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Abstract

We present some examples using the ACE library devoted to Algebraic
Combinatorics computations. This environment, divided into packages,
provides a way to manipulate classical objects such as permutations,
tableaux, symmetric functions and different algebras related to the
symmetric group. One also finds more recent mathematical objects
like noncommutative symmetric functions or Schubert polynomials.

1 Introduction

The first version of the Algebraic Combinatorics Environment (ACE) is composed of various
packages dealing with specific objects: SG (symmetric group), SGA (symmetric group algebra) ^
NCA (nilCoxeter algebra), IDCA (idCoxeter algebra), HEKA (generic Hecke algebra), HEQA (Hecke
algebra), SYMF (symmetric functions), GL {linear group), NCSF [noncommutative symmetric
functions'), TAB {tableaux} and SP (Schubert polynomials). Version 2.0, which will be available
in July 1996, will contain new packages about classical groups, Fock space representations of
quantum affine algebras, hyperoctahedral groups, and an application ofSchubert polynomials
to computations in the ring of polynomials in several variables.

The SG library provides functions to manipulate permutations. Basic operations on per-
mutations have been programmed as for instance, conversions between the multiple repre-
sentations (diagram, code, permutation matrix, ... ) of the elements of the symmetric group.
Furthermore, we have for example the BnAat function that realizes the comparison between
two permutations according to the Bruhat order, or the Interval function that computes the
list of the Lehmer codes of all permutations that are smaller than a given one, according to
this order. Moreover, one can associate to this interval the generating function of the lengths
of permutations (Betti).

SGA, NCA, IDCA and HEKA libraries provide different algebras related to the symmetric
group ©n- They are all generated by elements satisfying braid relations:

SfSj == SjSi ,

SiSt+lS, = S, +lS, S, +l

l^"-jl>l,

'Supported by PROCOPE and the EC network "AIgebraic Combinatorics".
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However, the square of a simple generator is different according to the algebra: sf = 1 (SGA),
s? = 0 (NCA), s? = -s, (IDCA) and s2 = (gi + 92)5. - q\qi (HEKA). The first one is the usual
algebra of the symmetric group, the last one, the Hecke algebra (with two parameters gi, 92)-
Each of these algebras has a linear basis of elements which are products of simple generators.
We also give the Yang-Baxter basis. Special elements of this basis are the idempotents used in
the description of irreducible representations of the symmetric group or of the Hecke algebra.

Other functions related to representations of Hecke algebras are given in HEQA, in partic-
ular matrices, idempotents, characteristic polynomials and inversion (when possible).

Each of these algebras operates on the ring of polynomials in variables a;, : SgaOnPol,
NcaOnPol, IdcaOiiPol and HekaOnPol. The action is also possible in the basis of Schubert
polynomials: SgaOnX, NcaOnX, IdcaOnX and HekaOnX.

The SYMF library provides functions to handle symmetric functions. In particular, we have
reprogrammed almost all functions of the first version of the SF package of J.STEMBRIDGE
[15] using specific algorithms for the changes of basis to accelerate computations.

The GL library provides functions to manipulate characters of the linear group GL(n).
It essentially amounts to consider symmetric functions as poiynomials in a fixed number of
variables. For instance, given the order of the linear group, the s2x_n function converts an
expression from the Schur function basis to the basis of monomials (using an algorithm based
on Schubert polynomials).

The NCSF library [16] provides functions to work with (integral) noncommutative symmet-
ric functions. Changes of basis, ordinary product, internal product and the transformations
of alphabet A -> A/(l-q) and A-^ A(l-9) have been programmed. These transformations
are related to interesting idempotents of the symmetric group algebra.

The package can also deal with quasi-symmetric functions. The basic operations and the
dual bases of all usual bases of noncommutative symmetric functions are implemented.

