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Abstract

Two of the fundamental theorems in finite set combinatorics are the theorems
of Macaulay and Kruskal-Katona which characterize the ̂ -vectors of multicom-
plexes and the /-vectors of simplicial complexes respectively. These theorems also
characterize the Hilbert functions of quotients of polynomial rings and exterior
algebras. Gotzmann proved a persisteuce theorem for vector spaces which are ex-
tremal in the sense of Macaulay. Aramova, Herzog, and Hibi proved a persistence
theorem for vector spaces which are extremal in the sense of Kruskal-Katona. Let
y be a vector space of homogeneous polynomials of degree d in general coordi-
nates a;i,.. ., a;n and W be the vector space obtained from V by setting Xn = 0.
Green proved that a bound similar to Macaiilay's relates the codimensions of V
and IV.

In this paper we prove analogues of Green's result and the persistence theo-
rems of Gotzmann and Aramova-Herzog-Hibi for strongly stable ideals in polyno-
mial rings with restricted powers of the variables. Our results can be interpreted
as results about ft-vectors of multicomplexes with restricted multiplicities.

Resume

Deux des theoremes fontamentaux de la combinatoire des ensembles finis, Ie
theoreme de Macaulay et Ie theoreme de Kruskal-Katona, fournissent une car-
acterisation des /i-vecteurs des midticomplexes (resp. des /-vecteurs des com-
plexes simpliciaux). Ces theoremes caracterisent aussi les fonctions de Hilbert
des quotients des anneaxix polynomiaux et des algebres exterieurs. Gotzmann a
demontre un theoreme de persistance pour les espaces vectoriels extremaux au
sens de Macaulay. Aramova, Herzog et Hibi ont demontre un theoreme de persis-
tance pour les espaces vectoriels extremaux au sens de Kruskal-Katona. Soit V
un espace vectoriel de polynomes homogenes de degre d en coordonnees generales
a;l,... , Xn, soit W 1'espace vectoriel obtemi de V en posant Xn = 0. Green a
demontre qu'une borne semblable a celle de Macauley donne une relation entre
les co dimensions deV et de W.
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Dans ce travail nous demontrons des analogues de ce resultat de Green et
des theoremes de persistance de Gotzmann et de Aramova, Herzog et Hibi pour
les ideaux fortement stables dans un anneau polynomial avec des puissances re-
streintes des variables. Nos residtats peuvent etre interpretes comme des resultats
sur les /i-vecteurs des multicomplexes ayant des multiplicites restreintes.

1 Introduction

The extremal properties of Hilbert functions have been studied extensively. One of the
main reasons for the fertility and appeal of this subject is that one can study Hilbert
functions using methods and techniques from several mathematical areas: combina-
torics, commutative algebra, and algebraic geometry. In [13] Macaulay characterized
the Hilbert functions of quotients of polynomial rings, or equivalently, the /i-vectors of
multicomplexes [14, §2.2]. Given Macaulay's result, it is natural to ask whether vector
spaces of forms of the same degree which achieve Macaulay's bound enjoy some other
special properties. In [7] Gotzmann proved his remarkable Persistence Theorem which

states that such extremal vector spaces in degree d generate extremal vector spaces
in degree d + 1. We will call such vector spaces Gotzmann. Structure results about

Gotzmann vector spaces have been obtained in [3], [6], and [8]. Green [8] character-
ized the Hilbert functions of rings obtained by moding out quotients of polynomial
rings with fixed Hilbert function by a general linear form. A result of Kruskal [12]
and Katona [11] extended the study of the extremal properties of Hilbert functions
to rings other than the polynomial rings. They characterized the /-vectors of simpli-
cial complexes, or equivalently, the Hilbert functions of quotients of rings of the form
k[xi, . . . , Xn}/{x^, ..., X^). Since it does not make any difference if the variables com-
mute or anticommute, this also characterizes the Hilbert functions of quotients of exte-
rior algebras (see also [1]). Clements and Lindstrom [4] generalized both Macaulay's and
Kruskal-Katoua's results to rings of the form R = k[xi, ..., Xn}/(x^,..., a;^"), where k
is a field, 2 ^ ai ^03 < ... ^a» ^ oo, anda;,°° = 0. We will extend the definition
of a Gotzmann vector space to extremal vector spaces in any such ring R. A vector
space V C R (resp. an ideal I C R) is called strongly stable, if V (resp. 7) is gen-
erated by monomials and whenever a;.m   V (resp. 3;im   J) for some monomial m,
then Xjm   V (resp. x,m   7) for any j <, i. In her dissertation 1995 Bigatti gave
a new proof of Gotzmann Persistence Theorem for polynomial rings in characteristic
0. She proved the theorem for strongly stable vector spaces and used Grobner basis
theory to reduce the general case to that of strongly stable vector spaces. Aramova,
Herzog, and Hibi [1] showed that with minor modifications Grobner basis theory known
from polynomial rings carries over to exterior algebras. They used an approach similar
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to Bigatti's to prove a Persistence Theorem for Gotzmann vector spaces in exterior
algebras.

