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ABSTRACT. Complexes of (not) connected graphs, hypergraphs and their homology appear in the
construction of knot invariants given by V. Vassiliev [VI, V2, V3]. In this paper we study the com-
plexes of not t-connected A-hypergraphs. In Section 3 we show that the complex of not 2-connected
graphs has the homotopy type of a wedge of (n - 2)! spheres of dimension 2n - 5. This answers one of
the questions raised by Vassiliev [V3] in connection with knot invariants. For this case the Sn-action
on the homology of the complex is also determined. For not 2-connected Jfc-hypergraphs we provide
a formula for the generating function of the Euler characteristic. We also present partial results for
some other cases. In particular, we show that the complex of not (n - 2)-connected graphs is Alexan-
der dual to the complex of partial matchings of the complete graph. The latter complexes and their
homology are of interest in various parts of mathematics (see [BLVZ]). For not (n - 3)-connected
graphs we provide a formula for the generating function of the Euler characteristic.

Les complexes de graphes (non-connexes) et leur homologie paralssent dans la construction des
invariants de noeuds et de courbes planaires donn6e par V. Vassiliev [V1,V2,V3]. Dans cet essai
nous 6tudions les complexes de fc-hypergraphes qui ne sont pas t fois connexes. Dans la section 3
nous montrons que Ie complexe des hypergraphes qui ne sont pas 2-fois connexes a Ie meme type
d'homotopie qu'un bouquet de (n - 2)! sphferes de dimension 2n - 5. Ce rfeultat r6pond & u'ne
des questions de Vassiliev concemant les invariants de noeuds. Pour ce cas nous d6tennmons aussi
1'action du group Sn sur 1'homologie du complexe. Pour les fc-hypergraphes qui ne sont pas 2-fois
connexes nous donnons une formule de la caract&istique d'Euler. Nous pr&entons aussi des'r&ultats
partiels pour d'autres cas. En particulier, nous montrons que Ie complexe des graphes qui ne sont
pas (n - 2)-fois connexes est dual dans Ie sense d'Alexander au complexe des appariements partiels
du graphe complet. Ce deraier complexe et son homologie ont un int^ret dans des parties diff6rentes
des mathfanatiques (voir [BLVZ]). Pour les graphes qui ne sont pas (n - 3)-connexes nous donnons
une formule pour la fonction g6n&"atrice de la caract^ristique d'Euler.

1. INTRODUCTION

We study the homotopy type and homology of simplicial complexes whose simpUces are the edge
sets of not i-connected graphs and hypergraphs on n vertices. The case i = 1 is already well understood
(see Proposition 2. 1), and here we begin the examination of the topological structure of such complexes
for i > 2.

Although oiir point of view is mainly combinatorial, oiu- original motivation for studying these
complexes comes from the theory ofVassUiev invariants in knot theory. By determming the homotopy
tyPe of the complex of not 2-connected graphs on n vertices we answer a question posed by V. VassUiev
in [V3], where he presents a new approach to VassUiev knot invariants using a filtration of the simpUciaI
resolution of the space of not-knots as in [V2]. More predsely, he studies the space E of maps / :
51 -^ E3 such that /(S1) has multiple pomts or cusps. The simplicial resolution S of S is obtained
rougUy speaking as follows: singular knots are resolved by blowing up each r-fold self-intersection to an
^9 ~l)-simPlex' and sinularly for the set ofcusps. A suitable filtration (see [V3]) of S, combmatoriaUy
defined in terms of these sunpUces, gives rise to a spectral sequence that contams the homology of the
complex of not 2-connected graphs on n vertices as a basic mgredient.
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Our work continues the already fi-uitful interaction between the theory of Vassiliev invariants and
questions in topological and homological combinatorics of graph complexes (see [VI]). The study of
complexes of not t'-connected graphs has intriguing combinatorial and algebraic aspects as well. For
example, such aspects become apparent when considering the complex of not (n - 2)-connected graphs
on n vertices. In Section 7 this complex is shown to be Alexander dual to the complex of partial
matchings of the complete graph on n vertices. These matching complexes, along with complexes
of partial matchmgs of bipartite graphs, have previously been studied for other reasons, see [BLVZ].
In each case for which we calculate the Betti numbers, we detect nontrivial homology. For (n - 3)-
connected graphs (see Section 8) aiid for most complexes of not 2-connected hypergraphs (see Section
6) we have been unable to compute the Betti numbers explicitly, but we do deterniine the generating
function of their reduced Euler characteristics. The homology is seen to be nontrivial in ahnost all of
these cases.