The purpose of the TAB library is to manipulate tableaux, contretableaux and more gener-
ally words, that can be transformed into tableaux by the Robinson-Schensted correspondence.
This library also gives, in the algebra of the symmetric group, the orthogonal idempotents
corresponding to standard tableaux. The PermOnWord function is a non-trivial action of the
symmetric group on words, or tableaux, which is compatible with the Knuth/plactic congru-
ence.

The SP library provides functions to compute in the ring of polynomials as a vector space
with basis Schubert polynomials or double Schubert polynomials indexed by permutations.
TableX(n) and TableXX(n) contain these two bases corresponding to ©n. The multiplicative
structure in these bases is derived from Monk's formulae.

The ring of polynomials in 3:1,. .., a;n is a free module over the ring of symmetric polyno-
mials in a;i,.. ., a;n. It has for linear basis the Schubert polynomials indexed by permutations
of ©n. A modification of Monk's formula together with algorithms in the package SYHF gives
the multiplicative structure.

Schubert polynomials are important in geometry; their classes ("Schubert cycles") in the
cohomology ring of the flag manifold Jr(C") (t. e. the quotient of Z[ii, ..., Xn] by the ideal
generated by symmetric polynomials in x-i,..., Xn without constant term) are obtained by
calling Flag (n).

The TEX library provides an environment of functions that produce output which is suit-
able for a T^X. processor. It knows how to format almost all the types defined in Maple, while
it knows how to translate all standard internal Maple functions or objects such as integrals,
limits, sums, products, and even arrays and tables.
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2 Generating functions for Schubert polynomials (©n and Bn)
Schubert polynomials for the symmetric group can be expressed as certain coefficients in the
algebra of divided diflFerences [10] or nilCoxeter algebra [3]. The generating function ofFomin
and Kirillov is:

6(x;y) = C'i(a-i)C2(. r2)... Cn-i(^-i)

^ X, (x, y)5,,
fCGn

(1)
(2)

in which d(x) = (l+ (x -yn-i)9n-i) (l+(x- yn-i-i)9n^) ... (l+ (a; - yi)9i) and the x,

and y, commute with the 9^..
Here is a program computing this generating function. The function C computes a C, (xi)

by evaluating the product of all (1 + (x - y-alphabetCj-i+l])*Transpo(j, n)) in the
nilCoxeter algebra (NcaMult):

C:=proc(n, i, x, y_alphabet)
local

j, # variable for loop...
r; <t the result.. .

r:=l;
for j from i to n-1 do

r := NcaMult((l + (x - y_alphabet[j-i+l])*Transpo(j, n)), r)
od;
RETURN(r)

end;

The call Transpo(j , n) returns the elementary transposition exchanging j and j+l'mGn-
Then, the generating function of double Schubert polynomials corresponds to the following
instructions:

An_Schubertfg:=proc(x_alphabet, y.alphabet)
local

i, # variable for loop...
n, # degree of the S3munetric group...
r; # the result.. .

n:=nops(x_alphabet);
r:=l;
for i from 1 to n-1 do

r := NcaMult(r, C(n, i, x.alphabet [i], y.alphabet))
od;
RETURN(r)

end;

For instance, one has for ©3:

ACE> An_Schubertfg([xl, x2, x3] , Cyl, y2, y3]);

(xl - yl) [2, 1, 3] + [1, 2, 3] + (x2 - yl +xl - y2) [1, 3, 2]
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+ (xl - y2) (xl - yl) [3, 1, 2] - (xl - yl) (- x2 + yl) [2, 3, 1]

- (xl - y2) (xl - yl) (- x2 + yl) [3, 2, 1]

Bn can be canonically embedded into ©2n- More explicitly, it amounts to identify the gen-
erators ui,..., Un-i of the Bn-nilCoxeter algebra with:

Un_i = 9\9-in-\ ,
Un-2 = QlQ-ln-1 -,

Ul = 9n-l9n+l ,

and the extra generator UQ to 9n.
The generating function of Bn-Schubert polynomials of Fomin and Kirillov is:

