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Abstract

Let Sn be the arrangement of hyperplanes in E" of the form re, - xj = 0, 1 for
1 <i <j <n, introduced by Shi [12]. Using deletion and restriction, we give a
simple proof of a formula of Headley for the characteristic polynomial of <Sn. This
method shows that Sn is inductively free, hence that its cone is free and verifies
part of a conjecture ofEdelman and Reiner. Moreover we classify the hyperplane
arrangements between the cones of the braid arrangement and Sn which are free.

Soit Sn 1'arrangement d'hyperplans de Wt associes aux equations a;, - Xj =0,1
pour Ki <j <:n, introduit par Shi [12]. En utilisant des eliminatioiis et des re-
strictions nous donnons une demonstration simple d'une formule de Headly pour
Ie polynome characteristique de Sn- Cette methode montre que Sn est inductive-
ment Ubre, done c'est un cone satisfaisant une partie d'une conjecture d'Edelman
et Reiner. De plus nous classifions les arrangements libres d'hyperplans qui se
trouvent entre les cones de 1'arrangement de tresses et Sn.

1 The Shi arrangement

The braid arrangement An. consists of the hyperplanes in E" of the form z, - x^ = 0.
It is the arrangement of reflecting hyperplanes of the Weyl group of type An_i. Let An
be the arrangement of affine hyperplanes in Rn of the form

x^ -Xj =0, 1 for 1 <, i< j <: n.

This is called the Shi arrangement of type An-i. It was introduced by J.-Y. Shi [12] who
was the first to prove, using techniques from combinatorial group theory, that An divides
R" into (n + I)""1 regions. Assuming this, Headley [8, 9] went on to prove that the
characteristic polynomial [10, §2.3] of An has the simple form x{An, q) = g(q - n)"-1.
This is a stronger result because of Zaslavsky's theorem [19], which asserts that the
number of regions into which a hyperplane arrangement A divides its ambient space
E" is (-l)n^(A, -l).
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A simple proof of Headley's formula, based on the "finite field method", was given in
[1, 2]. In this section we give another elementary proof, based on the classical method of
deletion and restriction [10, Definition 1. 13]. In Section 2 we explain the motivation be-~
hind this proof and how it implies an even stronger result, namely that An is inductively
free with^certain exponents. In Sections 3 and 4 we classify all'arrangements between
An and Sn whose homogenizations, or cones, are free. This class of free arrangements
appeared earlier in [1, 2]. Our present methods are similar to those employed in [6, 7].

Headley's theorem. Before we give the new proof of Headley's theorem, suitably
generalized, we review some basic background and notation from [10]. Let A be a
hyperplane arrangement in R", i.e. a finite collection of affine subspacesofR7 l'of
codimension one. The characteristic polynomial of A is defined as

x(A, q)= ̂ ^0, x)qdimx,
X^LA

where L^w the poset of all affine subspaces which can be written as intersections of
some of the hyperplanes of A, 0 = R" is the unique minimal element of L^-and ^
stands for its Mobius function. The polynomial ̂ {A, q) is a fundamental combmatorial
and topological invariant of A and plays a significant role throughout the theory of
hyperplane arrangements [10].

LetH  Abe& distinguished hyperplane. The corresponding deleted
IS

A'= A- {H}.
The restricted arrangement to H has H as its ambient space and is given by

A" ={H'r\H\Hle A'}.

The triple {A, A\ A") is called a triple of arrangements. The elementary Deletion-
Restriction Theorem [10, Cor. 2. 57] states that

x(A, q)=x^, g)-x{A", q). (1)
We say that^two hyperplane arrangements in E" are affinely equivalent if there is an
mvertibleaffine, endomorphism °fE"that maps the hyperplanes'ofone onto the hype7
planes of the other^ The intersection poset and hence the characteristic polynomial are
preserved under affine equivalence.

Theorem 1. 1 For any integers m^O and2 < k ^n+1, the arrangement
x^-xj=0, l,..., m for 2^ j < k,
x^-Xj=0, l,..., m+l for k^j^n,
Xi -Xj=0, l for 2<, i<j <,n

(2)

has characteristic polynomial q(q-n-m+ l)k~2(q -n- m)"~fc+1.
Proof. We proceed by double induction on n and n - k. The result is clear for n=2.
so pick an n ^ 3. We first consider the case m= 0 and A;= n+1. The arrangement in
question is
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X-i
Xi

-Xj=0 for 2<, j^n,

The arrangement in

;j = U 1UX ^1 ^: J ^: ".)