Surprisingly, these non-vanishmg phenomena are suggested by a result motivated by a conjecture
in complexity theory. The conjecture states that complexes of graphs on n vertices having some non-
trivial monotone graph property - like being not t-connected - are evasive (see for example [KSS]).
Kahn, Saks & Sturtevant [KSS] showed that non-evasive complexes are contractible. In many naturally
arismg cases, including those examined here, the converse is true and evasive complexes in fact have
non-vanishing reduced Euler characteristics.

In Section 4 we study the action of the symmetric group on the complex of not 2-connected graphs
induced by its natural action on the vertices. This action mduces a representation of 5n on the
homology groups of the complex, which we determine. This representation coincides with a recently well
studied representation which appears in the work of Robinson &; Whitehouse [RW, Wh], Kontsevich
[K], Getzler & Kapranov [GK], Mathieu [Ma], Hanlon &; Stanley [H, HS] and Sundaram [Su].

2. PRELIMINARIES

We now mtroduce the basic concepts used m this abstract. By a graph G = (V(G), £;((?)) we mean
a loopless graph without multiple edges on the vertex set V(G) and with edge set E(G) C (v<f)). Our
standard vertex set wiU be the set [n] := {1, 2,..., n}. A graph G is caUed connected if for any two
distinct vertices v, v' G V{G) there is a path from v to v' m G, that is, a sequence of edges {^1, ^2},
{vt, V3}, ..., {vi--i, vi}   E(G) such that v =vi and v' = vi.

For a number i >, 1 a graph G is called i-connected if for any j vertices vi,... , Vj e. V{G), j < i,
the graph G that is obtained from G by deleting the vertices ui,... , Vj and their adjzicent edges
is connected. Equivalently, if |y(G)| > i then G is t-connected if and only if for every pair v, v' of
not adjacent vertices there are at least i paths from v to v' that are pairwise disjoint except at their
endpoints.

A graph which is not i-coimected is also called (i-l)-separable, and a 1-separable (that is, not 2-
connected) graph will often be called just separable. Of course, if G = (V{G), E(G)) is a graph that is
not z-connected for some i > 1 then for any subset E' C E(G) the graph G' = {V{G}, E') on the same
vertex set is not t-connected either. HeDce if we fix an n-element vertex set V and identify a graph
with the set of its edges, then we may regard the set of not t-connected graphs on V as a simplicial
complex.

Definition: A^, is the complex of not t-connected graphs on n vertices.

For a graph G and a vertex v we denote by G - v the graph that is obtained from G by deleting
the vertex v from its set of vertices and deleting all edges emerging from v from the set of edges. If v
and w are two distinct vertices of G then we denote by vw the two-element set {v, w}, by G\vw the
graph (V(G), £(G) \ {vw}), and by G + vw the graph (V(G), E(G) U {vw}). A subset V C V(G) of
the vertex-set of a graph G = {V(G), E{G)) is called a cutset if the graph obtained from G by deleting
the vertices in V and all adjacent edges is not connected. In particular, a graph is t-separable if and
only if there is a cutset of cardinality i. A cutset of cardinality 1 is also called cufpoinf.

More generally, one may consider complexes of not z-connected fc-uniform hypergraphs. Recall that
a k-umform hypergraph on a vertex set V is a subset E of the set of fc-element subsets (^) of V. We
will call the fc-imiform hypergraphs k-graphs for short. Note that a 2-graph is just a graph. A Jfc-graph
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is called i-connected if its underlying 2-graph is t'-connected. The underlying 2-graph of a fc-graph E is
the graph on V whose edge set contaiiis a A-clique on{vi,... , Vk} for each hyperedge {vi,... , Vk} e E.

Definition: A^, j^ is the complex of all not i-connected fc-graphs on n vertices.

Outsets and cutpoints are defined analogously for fe-graphs as they were for graphs. For the notation
related to simplicial complexes and partially ordered sets - posets for short - used in this abstract, we
refer the reader to Section 9.

Let us now review some known resists. For i = 1 the complexes A^ and A^ j^ are the complexes
of disconnected graphs, resp., disconnected fc-graphs. The topology of A^. ̂  is well understood up to
homotopy type.

Proposition 2. 1. Let n>, 2. Then

(i) The complex^ A^, is homotopy equivalent to a wedge of (n - 1)! spheres of dimension n - 3. In
particular, -ff. (A^) =0 fori ̂ n-3 and Hn-s(^) S z("-1)1.

(ii) The complex^,, is homotopy equivalent to a wedge of spheres of dimensions n-(k-2)-t-3, 1 ^
t<. ^. In particular, the homology o/A^, ̂  is free and concentrated in dimensions n-(k-2) -t-3,
l^t^f.