FK(x) = B(xi)B^)... B{xn)C[[-x, )C', (-x^... C'^(-Xn^) (3)

= ^ ^(x) u, (4)
1/GBn

= ^X. (x)^, (5)
^ being the image of ̂  in 62n, B(x) = (l+a;Un-i) ... (l+a;ui) (l+. ruo) (l+a;ui).. . (l+a;Un-i)
and C'i{x) = (1 + a;Un-i) (1 + xUn-.^) ... (!+ au, ). First of all, one has the following function
that realizes the embedding of Bn into ©2n, for a simple transposition:

TranspoBn:=proc(i, n)
if (i=0) then

RETURN(Transpo(n, 2*n))
else

RETURN(MultPerm(Transpo(n-i, 2*n), Transpo(n+i, 2*n)))
fi

end;

Now, the call B(n, x) stands for B(x) while Bn_C(n, i, x) computes C'i(x):

B:=proc(n, x)
local

j, # variable for loop...
r; # the result.. .

r:=l;
for j from n-1 by-1 to 0 do

r := NcaMultCr, (1 + x*TranspoBn(j, n)))
od;
for j from 1 to n-1 do

r := NcaMultCr, (1 + x*TranspoBn(j, n)))
od;
RETURN(r)

end;
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Bn_C:=proc(n, i, x)
local

j, # veu-iable for loop...
r; # the result.. .

r:=l;
for j from i to n-1 do r := NcaMult((l + x*TranspoBn(j, n)), r) od;
RETURN(r)

end;

Bn_Schubertfg:=proc(x_alphabet)
local

i, # vairiable for loop...
n, # B(n)...
r; # the result ...

n:=nops(x_alphabet);
r:=l;
for i from 1 to n do

r := NcaMult(r, B(n, x_alphabet[i]))
od;
for i from 1 to n-1 do

r := NcaMult(r, Bn_C(n, i, -x.alphabet[i]))
od;
RETURN(r)

end;

For instance, one obtains for n = 2:

ACE> map(factor, Bn_Schubertfg([xl, x2]));

[1, 2, 3, 4] + (x2 + xl) [1, 3, 2, 4] + (xl + 2 x2) [2, I, 4. 3]

2

+ (x2 + xl) [2, 4, 1, 3] + x2 (x2 + xl) [3, 1, 4, 2]

2

+ xl x2 (x2 + xl) [3, 4, 1, 2] + x2 (x2 + xl) [4, 2, 3, 1]

2

+ xl x2 (x2 + xl) [4, 3, 2, 1]

Their are other families of Bn-Schubert polynomials. Fomin and Kirillov have defined a
second one and shown the link with a third one due to Biley and Haiman. Pragacz and
Ratajski [14] describe still another one related to geometrical considerations, and a fifth one
is due to Fulton.

3 Yang-Baxter basis

Each of the algebras (SGA, NCA, IDCA, HEKA) has a natural linear basis indexed by permuta-
tions. To each of these algebras correspond a solution of the Yang-Baxter, from which one

465



can construct a basis Y^ defined inductively. In the case of the divided differences algebra,
the recursion is, for fi a permutation and s, a simple transposition such that l(^Si) > l(fi}:

Y^i = Y^(l + (a;^(, +i) - x^i)) 9,) ,

the product being in the nilCoxeter algebra. For instance:

V3241 = (l + (^3 - a-2)^) (l + (X3 - X,)9,) (l + [x^ - x,)9^ (l + (2:4 - X^) . .
ACE> NcaYang(C3, 2, 4, 1]);

(- x3 + xl) (- x4 + xl) [2, 1, 4, 3] + [1, 2, 3, 4]

- (- x3 + x2) (- x3 + xl) (- x4 + xl) [3, 1, 4, 2] + (x3 - xl) [1, 3, 2, 4]

- (- x3 + xl) (- x2 + xl) (- x4 + xl) [2, 3, 4, 1]

+ (- x3 + xl) (- x4 + xl) Cl, 3, 4, 2]

