. The possible trans- = 51 [[51=
formations of P®*) from P(*-1) are n )
indicated on P(*-1): ejther slide k —
to aor change m to .' Fi- |e|e|x| [e]|e]|x
nally, remove cells with x in P®) to  [e[e[x] [e]e]x
obtain RP. The first game is RP. |® 5| [°]5]*
- *

FIGURE 2. All possible non-deterministic rightward vertical strip games.
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be the join of all atoms in the interval [z, z], and

Crz= /\ y

y:z<y<e
be the meet of all coatoms in [z, z]. These are well defined in any discrete lattice
where all complemented intervals have finite length. The operators A and C are
dual to each other. ,
We also define iterates of A and C: A%z = z and Af*'z = A,(A45z), and
similarly for the unary form of A, and for both forms of C.

This coincides with the Frattini element of a complete lattice [7, p. 214], which
is C1 in our notation. However, we consider A and C as unary or binary operators,
and the restriction that all complemented intervals have finite length yields certain
properties not present in other complete lattices.

1. Subgroup lattice. Let G be a finite abelian group. The collection L(G) of
subgroups of G, with the order H < K if and only if H is a subgroup of K,
forms a modular lattice. The meet of two subgroups is their intersection, and
the join is the group generated by the two.

Any finite abelian p-group is isomorphic to a product of cyclic p-groups,

Z/pMZ x --- x Z/p*Z.

Sort the ); into weakly decreasing order to form a partition called the type
of G. Any quotient K/H of finite abelian p-groups is itself a finite abelian
p-group, and the interval [H, K] of L(G) is isomorphic to L(K/H). The type
of the interval [H, K] is the type of the group K/H, and this is less than or
equal to the type of G in Young’s lattice. The length of an interval of type p
is |pl-

Let

G=Z/pMZ x---xZ[p™Z.

The atoms of L(G) are nonzero subgroups of G with no proper subgroups;
they are isomorphic to Z/pZ. The socle of G is the maximum elementary
subgroup, that is, the unique subgroup isomorphic to one of the form Z /pZ x
Z/pZ x ---. It is the join of all the atomic subgroups. Explicitly, it is

socle(G) = p'\‘-IZ/p)‘lz N pA"-IZ/p)‘kZ.

We have A0 is the socle of G, and for any subgroups H < K of G, we have
A H is the imagein L(G) of the socle of K/ H under the natural isomorphism
from L(K/H) to [H, K]. Thus,

wH={g€H :pgekK}.

The coatoms of L(G) are those K for which G/K = Z/pZ. Their meet is
CG = pG. For any subgroups H < K of G, we have CgK is the image in
L(G) of pK/H under the natural isomorphism from L(K/H) to [H,K]. So

CyK=H+p K.

9. Invariant subspace lattice. Let V be a finite dimensional vector space,
and N be a nilpotent transformation, that is, a linear transformation such
that for all vectors 7 € V, we have N¥& = 0 for sufficiently large k. A
subspace W of V is N-invariant if and only if NW is a subspace of W. The
collection L(V,N) of all N-invariant subspaces of V, ordered by subspace
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inclusion, forms a modular lattice. The meet of two N-invariant subspaces is
their intersection, and the join is their span.

Because N is nilpotent, all the roots of its characteristic equation are 0.
The Jordan canonical form of N is a matrix that is the block sum of blocks
with the characteristic root 0 on the diagonal; 1 just above each entry on the
main diagonal; and 0 everywhere else. The lengths of the blocks when sorted
into weakly decreasing order form a partition that is an invariant of N, called
its Jordan type. This is the type of the lattice L(V, N).

If W < X are two N-invariant subspaces of V, their quotient X/W has
an action induced by N. The lattice L(X/W, N) is isomorphic to the interval
[W, X] in L(V, N). The type of the interval [W, X] is the type of the lattice
L(X/W, N), and is a subpartition of the type of L(V, N) in Young’s lattice.
The length of an interval of type u is |p|.