Xi -Xj =0, 1 for 2^i<j<: n.

with hyperplanes

Xi-Xj ̂ =0, 1 for 2<, i < j <,n (3)

has characteristic polynomial gx(Ai -i;9) = ?2(? - " + 1)"~2- BV (1)> adding r of the

hyperplanes a;i - a;j = 0 in any order produces an arrangement with characteristic
polynomial q(q -r){q-n+1)"-2. Indeed, the restriction to the last hyperplane added
at each step is affinely equivalent to (3). The case r = n- 1 gives the desired result.

We can now assume 2<, k<, n, since the arrangement (2) having parameters m ^ 1
and k = n+ 1 coincides with (2) having parameters m - 1 and k = 2. Consider
the hyperplane H of (2) with equation Xi- Xk = m+1. Deletion of this hyperplane
produces an arrangement which is of the same form as (2), with k replaced by k+1.
Restriction to H produces an arrangement affinely equivalent to (2), with n replaced
by n -1 and m replaced by m+1. To see this just set Xk = x-i-m-1 in the equations
involving Xk. The equation Xk- Xn=^., for example, becomes x-i- Xn= m+2. The
induction hypothesis for these two arrangements and (1) give the result for (2). d

For m = 0 and fc = 2 we get Headley's theorem as a corollary.

n-1Corollary 1.2 (Headley) For all n, x(Ai, q) = ?(9 - n)7

The same argument can be given on the level of the number of regions r{A) of A
and yields a naive inductive proof of Shi's theorem. One just needs to use the recursion
r{A} = r{A') + r(A") instead of (1). A simple bijective proof of Shi's theorem can be
found in [3].

2 Inductive freeness

The class of inductively free arrangements TT is the smallest class of hyperplane ar-
rangements which satisfies the following two conditions:

(?) The empty arrangement in E" is in IT for all n ^ 0.

(ii) If (A, A', A") is a triple of arrangements with A', A"   Z.F and x(^/'»ff) divides
X{A', q) then A   17.

This is equivalent to [10, Definition 4. 53], given only for central, i. e. linear arrange-
ments. It follows immediately from (1) that if A is inductively free, then x{^<l) factors
completely over the nonnegative integers. The roots of ̂ {A, q) are called the exponents
of A. The multiset of exponents of A is denoted by expA.

We write {a^mi
, m2

» Qmrj. fQ). ̂  multiset, where mi, m2,... , mr denote multiplic-
ities. The proof of Theorem 1. 1 yields the following stronger result.
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Theorem 2. 1 For any integers m >. 0 and 2 <, k <, n+l, the arrangement (2) is
inductively free with multiset of exponents {O1, (n+m-l)fc-2, (n+m)"~A+1}. 7n partic-
ular, the Shi arrangement An, is inductively free with multiset of exponents {0 , nn-1}.
D

Besides forming a class of arrangements whose characteristic polynomials can be
easily controlled, the inductively free arrangements have interesting algebraic properties.
If central, they are free arrangements by the Addition Theorem [10, Thm. 4. 50]. In
general, their cones are also inductively free and hence free. A central hyperplane
arrangement is called free [17] [10, Ch. 4] if its module of derivations [10, Definition
1. 19] is free as a module over a polynomial ring. Coning is the standard way to pass from
any hyperplane arrangement A in R" to a central one. The cone cA is the arrangement
in Rn+l obtained by homogenizing each hyperplane

of ̂ 4 to

0-iX-i + 023;2 + . . . + On2;n +d=0

a-iX-i + G22;2 +. . - + an3;n + dXy = 0

and adding the hyperplane XQ = 0. Here XQ is the new coordinate attached to R". The
cone cAn of the Shi arrangement, for example, has hyperplanes

Xi- Xj = 0 for 1 <:i <j ^ n,
Xi- Xj - XQ=O for l<. i < j <, n,
XQ =0.