Part (i) foUows from weU-known properties of partition lattices (see [B, BWa, St2]) together with
the crosscut theorem (see [B]). An alternative proof is provided in [VI]. Part (ii) was established
by Bjomer and Welker in [BWe]. See Theorem 4.5 and Section 7.8 of [BWe] for exact numerical
information on the homology of A^ j^.

The character of the symmetric group for the representation on ffn_s(A^) was detemuned by
Stanley in [St2] in tenns of the character of Sn on the homology of the partition lattice. These two
characters are equal by an equivariant version of the crosscut theorem. The character of the syinmetric
group on the homology of A^ ̂  was given by Sundaram & Wachs [SW].

Unless otherwise explicitly stated, all homology groups in this abstract have integer coefficients.

3. HOMOLOGY AND HOMOTOPY TYPE OF A^

The results and computations presented in what follows will suggest that there is probably no
uniform statement that covers the topology of all complexes A;,. This is consistent with the graph
theoretical study of not t-connected graphs, where there is a good structure theory only when i < 3
(see for example Chapter 6 of Lovasz' book [L], or the survey article by Oxley [0] and the refereiices
therein). The structure theory of not 2-connected graphs is particularly well tmderstood.

The main theorem of this section gives a complete description of the homotopy type of A^.
Theorem 3. 1. Let n ^ 3. Then A^ has the homotopy type of a wedge of (n-2)! spheres of dimension
2n - 5.

Remark: This result was drculated for several months as a conjectiu-e. During that time, the Eiiler
characteristic of A^ was calculated by Rodica Sunion [Sij. The theorem was proved independently
and simultaneously, almost to the day, by V. Turdun in Moscow, in a homology version [V3] that k
eqidvalent to our result by some general arguments from homotopy theory.

For any natiu-al number k, let Bk be the Boolean algebra on k elements (i.e., the lattice of subsets of a
^-element set) and let HA be the lattice of partitions of a fc-set into subsets, ordered by refinement. It is
weU-known that A(.Bfc) - being thebarycentric subdivision of a simplex boundary - is homeomorphic
to a (fc - 2)-sphere, and that A(Hfc) ̂  Aj^ has the homotopy type of a wedge of (k - 1)! spheres of
dunension k-3 (see Proposition 2. 1 (i) and its references). These facts unply the following.

Lemma 3.2. A(Bfc x Hfe) /ias tfte homotopy type of a wedge of (k - 1)! spheres of dimension 2k - 3.

Thus, in order to prove Theorem 3. 1 it suffices to demonstrate that A^ is homotopy equivalent
to A(-Bn-i x nn-T). In order to state more precisely what we will prove, we make the following
definitions.
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Definition: For x   \n\ and any graph G on [n], ̂ (3(2;) is the neighborhood of a; in G, i.e. N0(0;) =
{y 6 [n]: {a;, y}   E(G)}, and 7r(a;, G) is the partition of the set [n] \ {x} determined by the connected
components of G - a;.

Definition: </) : £at(A^) -> Bn-i x Hn-i is the map of posets given by G i-» (NaW, v(l, G)), and
<y : A(Zaf(A|)) -> A(5n-i x Hn-i) is the simplicial map induced by 4>-
Note that if G is a graph on [n] such that ^c(l) = {2,... , n} and G- 1 is connected, then G is
2-connected. On the" other hand, if NaW = 0 and 7r(l, G) = 2|3| ... |n then G is the empty graph.
Thus <f> is weU-defined. It is dear that (f> is order preserving, so (j)* is well-defined. We can now state
the key technical result, from which (in view of Lemma 3.2) Theorem 3. 1 follows.
Lemma 3.3. The simplicial map 0" is a homotopy equivalence.

To prove Lemma 3.3 we use QuUlen's Fiber Lemma (see Proposition 9. 1). In our situation this
says that if for each (5, 7r)   Bn_i x Hn-i the poset ̂ 1(5, 7T) = {G   raf(A^) : 0(G) ̂  (S, 7T)} has
a contractible order complex, then ^* is a homotopy equivalence. If TT ̂  |2---n| then <^< ((S', TT))
has a top element, namely the graph G such that {!, <} is an edge ofG fort 6 5 andG induces the
complete graph on each block of TT. So assume that TT = |2-- -n|. If |5| ̂  1 then there is also a top
element in i^^1 ((5, w)), namely the graph G which induces a clique on {2,... , n} and has ̂ c(l) = S.
If S = {2,.. ~, n} then (5, ir) does not Ue in the proper part of 5n-i x Hn-i - In summary, it remains
to consider the fibers <6<l(5, 7r) for pairs (5, 7r) such that TT = \2---n\ and S C {2,... , n} with
2 < |5| ̂ n-2. To handle these remaining cases, we make the foUowing definitions.
Definition:

(1) For2 ̂  fc ̂ n- 1, A(fc) = {G  A^ : ^c(l) C {2,... , k}}.
(2) For3 < fe^ n- 1, A(fe - l, k) = {G £ A(fe- 1) :G+1A;  A(fc)}.