The atoms of L(V, N) are the nonzero N-invariant subspaces of V with no
nonzero proper subspaces that are N-invariant. If W € L(V, N) and W # 0,
then NW is a proper subspace of W because the chain W O NW O N WD
..-is 0 after a finite number of steps, and once a D is =, so are all further ones
to the right. Thus, if W is atomic, it is a subspace of the kernel of N. The
atoms of L(V, N) are 1-dimensional subspaces of V spanned by some vector
from the kernel of N, and the join of all the atoms is the kernel of NV.

Let W < X be N-invariant subspaces of V. Then AxW is the-image in
L(V, N) of the kernel of N on X/W, and :

AxW={v€eW : N'7€X}.

The coatoms of L(V, N) are maximal proper subspaces of V. Their meet
is CV = NV. For N-invariant subspaces W < X of V, we have Cw X =
W + NX is the image in L(V, N) of NX/W under the natural isomorphism
from L(X/W) to [W, X], and

CyX=W+N"X.

3. Semi-primary Lattices. Both L(G) and L(V,N) are instances of semi-
primary lattices [2, 5]. A semi-primary lattice is a modular lattice of finite
length in which if z is a join-irreducible then [0, z] is a chain, and if z is a meet-
irreducible then [z, i] is a chain. Closed intervals in a semi-primary lattice
are themselves semi-primary lattices. The type of a semi-primary lattice is
obtained by writing decomposing i into join-irreducibles 1 =z, V...V z; in
such a fashion that p(1) = p(z1) + --- + p(zx) and sorting p(z1),- - -, (k)
into weakly decreasing order to form a partition; though the decomposition
is generally not unique, the partition is an invariant of 1 called the type of
the lattice. The type of an interval is its type regarded as a lattice.

We call a semi-primary lattice g-regular when all its intervals of type (1,1)
have exactly ¢ + 1 atoms. The subgroup lattice L(G) for an abelian p-group
is p-regular, and the invariant subspace lattice over a finite field of order ¢
is g-regular. Over an infinite field, we use topological properties instead of
enumerative ones.

Theorem 4.2. In each case above, we have
(type[z,y])) = (p(z,Ayz), p(Ayz, Alz),p(Alz, A}2), . ..)
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Here, the conjugate A’ of a partition A is obtained by reflecting the Young
diagram across its main diagonal, so that A} is the number of cells in the ith
column of A.

A flag is an indexed sequence of elements of a lattice in weakly increasing order,
f = (fo,f1,-.-, fn) where fo < fi < --- < f,. It is multisaturated when all <
are cover relations <. The type of a flag f is the chain of partitions ftype, f =
(type[z, fo], - - -, type[z, fa]), where z = fo is assumed if z is omitted. It is expressed
as a skew tableau by filling the cells of the diagram type[z, fi] / type[z, f;-1] with
the entry i for i = 1,...,n, and the cells of the inner shape type[z, fo] with e.

We define Ayf = (Ayfo, -, Ayfn) with y = f, if y is omitted, and C. f =
(Czfo, -+, Czfn) with z = fy if z is omitted.

5. OPERATIONS ON FLAGS

The relation of these flag operators to the new tableau games was determined
in [5, Thm. 8.9].

Theorem 5.1. For multisaturated flags in a semi-primary lattice, ftypey Af =
E(ftype0 f) and ftypey Cf = 7?,(f1:ype0 f), for some posszble evaluation of these
non-deterministic games.

Now consider a g-regular semi-primary lattice of type A. Let P be a skew tableau
of outer shape A.

Fiz a particular non-deterministic value of Q = RP of outer shape u. The
number of flags f for which ftypey f = P and ftypesCf = Q is a particular
polynomial in q depending on P and Q, and for a given P, the degree is mazimized
uniquely by @ = RP.

Fiz Q= LP. The number of flags g for which ftypes f = P and ftypey Af = Q
is a particular polynomial in q depending on P and Q, and for a given P, the
degree is mazimized uniquely by Q = LP.