Theorem 2. 1 implies that cAn is free. More generally, let a > 1 be an integer and
consider the extended Shi arrangement ^~ J. It consists of the hyperplanes

Xi-Xj =-a-{-l, -a+2,..., a for l<:i<j<:n

and reduces to An fov a = 1. It was conjectured by Edelman and Reiner that the
cone cAii is free. This is a special case for the root system An_i of one half of

Conjecture 3. 3 in [7]. The weaker statement x(-%-a+l'al>9) = ?($ - an)""1 can easily
be derived with the finite field method [2, Cor. 7. 1. 2]. Theorem 2. 1 can be extended in
this direction as follows.

Theorein 2.2 Fix an integer a ^ 1. For any integers m ^ 0 and 2 ^ k ^n+1, the
arrangement

x-i -Xj = -a+l,..., m for 2 <j < k,
x-i - Xj =-a+1,.. ., m+l for k <, j <:n,
Xi- Xj == -a-}-l,..., a for 2<:i < j <:n

is inductively free with multiset of exponents {O1, (an+m-a), (an+m-a+l)"-;c+1}.
In particular, the extended Shi arrangement A^i.^-tt+l, a]

o/ exponents {Q , (an)""1} and hence its cone is free. D
is inductively free with multiset
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3 More inductively free arrangements

Our motivation in what follows comes primarily from [1, 2]. In this work the character-
istic polynomials of large classes of deformations [16, 11] of Coxeter arrangements were
shown to factor completely over the nonnegative integers and the question of freeness
of their cones was naturally raised [1, §7] [2, §8. 4]. Headley's result, for instance, was
generalized in several ways. We recall one such generalization next. We find it conve-
nient to think of a simple graph S on the vertex set [n] = {1, 2,.. ., n} as a directed
graph. Each edge ij is directed as (j', z), i.e. from j to i, if i < j. In other words, S is
a subset of the set

En={(j, i) \l^i<j^n},

which^is the edge set of the complete graph. Note that the arrangements between An
and An correspond to simple graphs on the vertex set [n]. More precisely, each such
arrangement is of the form

Xi- Xj =0 for 1 <:i <j <, n,
Xi -Xj=l for (j, z) e 6'

for some S C En. We denote this arrangement by An,s- The Shi arrangement An
corresponds to the complete graph S = En and the braid arrangement An to the empty
graph. The following theorem produces a family of arrangements between An and An
whose characteristic polynomials have nonnegative integers as roots.

Theorem 3. 1 ([1, Thm. 3.4] [2, Thm. 6.2.2]) Suppose that the graph S C En has
the following property: ifl <, i <j <k <n and (j, z)   5 then (k, i)   S. Then

x{An,s, q)=q H (g-c, ),
Kj<n

where Cj
1 <J ^ n

;j = n + aj -j+1 and a, = #{i < j \ (j, i) e S} is the outdegree of j in S, for
;n. a

3 4

Figure 1: An example with n = 5
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Figure 1 shows a graph satisfying the condition in Theorem 3.1. For this graph we
have 02 =0, 03 =04 = 2, 05 = 3, so 03 =4, cs =5, C4 =05 =4 and the corresponding
characteristic polynomial is g(q - 4)3(gr - 5). Here we generalize Theorem 2. 1 and
show that the arrangements in Theorem 3.1 are all inductively free. We will see in the
next section that, up to a suitable permutation of the coordinates, these are all the
arrangements between An and An with free cones.

We need to extend the notation in Theorem 3.1. Suppose that A contains An and
that it has hyperplanes of the form Xi- xj = s, where s   Z and 1 <:i <j <:n. For
1 < j <^n\et aj be the number of hypeplanes Xi-xj= s of A with i < j and s ^ Q.
Also let

Cj =n+ aj -j + 1.

We call these numbers the a and c parameters of A respectively. This notation agrees
with the one in Theorem 3. 1. A generalization of Theorem 3. 1 [2, Thm. 6.2. 10] pro-
duced a large class of arangements, in the form described above, whose characteristic
polynomials factor completely over the nonnegative integers. Thus, under assumptions,
the characteristic polynomial of A equals q(q -02) . . . (g-Cn). The exponents proposed
for the arrangements in Theorem 3. 1 are exactly the corresponding c parameters.