Note that (by definition) if a;y   E(G) then G+xy = G andii xy ^ E(G) then G\xy = G. K
(5, 7r)=({2,... , k}, i) thenA(fe)=^l(5, T). Also, A(fc-l, fc) consists of those graphs in A (fc - 1)
which do not become 2-connected when the edge Ifc is added.

By the above discussion and the fact that the natural action of Sn on jCaf(A^) is order preserving,
Lemma 3.3 follows immediately from the next lemma.

Lemma 3.4. For 2 ^ fc <n-l, A(fe) is contractiUe.

The proof of Lemma 3.4 proceeds by induction on k, the case k=2 having been handled above. The
inductive proof is therefore achieved by the combination of the following two lemmas.

Lemma 3.5. Let3 ̂. k <. n-l. J/A(Jk - 1) and A(fe - l, k) are contractible, then so is A(fc).
Lemma 3.6. For 3<, k <. n-l, A(fc - 1, fc) is contractible.

To prove Lemma 3.6 we use a special case of Forman's discrete Morse theory (see [F], and for this
case also [Ch]). The following works for regular cell complexes, but we only need the simplicial case.
Definition: Let S be a sunplicial complex.

(1) £)(£) is the digraph whose vertex set is E and whose edges are the edges m the Hasse diagram
of £at(S) \ {1}, all directed downward.

(2) For any set X of edges in D(S), 2?x(S) is the digraph obtained from D(S) by reversmg the
direction of the edges in X, so these edges are directed upward while the remaining edges are
directed downward.

Before we can formulate the following lemma we have to recall some basic facts about collapsibility
(see for example [B]). Given a simplicial complex S acella   Sis called free if o- is not maxima!
and is contained in a uiiique maximal cell of S. If a is &ee in S then passing from S to the complex
S\{r :r 3 o-} is called an elementary collapse of S. If we can obtain a single point by applying a
sequence of elementary collapses to a complex S, then S is called collapsible. Since it is easily seen that
an elementary collapse of S is a strong deformation retraction it follows that collapsible complexes are
contractible.
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Lemma 3.7. Let E be a simplicial complex. IfD{S) contains a perfect matching M such that £»M(S)
is acyclic, then E is collapsible.

We call a perfect matching of the type described m Leiuma 3.7 an acyclic perfect matching of Z5(S).
In order to prove Lemma 3.6 we make some technical definitions.

Definition: Consider separable graphs on the vertex set [n].
(1) We denote the set of cutpoints of such a graph G by Cut(G).
(2) For fixed fc 6 {3,... ,n- 1}, let

(a) J(fc) := {G £ A(fe - l, fc) | ̂ c(l) = 0}.
(b) J_(k) := {G e A(fc - 1, fc) | ̂ c(l) ^ 0 and Cut(G + 1k)^ {!}}.
(c) F(k) := {G   A(A - 1, fc) | Cut(G + Ifc) = {!}}.

Note that A(fe - 1, k] is the disjoint union of I(k), J(k) and F(k), and that both I(k) and 7(Jk) U J(k)
are subcomplexes of A(Jfc - 1, jfc).

The foUowing lemma implies Lemma 3.6, and therefore completes the proof of Theorem 3. 1.

Lemma 3. 8. For any k G {3,... , n- 1}, D(A(A; - 1, k~)) admits an acyclic perfect matching.

The proof is carried out in three steps. First we show that D(I(k)) admits an acycUc perfect
matching, then that D(I(k) U J(k)) admits an acycUc perfect matching, and finally that Z)(A(fc -1, fc))
admits an acyclic perfect matchmg.

4. THE CHARACTER FOR THE ACTION OF 5n ON fi'2n-s(A^)

Given Theorem 3. 1, it is natural to investigate the representation of the syimnetric group Sn on
the only non-zero homology group of A^ induced by the obvious action. In this section we consider
homology with complex coefBcients, hence all representations are over C

Definition:

(i) We denote by ̂  the character of Sn ̂ ven by g i-^ Trace(ff, ff2n-5(A^)).
(ii) Let Cn be a cycUc subgroup of Sn generated by a faU n-cycle. We denote by lien the character

of Sn induced from the character on Cn which takes the value e^ on a fixed generator. It is
weU known [Re, Chapter 8] that the character iie^ is the character of 5n on the multigraded
piece of the free Lie-algebra generated by n variables.

For the rest of this section we let 5n-i be stabilizer of the point 1 in the natural action of Sn on
the set [n].