+ (- x3 + x2) (- x3 + xl) (- x2 + xl) (- x4 + xl) [3, 2, 4, 1]

- (- x3 + x2) (- x3 + xl) (- x2 + xl) [3, 2, 1, 4]

+ (- x3 + xl) (- x2 + xl) [2, 3, 1, 4] + (x4 - xl) [1, 2, 4, 3]

+ (- x3 + x2) (- x3 + xl) [3, 1, 2, 4] + (x3 - xl) [2, 1, 3, 4]

Note that the specialization 6(a;3, a;2, a;4, xi; a;i, x-^, 13, a;4) coincides with the element
NcaYang([3, 2, 4, 1]) [7].

Yang-Baxter elements can be used in several ways to obtain idempotents [1] in the group
algebra of the symmetric group:

ACE> r := SgaYang([4, 3, 2, 1]) / 288:
ACE> r := subs(xl=-l, x2=0, x3=l, x4=2, r);

r := 1/24 [2, 1, 4, 3] + 1/24 [1, 2, 3, 4] + 1/24 [4, 2, 3, 1]

+ 1/24 [3, 1, 4, 2] + 1/24 [3, 4, 1, 2] + 1/24 [2, 4, 1, 3]

+ 1/24 [4, 3, 2, 1] + 1/24 [1, 3, 2, 4] + 1/24 [2, 4, 3, 1]

+ 1/24 [3, 4, 2, 1] + 1/24 [4, 3, 1, 2] + 1/24 [4, 2, 1, 3]

+ 1/24 [1, 4, 3, 2] + 1/24 [4, 1, 3, 2] + 1/24 [4, 1, 2, 3]

+ 1/24 [1, 4, 2, 3] + 1/24 [2, 3, 4, 1] + 1/24 [1, 3, 4, 2]

+ 1/24 [3, 2, 4, 1] + 1/24 [3, 2, 1, 4] + 1/24 [2, 3, 1, 4]

+ 1/24 [3, 1, 2, 4] + 1/24 [2, 1, 3, 4] + 1/24 [1, 2, 4, 3]
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ACE> SgaMult(r, r) - r;
0

4 Interpolation

Schubert polynomials or double Schubert polynomials are a linear basis of the ring of polyno-
mials in the variables 3:1,..., a;n (possibly with coefficients involving extra variables yi,. .., yn ).
The two functions x2X and x2XX give a decomposition into the two Schubert bases:

ACE> x2X(x3-2);

X[2, 3, 1] - X[l, 3, 4, 2] - X[l, 4, 2, 3] + X[l, 2, 5, 3, 4]

ACE> x2XX(x3'2, collect);

XX[1, 2, 5, 3, 4] - XX[1, 4, 2, 3] + (- y2 - y3) XX[1, 3, 2]

2

- XX[1, 3, 4, 2] + (y4 + y3) XX[1, 2, 4, 3] + XX[2, 3, 1] + y3 XX[1]

ACE> Tox("); » we develop the previous expression.

2

x3

The Newton interpolation formula projects onto the space generated by double Schubert
polynomials indexed by permutations in 6n:

(6)/(x)^^x-/(x'y)^(Ay))>
in which divided differences act on the y variables. We provide the function Newtonlnterp
which realizes this projection for a given n:

ACE> Tox(x2XX(x3~2) - Newtonlnterp(x3-2, 3));

- xl x2 + xl y2 + yl x2 - yl y2 + xl yl + y3 xl - y3 yl

2222
+ y2 x2 + y3 x2 - y3y2 + x3 - y2 - y3 - yl

ACE> Tox(x2XX(x3~2) - Newtonlnterp(x3~2, 5));

The Newton formula allows to express permutations (as operators on polynomials) as linear
combinations of divided diflFerences. Indeed, substituting x = y and y = x", one has:

/ -^ /(x") = ^X. (x^, x) ̂ (/(x)) ,

/. =^X, (x^, x)^.
i. e.
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