Theoreni 3. 2 Let T be a graph on the vertex set [2, n], i. e. (j, i) e T implies 2 <, i <
j <, n. Suppose that T satisfies the condition in Theorem 3. 1: if2<^i<j<k<^n and
(j, t)   T ^en (A;, z)   T. 2/e< m, A be integers as in Theorem 3. 1. The arrangement

Xi - Xj =0, l,..., m for 2 <^ j < k,
x-i- Xj =0, l,..., m+l for k <, j ^n,
Xi- Xj =0 for 2^i < j <:n,
Xi-Xj=l for (j, i)  T

(4)

is inductively free with exponents 0, C2,..., Cn, where cj, 2 <, j <, n are its c parameters.
D

The case m = 0 gives the result promised at the end of Section 2.

Corollary 3. 3 Under the assumptions and notation of Theorem 3. 1, the arrangement
An^s ^ inductively free with exponents 0, C2,... , Cn. D

^"s.

4 Free arrangeinents between cAn and cAn

In this section we show that the cones of the arrangements ofTheorem 3. 1 are essentially
the only free arrangements between cAn and cAn.

We first recall two fundamental results in the theory of free arrangements. The
Factorization Theorem of Terao [18] [10, Thm. 4. 137] states that %(A, q) factors com-
pletely over the nonnegative integers for any free arrangement A. The roots of \{A, g)
are called the exponents of A, as in the case of inductive freeness. Let X be an element
of the intersection poset L^. The localization Ax is the subarrangement of A

Ax={HeA\XCH}.
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The Localization Theorem [10, Thm. 4. 37] asserts that any localization of a free ar-
rangement is free. It can easily provide obstructions to freeuess [20] and is therefore
quite useful in classifying free arrangements [6, 7]. Lastly, we need to recall the very
simple effect

X(cA, q)=(q-l)^(A, q) (5)
that coning has on the characteristic polynomial. Our main result can be stated as
follows.

Theorem 4. 1 Let S C En. The following are equivalent:

W -^n, s is inductively free.

(ii) cAn, s is free.

(iii) S does not contain any of the two directed graphs in Figure 2 as induced
subgraphs.

(iv) There is a permutation w = WiWs ... Wn o/ [n] such that

w-l-5={(j, z)|(w,, w. ) 5}
is contained in En and satisfies the condition in Theorem 3. 1.

Proof. The implication (?) ==» (u') is clear and (w) =^ (z) follows immediately from
Corollary 3. 3. We show the implications (n) ===» (iii) and {iii) ===» (w).

A

Figure 2: Obstructions to freeness

Suppose that (ii) holds. For U C [n] let Su be the induced subgraph of S on U.
Note that the subspace Xu defined by the equations XQ = 0, 2;, = xj for i, j ^ U is
in the intersection poset L^ and that the localization of cAn, s on Xu is affinely
equivalent to cAk,T, where k = #U and T is isomorphic to Su. By the Localization
Theorem, these Ipcalizations^are free. Hence to prove (iii) it suffices to check that the
arrangements c^ssi and cAi^ are not free, where 5i is the path {(3, 2), (2, 1)} and
54 = t(2'l)'(4'3)}- K follows from [2, Thm. 7. 1.5] (see also'[1, Thm. 5. 6])'and can
easily be checked otherwise that

and

x(A5i, ?)=9 (?2-5g+7)

x(Ai, ^, g)=g(g-3)(g2-5g+7).
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The Factorization Theorem and (5) imply that cAs,s, and cAi.s; are not free.
Finally suppose that (iii) holds. Equivalently, we require the following two condi-

tions:

(T) For distinct indices t, j, A; with Ki <j <k^n, (k, j) ̂  S and (j, i)   5 imply
(k, i) 6 S.

(II) For ̂1 ̂  i< j^n, l^k<l^n and i, j, k, l distinct, O-^) e S and (J, fc)   5
imply (I, i) eS or (j, k) ̂  S or both.