Theorem 4.1. The character^ is given by
^=. ien-i f^_^ -lien.

The proof of Theorem 4. 1 uses the definition of induced characters and the foUowing two lemmas.
Lemma 4.2. J/ff   5n_i tAen ̂ (5) = ^-en-i^).

Since every element of Sn which has a fixed point is conjugate to an element of 5»-i, it remains to
determine a>^(g) for aU fixed-point-free g   S~n.
Definition: If ff   5» is fixed point free, then g* is defined to be the element of 5n+i which fixes n + 1
and acts as g does on [n].

Lemma 4. 3. Let g e Sn be fixed-point-free. Then u^(ff) = -^+1(5*).

By a result of Vassiliev the number of linearly independent knot invariants of bi-order (n, n - 1),
modulo lower bi-ordermvariants, is bounded from above by the multiplicity of the trivial representation
in the restriction of u}^ to the cyclic group Cn generated by (12 ... n). See [V3] for all detaUs. As an
immedlate corollary of Theorem 4. 1 we obtam a formula for this multipUdty. We write (^, 1} for the
multiplicity of the trivial character in any character $ of C'n.
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Corollary 4.4.

(^ ̂ , 1) = (n - 2)! - ^^(d)^(d)(^ - 1)! di-i
d\n

The values of Wn = (^ 4-cZ > 1) ̂ or small n are given in the table below.

I " 1|3|4|5|6| 7|8 I 9
Wnpl 1 I 216 I 18 I 96 | 564

10
47072^

11

327990^

Table 1: Multiplicity Wn of the trivial character in a;^ 4-^
The character a>^ and the tensor product of u^ with the sign character have appeared recently in

various different settings, first in the work of C. A. Robinson & S. Whitehoiise [RW] and S. Whitehouse
[Wh] on gamma-homology of algebras and later in work of E. Getzler & M. Kapranov [GK] on operads,
0. Mathieu [Ma] on hyperplane arrangements and symplectic geometry, in the work of M. Kontsevich
[K] on Lie algebras and symplectic geometry, and in the work of P. Hanlon [H], P. Hanlon & R.P.
Stanley [HS] and S. Sundaram [Su] in a combinatorial and representation-theoretic context.

5. THE LATTICE OF BLOCK-CLOSED GRAPHS

In this section we will obtain information on the topology of A^ j^ by producmg a lattice Sn, fc
such that A(Sn, fc) is homotopy equivalent to A^j^ and examining the structure of Sn, fc. We begin by
recalling some elements of the well known structure theory of separable graphs, which appears e.g. in
[L].
Definition: Let G be any graph. A block of G is a subset W of V(G) such that the subgraph of G
induced on W is 2-coimected and the subgraph of G induced on any proper overset of W is separable.
We will say that G is block-closed if the subgraph induced on each block is a dique.

Given a graph G, say that e S e for two of its edges e and e' if they both lie in some drcuit of G.
This is easily seen to be an equivalence relation on E(G). K W is the set of vertices underlying an
equivalence class then TV is a block, and all the blocks correspond to equivalence dasses of edges in
this way. R-om this it is easy to derive the following basic facts about the "block decomposition" of
G, see [L] for more details.

Proposition 5.1. Let G be a graph. Then there exists a unique decomposition of V(G) into blocks
Wi,... ,WT, and if i ^ j we have |W, n Wj\ <: 1. Moreover, if BQ is the graph with vertex set
{wi,... , Wr} such that {w,, Wj}   £'(5c) t/ and only if \Wi HWj\ = 1, then BQ is a forest (that is,
BG contains no cycles).

Note that if ff is a fc-graph with underlying graph G, then every block of G has size at least k or
is a single vertex.

Definition: Let K be a fe-graph with underlying graph G, and let TVi,... , Wr be the blocks of G. We
define K* to be the fe-graph which induces the complete A-graph on each Wi and contains no other
hyperedges. We also define En,* to be the poset of all graphs on vertex set [n] in which every block is
either an isolated vertex or a clique of size at least k, ordered by incliision.

The first part of the following lemma is immediate from the definition, and the second follows via
a standard argument for dosure operators.

Lemma 5.2. (i) The map K ^ K* is a closure operator on £at{^^) whose image is isomorphic
tO S», fc.

(ii) Sn,fc is a lattice.

The meet operation in the lattice Sn,fc is intersection of edge-sets followed by deletion of the edges
in all cliques of size smaller than k. Note that the elements of En 2 are the block-closed graphs, and
that we have a tower of embeddings as subposets (not sublattices):

Sn,t C .. . C En,3 C Sn,2.

-42 -



Hence, in view of the foUowing result the topology of all the complexes A^ ̂ is encoded into the lattice
Sn,2 of block-dosed graphs.