It is not hard to see that to prove Macaulay's, Green's, and Kruskal-Katona's the-
orems it is enough to consider strongly-stable vector spaces. Moreover, in the sense of
Green's theorem, the last variable Xn is a general linear form for any strongly stable
vector space.

In this paper we give generalizations of Green's theorem (in Theorem 2. 1 (1)),
Clements-Lindstrom theorem (in Theorem 2. 1 (2)), and the persistence theorems of
Gotzmann and Aramova-Herzog-Hibi (in Theorem 2. 1 (3)) to strongly stable ideals in
rings of the form

^1,..., ^]/(^,..., ^»), (1)

where 2 <a. ̂  oo for l^i^ n. (We are not assuming that ai ̂ 03^ ... ̂  On. ) The
following example shows that the analog of the Gotzmann and Aramova-Herzog-Hibi
Persistence theorems does not hold if V is not strongly stable.

Example 1. 1. Let S == k[x, y}/(x3), V be the vector space spanned by y, and L the
vector space spanned by x. Then VSi = span{a;y, y2 } and LS, = span{a-2, a-y}, so

dim y = dim Z and dimVSi = dimLSi. However, for n ^ 3 we have VSn-i = Sn =
^u{x2yn -\xyn -\y-} and Z5^_i = ^u{x2yn -\xyn-1}, so dimF^-i ^ dimZ^_i.

Specializing our proofs to the case of polynomial rings (ai =as = ... =a»= oo)
one obtains new proofs of Macaulay's and Green's theorems. Since our proofs work for
anticommuting, as well as for commuting indeterminates, we can also specialize to the
case of exterior algebras (a^ =^2 = ... =a^ =2; anticommuting indeterminates) and
obtain a new proof of Aramova-Herzog-Hibi Persistence Theorem.

2 Hilbert functions of strongly stable ideals

Let 5 be a ring of the form (1). We denote by ̂  the vector space of homogeneous
polynomials of degree d in S. Let S = A:[a;i,... , ^_i]/(^,... , C-11 ) C 5'and let

V C Sd be a vector space generated by monomials. Let V be the vector space generated
by the monomials in V which are not divisible by x^ andV/= {- : /e V and Xn\f},
so y == V® XnV. If in addition V is strongly stable, then XiV C V for any i. so
VS, C V. Then -0-'/ "~"~' '""" '"" ;= r '" au-y t'

vs, = vs, + vxn + xnV's, c vs, + Vxn + XnV = VS, ® XnV C VS,,

so VSi = VSi ® XnV. The main result in this paper is:
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Theorem 2. 1. Let V, L C Sd be vector spaces such that V is strongly stable, L is
generated by an initial lex-segment, and dim V = dimL. Then:

1. dimy>dimL;

2. dimV^i >dimZ5i;

3. J/dimV^i = dim^5i, f/ien dimV^ = dim I^.

In the proof of this theorem we use the following Theorem 2. 2 about multicomplexes
with restricted multiplicities.

IfCf C 5'j isa set of monomials and m   5'is a monomial, we set mC = {mm' :
m/   C} and <,&(m) == max{z : .r^jm}. We also denote by C^\ 0 <i < ai-1, the
set CM ={^- : m  C'and ̂ (m) = i}. We set C>/ = Ua^lx{CW = {m eC : x, \m}
and AC' = {m   5'd-i : m divides a monomial in C}. (So AC = 0 when d = 0.) Then
C = U^ol.ciC'(t) = C'(o) u c'.

Theorem 2.2. Let C, RC Sd be sets of monomials such that C is strongly stable and
R is an initial rev-lex segment with \R\ = |C'|. Then

1. \C^\ < \R^\;

2. |AC| ̂  |A^|;

3. Z/IAC'I = |A^|, ̂ en |C'(°)| = \R(°)\.

3 Proofs

To prove theorems 2. 1 and 2. 2 we will need two preliminary lemmas about the rev-lex
order.

Lemma 3. 1. //mi > mz are two consecutive (with respect to the rev-lex order) mono-
mials in Sd, then either ^(mz) = ^>(mi) - 1, or ̂ (mz) > <?i>(mi).

Proof. Let mi = a;^a;22 ... x^, so <?i>(mi) = z'i. Since mi is not the least monomial in Sd,
it follows that there exists some j ^ 2, such that ij < aj - 1. Let u be the least such
j. If u = 2, then m^ = x\l~lx^+lx^3 ... ^», so <^(mi) = ^(ms) + 1.