We denote by out (w) the outdegree of a vertex w of S and let wi, W2,... , Wn be any
linear ordering of the vertices 1, 2,... ,n of S which satisfies out(w,-) <, out(wj-) for
i < 3~ j'lrst note that' by (I)' (WJ'W*) 6 s implies out (w,-) < out (wj) and hence
i. < 3' This means that w-1 . 5 C En, as claimed. To prove (w) it remains to check
the condition in Theorem 3. 1. Letl<i < j <l ̂ n with (wj, u;,-) e S. We want
to show that (u;;, w,-) 6 S, so suppose the contrary. By (II), whenever (wi, Wk)   S
we have (wj., ^)   5. Note also that, by (I), (w,, Wj) is not in S. It follows that
out(wj) > out(w^), contradicting the fact that j < I. D

In contrast to the situation in [6], very few of the arrangements 0^3.5 of Theorem
4. 1 are supersolvable. por the sake of completeness we state a precise result. The proof
uses the Localization Theorem for supersolvable arrangements [15, Prop. 3. 2].

Theorem 4.2 Let S C En. The arrangement cA>, s is supersolvable if and only if all
the edges in S have the same terminal vertex or they all have the same initial vertex.
D

5 Remarks and open problems

1. Classes of arrangements that correspond to pairs of graphs seem to be more
complicated to analyze from the point of view of freeness. This is the case, for exam-
pie, with the class of all subarrangements of the Coxeter arrangement of type Bn, as
remarked in [6]. We have no obvious suggestion for what all subarrangements of An
with free cones should look like.

The case of the arrangements between An and the Catalan arrangement

Xi - Xj = -1, 0, 1 for l^. i<j <n (6)

in Rn seems to deserve special mention. The following result, which extends Theorem
3. 1 and is a special case of the more general [2, Thm. 6. 2. 10], suggests an explicit answer
for this case.

Theorem 5. 1 ([1, Thm. 3. 9] [2, Thm. 6. 2. 7]) Suppose that the set

GC{(i, j) \i^j, l^ij^n}

has the following properties:
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(i) Ifi, j < k, i^ j and (z, j)   G, then (i, k) ^ G or (k, j) 6 G' or both.

(ii) Ifi, j <k, i^j and {i, k) e G, (k, j)   G, then {i, j)   G.

Then the characteristic polynomial of the arrangement

Xi- Xj =0 for l<. i < j <: n,
Xi - Xj =1 for {j, i] E G

factors as in Theorem 3. 1, where Cj are the corresponding c parameters. D

Note that if G C En, the conditions in the previous theorem reduce to the one in Theo-
rem 3.1. The arguments of Section 3 do not trivially extend to show inductive freeness
of the arrangements in Theorem 5. 1. Inductive freeness of the Catalan arrangement (6)
was established by Edelman and Reiner (see the proof of [7, Thm. 3. 2]).

2. The family of free arrangements in Theorem 4. 1 contains simple counterexam-
pies to Orlik's conjecture [10, p. 10, 155], which stated that the restriction of a free
arrangement to any of its hyperplanes is free. This was first disproved by Edelman and
Reiner [5]. The same authors provided infinitely many counterexamples in [6], including
one of dimension 4 with 10 hyperplanes. A counterexample contained in the family of
Theorem 4. 1 is provided by 0^453, where 53 is shown in Figure 3. This arrangement
is free by Corollary 3. 3 and has rank 4 and 10 hyperplanes. The restriction of cAi,^
to the hyperplane x-^, = x^ is affinely equivalent to cA^si, corresponding to the first
forbidden graph of Figure 2, and hence is not free. As Reiner has pointed out, 0^4, 53
is projectively equivalent to the minimum-dimensional counterexample given in [6].

Figure 3: The graph 5s

Clearly, any arrangement cAn, s such that S contains an isomorphic copy of 83 as
an induced subgraph is a counterexample to Orlik's conjecture.

3. Curiously, the same directed graphs as in Theorems 4. 1 and 4. 2 have appeared
in recent work of David Bailey [4, Ch. 7] and were shown to correspond to the free
and supersolvable arrangements, respectively, in a different class. This class consists
of certain discriminantal arrangements of zonotopes. There seems to be no obvious
connection between the two kinds of results.

4. There are natural analogues of the extended Shi arrangements for the other
irreducible crystallographic root systems [13, 7] and analogues of Headley's theorm [2,
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Cor. 7. 2.2]. These arrangements were conjectured to have free cones [7, Conjecture
3. 3]. One approach to prove this conjecture is to find explicit bases for the modules of
derivations in a uniform way. Such bases are not known even for cAn. Au indication
that this task may be possible comes from recent work of Solomon and Terao [14].
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