Theorem 5.3. The complexes A^ j^ and A(Sn, *) are homotopy equivalent.

We now investigate the structure of Sn, k. The next two lemmas follow immediately from the
definition of £",*. We write 0 for the empty graph, which is the imnimiim element of Sn. fc.

Lemma 5.4. Let M be a coatom of ̂ , k, that is, an element which is covered by 1. Then one of the
following conditions holds.

(i) M is connected and has two blocks of size I, m with k-^l^m^n-k+1 and l+m=n+l.
In this case, the interval [0, M] is isomorphic to 'Zt, k x Sm, *.

(ii) M consists of an (n - l)-clique and an isolated vertex. In this case, k > 2 and the interval [0, M]
is isomorphic to Sn-i. jt.

Lemma 5.5. Let G £ Sn,k cover H   Sn, fc. Then one of the following conditions holds.
(i) E(G) \ E(H) is a clique on k vertices.
(u) E(G) \ E(H) is a star (that is, a connected graph with at most one vertex of degree more than

one), and the vertices of degree one in this star form a block in H.
(iii) E(G) \ E(H) is a complete bipartite graph on parts A and B, and there is a vertex v such that

A U {v} and B U {v} are blocks in H.

Using Lemma 5.4 and induction, we prove the following result.

Theorem 5. 6. (i) En,2 is graded of rank 2n - 3.
(u) En,3 is graded of rank n-2.
(iu) Ifk>3 andn<2k-l then Sn. fc is graded of rank n - Jb+ 1.
(iv) Ifk>S andn>2k-l then the longest maximal chains in Sn, fc have length n - Jfc+ 1. Also,

the shortest maximal chains in Sn,* have length (n- 2) - (A- 3)L^J.
(v) If k > 3 then G   En, * " contained in a chain of length n-k+1 if and only if G consists of a

clique of size I ^ k and n - I isolated vertices.

The above results yield some nontrivial information about the topology of A^j^ when Jb > 3.
Corollary 5.7. Assume that k > 3.

(i) Ifi>n-k-l then ff. (A^^ = 0.
(u) Hn-k-i(^, k) u free of dimension (^1).
(iu) Ifn<2k-l then A^^ has the homotopy type of a wedge of (^) spheres of dimension n-k-1.
(iv) Ifn= 2fe - 1 then A^ ̂ has the homotopy type of a wedge of spheres. This wedge consists of

(^D (n-k-1)- spheres and jn(^) 1-spheres.

The posets Sn, fc are also useful in the case k = 2, and possibly in the case fc = 3. An alternative
proof of Theorem 3. 1 is given by the following lemma.

Lemma 5.8. Let <f> :^at(A^ -> Bn_i x Hn_i fee as defined in Section 3. Then the restriction
of ̂  to thesubposet Sn, 2 is surjective and induces a homotopy equivalence between A(S^2) and
A(Bn_iXHn_i). ' ' "'"

If certam intervals in Sn, z are well behaved, then the homology of A(E», 3) is concentrated in the
highest possible dimension, as seen in the lemma below. Recall that a poset P is called Cohen-Macaulay
if P is ranked and for every interval [x, y] in P the reduced homology of A(a;, y) is concentrated in
dimension rank(x, y) - 2 (see [B]).

Lemma 5.9. J/Sn,2 is Cohen-Macaulay then the reduced homology ofA^ is concentrated in dimen-
sion n - 4.
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The homology of ̂ 3 has been computed for4^n < 7. It is concentrated in dimension n - 4.

\n\i 1

0 I 0

J-J

0

0 I Z2U1U

Table 2: Homology groups ̂ . (A^^)

6. THE EULER CHARACTERISTIC OF THE COMPLEX A^j^

In Section 5 we were able to deteraune the homotopy type of A^ <; for fe > 3 when n ^ 2fe - 1,
but not for fc = 3, nor for Jk > Sandn > 2fc-l. Indeed, m the case fe = 3 we have no information
on the topology of A^ ̂ unless n is very small, and in the case & > 3 and n > 2fe-l we are able to
determine only the homology group ̂ n-fc-i(A^t)- In this section, we investigate the reduced Euler
characteristic of A^ ̂ . We will determine a formula for the exponential generating function

Mfc^):-^x(A2^)^-,
n=l

for all fc > 2. That formula is stated in the following theorem.