We say that the generic value of ftype; C f is R(ftype; f), meaning that over all
g-regular semi-primary lattices as ¢ — oo, all but a fraction O(1/q) of flags satisfy
ftypes Cf = R(ftypey f) (note that the remaining O(1/q) of the flags have the other
possible values ﬁ(ftypeﬁ f))- Similarly, the generic value of ftypey A f is L(ftype; f).
This theorem has a topological counterpart, which motivates this terminology. For
the lattice L(V, N) over an algebraically closed field, in the Zariski topology, the
number of flags being a certain polynomial is replaced by the dimension of the space
of such flags being the degree of that polynomial, and “generic” means that the set of
flags f of type P with ftype; Cf = R P (alternately, with ftypes Af = L(ftype; f))
is dense in the set of all flags of type P.

Let CP be obtained from the tableau P by deleting its first column. Since
type[fo, Afo] is the first column of the type of each type[fo, Afi], on computing
ftype Af instead of ftypey Af we obtain the following.

Corollary 5.2. For multisaturated flags in a semi-primary lattice, ftype Af =
CL(ftype f) for some non-deterministic evaluation, and generically, ftype Af =

CL(ftype f).
6. RELATION OF VERTICAL STRIP GAMES TO EVACUATION AND jeu de taquin

We now give the relationship between the vertical strip games and two well-
known games: the jeu de taquin, j(P), and Schiitzenberger’s evacuation algorithm,

458



VERTICAL STRIP TABLEAU GAMES

ev P, both of which may be found, for example, in [3]. The proofs are in [5, Ch.
8.3].

Theorem 6.1. Let P be a standard tableau of shape A + n on entries 1,...,n.
Form a tableau Q as follows: for each r > 0, take the entries that vanish in the
game L7"'P — L™ P, complement them by subtracting each from n + 1, and place
the complements in column r of Q in increasing order from top to bottom. Then
Q=evP.

Example 6.2.

1/4]6]| °|2(4] ole]3] elefe
- 2 7 —_ °® 3 2 __ ®|® 3 _ FEK)
P_38 £P—.5 £P—.. EP-.

k1 adl Ad hdl

The entries that disappear in the first step are 1,6,7,8; in the second step, 2,4,5;
and in the third step, 3. Subtracting them from 9, the first column of ev P has
8,3,2,1; the second, 7,5,4; and the third, 6. So

4]6]
5
7

evP =

[oo]eo]ro]—

Theorem 6.3. Let P be a skew tableau on distinct entries. Form a Young tableau
Q whose entries in the rth column are the entries that vanish in the game R-IP —
RTP. Then Q = j(P).

Example 6.4.

e|e|3 ole ole 113
e|o |4 e|eo ele 214
P=|e|1l]|5 RP =|e|3 'RZP:L ji(P) =15
2] 4] 6]
6]
REFERENCES

[1] W.H. Hesselink, A Classification of the Nilpotent Triangular Matrices, Compositio Math. 55
(1985), 89-133.

[2] B. Jénsson and G.S. Monk, Representations of Primary Arguesian Lattices, Pacific J. Math.
30 (1969), 95-139.

[3] B.E. Sagan, The Symmetric Group, Representations, Combinatorial Algorithms, and Sym-
metric Functions, Wadsworth, 1991.

[4) R. Steinberg, An Occurrence of the Robinson-Schensted Correspondence, J. Algebra 113
(1988), 523-528.

[5] G. Tesler, Semi-primary Lattices and Tableau Algorithms, Ph.D. thesis, Massachusetts Insti-
tute of Technology, 1995.

[6] M.A.A. van Leeuwen, The Robinson-Schensted and Schitzenberger algorithms and interpreta-
tions, Computational Aspects of Lie Group Representations and Related Topics — Proceedings
of the 1990 Computational Algebra Seminar, CWI Tract, no. 84, 1991, pp. 65-88.

[7] H.J. Zassenhaus, The Theory of Groups, second ed., Chelsea Publishing Company, New York,
1958.

DEPT. OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, SAN DI1EGO, CA 92093-

0112
E-mail address: gptesler@math.ucsd.edu

459



460