Theorem 6. 1. For k> 2, we have

M, f.^i)=h. fp^)),
Pk(x) j ~^\ Pk(x) ) '

where pk{x) :=l+a;+^-+---+ -^=^.
Theorem 6.1 gives another proof that x(A^.2) = -(n - 2)!. It also implies

^>='°(^^;^-^)-
which gives the sequence 0, 0, -1, 3, -21, 180, -2010, 27090, -430290,... for X^s), cf. Table 2. To

obtain these corollaries set y := x!j^- and solve for a; toget a; == ̂  and x = r-i-t-V^^-J^
when k =2 and 3 respectively. The proof of the theorem uses the posets Sn,fc defined in Section 5,
induction on n and the exponential fonnula (Proposition 9. 5).

7. (n - 2)-CONNECTED GRAPHS AND MATCHING COMPLEXES

Before we proceed to the consideration of (n- 2)-connected graphs, we state some simple but useful
facts about the general situation. What do maximal (i - l)-separable graphs on the n element set [n]
look like? Is is dear that each such graph is described by an (z - l)-set A and a partition J3 y (7 of
{!,... , n} \ A into two non-empty blocks B, C. The corresponding maxima! (i - l)-separable graph
is the complete graph on [n] with all edges connecting B zuid C removed.

Now let G be an (n-2)-coimected graph on n vertices, so G ^ A^~2. Then by the above description
of maxima! (n - 3)-separable graphs the induced subgraph on any three vertices must contam at least
two edges. Thus the complementary graph (i.e., the graph contaimng precisely the edges that are not
in G) is a matching. The graphs on n vertices that are matdungs form a simplidal complex, that we
denote by Mn. We condude the following.

Proposition 7.1. The matching complex Mn is Alexander dual (in the sense of Proposition 9.4) to
the complex A^~~2. In particular, there is an isomorphism

Hi{Mn) S ff(S)-3(A^-2).
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The matching complexes Afn have attracted attention for various reasons. In [BLVZ, Theorem 4. 1]
the matching complex Afn is shown to be topologically (L2^1J - 2)-connected, which impUes that
Hi(Mn) = 0, fori = 0,..., [n^-\ - 2. We thus get the foUowing coroUary.

CoroUary 7.2. The cohomology o/A^-2 vanishes in dimensions i ^ (^) - LS^-J - 1.
The following table shows what we know about the homology groups ̂ . (Afn), based on the restilts

of [BLVZ] for n ^ 6 and n = 8, and our own computations.

n\i

10
11
12

torsion
0 -ZT32-

lOrsion"

torsion"

0 Z"B8®torsion4
torsion5

-z^-
^12440

Table 3: Homology groups ff.(Mn) of matdung complexes

We see that the complexes A^-2 can have torsion, and that this phenomenon begins with A^.
The rational homology of M» has been detemiined in [RR], and the ranks of the torsion-free parts of
Hi(Mn) given in Table 3 agree with the resiilts given in that paper.

8. (n - 3)-CONNECTED GRAPHS

Theorem 8.1. The exponential generating function F^-3(x) = ^;<((A^-3)')^- of the Euler-characteristic
of the Alexander Dual of A^~3 is given by:

n>0

^n-3 (x)=x-
^P(2^)+^-^2-^4

The exponential generating function of the Euler characteristic of A^-3 is then the sum of real and
imaginary part of -F^ix).

The complex A^-3 has maximal simplexes of dunensions n - 1 and n - 2 only. It is also easUy
collapsible to a pure complex of dimension n - 2. A Maple computation (see below) shows that neitha-
the Euler characteristic of (A^-3)* nor the Euler characteristic of A^-3 alternate m sign, so the pure
complexes are certainly not all Cohen-Macaulay. The calculation shows that

F"-'(a>,=-1 -+ ?*+ ^s + ̂ ' - y7 - 541' - ^' + °(-'°).
We have also studied the slightly larger complex of graphs which are the disjoint umon of cydes and

paths of any length (i.e., graphs with maximum vertex degree at most 2). This is also a reasonable
generalization of the matching complex, which is the complex of aU graphs with maximum vertex
degree at most 1. The Euler characteristic of the corresponding Alexander dual has almost the same
generating function as for (A^-3)*. That generating function is

lThere is Zs-torsion of rank 1. No Zp-torsion forp=2, 5 ^p < 17.
2There is Zs-torsion of rank 8. No Zp-torsion forp=2, 5 <p < 17.
3There is Zs-torsion of rank 1. No Zp-toreion for p = 2, 5, 7.
4There is Z3-toraion of rank 35. No Zp-torsion for p = 2, 5, 7.
'There is Zs-torsion of rank 56. No Zp-torsion for p = 2, 5, 7.
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X-
, )+^-^2

-l-x+is1-^
yTTa

17+^'-^'- g

896 1920 X9- 23
2400

x10 + 0(xu).
The maximal simplices in the cycle and path complex have dimension n- 1 or n-2, and the

complex can be collapsed to a pure (n - 2)-dimensional complex. The generating function for the
Elder characteristic shows that these collapsed complexes are not all Cohen-Macaulay.

9. NOTATION AND TOOLS

In this short section we will summarize the main tools that we use in the study of the complexes
^n.k- ̂ e re^er t^le reader to the survey paper [B] for more details and references.

Let P be a finite partially ordered set - poset for short. K P has a unique Diinimum element 0 and
a unique maximum element 1, we denote by P the proper part of P, that is the poset obtained by
removing from P the elements 0 and 1. By A(P) we denote the simplicial complex of all chains in P.
The complex A(P) is called the order complex of P. By convention we include the empty set 0 in every
simplicial complex. For any simplidal complex A, jCaf(A) will denote the poset of faces of A, ordered
by inclusion and enlarged by an additional greatest element 1. Then the order complex A(£at(A)) of
the proper part of jCaf(A) is homeomorphic to A. Indeed, A(/:af(A)) is the barycentric subdivision
of A.

For a poset P and p   P we denote by P<p the subposet {p' \p' G P; p' <, p}. The posets P^p, P<p
and P>p are analogously defined. For p^p' m P -we denote by ]p, p] the closed interval P^p n P<^p'
in P, and by (p, p') the open interval P>p n P<p'.

For a poset P we denote by p, p the Z-valued function defined recursively on the intervals of P by

ftp(x, x)=landfzp(x, y)=- ^ /^p(x, z) i! x <y.
x<z<y

By a map /: P -> Qof posets we always mean a poset homomorphism (i.e., x -^ y implies
/(*) ^ f(y})- For an element g 6 Q we denote by /^l(g) the preimage of Q<g under /. Analogously
defined is/^l(g).

Proposition 9. 1 (Quillen Fiber Lemma [Q]). Letf -. P -^ Q bea map of posets. If ̂ (f^ (q)) is
contractible for allqeQ then A(P) and A(Q) are homotopy equivalent.

A map f :P -> P from a poset to itself is called a closure operator if /(a;) > x and f(f(x)) = f(x}
for all a; £ P. The Quillen Fiber Lemma immediately implies the fact that closure operators preserve
the homotopy type.

Corollary 9. 2 (Closure Lemma). Let f -. P-> P bea closure operator on the partially ordered set P.
Then A(P) and A(/(P)) are homotopy equivalent.

K the poset P is a lattice (i.e., suprema, denoted by "V", and mfima, denoted by "A", exist) then
there is another tool for computing the homotopy type. Note that if P is a finite lattice then there is
a least element 0 and a largest element 1 in P. For an arbitrary element p £ P we say that a  P is a
complement ofp ifpAa = 6 and pV a = i.

Proposition 9.3 (Homotopy Complementation Formula [BWa] ). (i) Let P be a poset and AC P
an antichain. Assume A(P \ A) is contractible. Then A(P) is homotopy equivalent to

VS(A(P<. )*A(P>, )).
xSA

(u) Let P be a lattice and let Co be the set of complements of some element? ̂  0, 1. Then A(P\C'o)
is contractible.

In the formulation of the proposition V denotes the wedge product, S denotes the suspension and
* denotes the join of topological spaces.

Our next tool is the combinatorial version of a standard duality theorem from algebraic topology.
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Proposition_9. 4 (Combinatorial Alexander Duality). Let A be a finite simplicial complex on vertex
set V and define

A*={Bcy[ V\B^A}.
Then

ff, (A) £ fflvl-'-3(A*).

This is derived as foUows. The usual Alexander duaUty theorem (see e.g. Muiikres [Mu]) says that
ff. (A)Sff"-l(5n\A)

for any compact subset A of the n-sphere Sn. In our situation, let P = 2y \ {0, V}. This tnmcated
Boolean algebra is the proper part of the face lattice of the boundary complex of a simplex, so A(P) S
5lyl-2._N^w_let A be the realization of A(£at(A)) as a subspace of A(P). It is easy to sw that
A(p \ ^(A)) is a strong deformation retract of 5lvl-2 \ A, and since P \ £at(A) S £af(A*) the
result follows.

FinaUy, we recall a result from enumerative combinatorics. For a number sequence (an)n>o the
formal power series ̂  On-y is called its exponential generating function.

n>0

Proposition 9.5 (Exponential formula). Suppose that two functions a, b:N -^ Z are given such
that

6(n)= ^ a(|5i|)... a(|5t|), n ^ 1,
Si|...|s. n»

where the sum ranges over all set-partitwns of [n] and a(0) = 0, 6(0) = 1. Then the exponential
generating functions A(x) := E^o si^£- ̂ d B(x) := E^o b^1 saf^

B{x)=eA(x\

For the proof see [Stl, St3].
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