If u > 2, then m-t = x[lxr^ ... x^n, where r,, = ?"+ 1, r., = ij for j > u, and for
1 ^J <u-l we define r-j. inductively by r, = min(^^ ^ - ^f^1 r; - l, a, - 1). In
particular, ^(mz) =r-i ̂ h+^2-1 =z"i +02 -2 ̂  ii = <^(mi). D
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KC' C 5'dis a strongly stable set of monomials, then AC>(1) C C'(t+l) for 0 < i <
GI -2. The next lemma gives a necessary and sufficient condition to have AC>(t) = C'(t+l)
when C' is an initial rev-lex segment.

Lemma 3.2. Let RC Sd be an initial rev-lex segment and m be the least monomial in
R. The following are equivalent:

1. <f>(m) < r;

2. ARW = R(i+1) forr^i^ai-2.

Proof. First we will prove the implication (1) =^> (2). Lets ̂  r. It follows by Lemma 3.1
that the least monomial m/ in U^x^R^ has <^(m/) = s. Then the least monomial
in Ua^lxi-SR^ is ̂  with <^(^) = 0. Moreover, U^^f^^) is an initial rev-lex
segment, which shows that it will be enough to prove only that AR^ = RW in the
case r = 0. Since R is strongly stable, we have that AJ?(°) C ^(1), so it remains to
prove that ARW D RW. Let mi = ^2 ... 4»   RW, so x,m,   A Since Xim, > m
and m   -R(o), it follows that there exists at least one j such that ij <, a, - 2. Let u be

the least such j. Then the element m^ = mix^ is the largest monomial smaller than
a-imi in Sd which is not divisible by a;i, so ma 6 ^. Since mi   A{m2}, it follows that
RW c AJ?(°).

Now we will prove the implication (2) =^ (1). Suppose that (1) is not satisfied,
so m = xs^mi, where 5 > randmi   7<:(s). Since by assumption R^ = ^R(s-l\ it
follows that there exists m^   R(s-l\ such that m^ = s. mi for some z > 2. Then
R 3 x{-lm2 = x{~lx, mi < x{mi = m, which contradicts the fact that m is the least
element in R. Q

Note that the conclusion of Lemma 3.2 is not true for arbitrary strongly stable sets.
Take for example C to be the smallest strongly stable subset of S^ containing x^x^ and
x^X4. The least element of C is x^X4 with <^(a:ja;4) = 0. However, x^   C'(l) \ AC'(0),
so AC'(°) ^ (7(1).

Proof of Theorem 2. 2. We give a proof by induction on the number of variables. When
n = 1 the theorem is obvious. Now assume that the theorem is true for n - 1 variables.

First we will prove that \C^\ ^ \R^\. Assume that on the contrary |C'(°)| > \R(°)\
and let r = min{<^(m) : m e A). If p is the least element of Sd, then p = x^ . .. x^n,
where »" = mm(rf, a^ - 1) and forl ̂  z < n-1, a.. = min(rf - ^,^ aj, a. - 1).
This shows that <^(m) ^ 4>{p} for any m   ^, so by Lemma 3. 1 it follows that there
exists an initial rev-lex segment R C Sd such that R^R, the least element qinRhas
W = r = mm{<^(m) : m   ̂ }, and \R^\ ^ \R(T)\ + 1. By Lemma 3. 2 we have that
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A^(*) = ^(.+1) for r ^i ̂  ai-2. Ifr =0, then |C'(°)| ̂  |I?(0)| + 1 > \RW\. If r > 0,
then RW = RW = Q, so in both cases |C'(°)| ̂  \RW\. Since C'(°) is a strongly stable set
of monomials in k[x^..., Xn]d and RW is an initial rev-lex segment in k[x^ ..., Xn]^ we
can apply the induction hypothesis and conclude that |AC>(°)| ^ |A^(°)|, so \C^\ ^
|AC'(°)| ̂  |A^(°)| == |^(1)| ̂  |J?(D|. Using the induction hypothesis again for C'(l) and
RW we see that |C'(2)| > |A(7(1)| > \^RW\ = \RW\ ^ \RW\. Repeating this argument
we get that \C^\ ^ \R^\ ^ \RW\ for 1 ^i ̂  a^-l. Then \C'\ = ^^1 \C^\ ^
E^71 1-R(01 = 1-R'I. However, \R'\ = \R\ - \RW\ > \C\ - \CW\ = |^|, -which is a

contradiction. This proves that |C'(°)[ ̂  \R^\ (and hence that \C'\ ^ \R'\).
Next we prove (2). As C is strongly stable, it follows that AC'('-1) C C^ for

l^i<ai-l. HenceAC'=U^l^-lC'(t)u^l-lAC'(a'-l), so|AC'|= |C"|+|AC'(al-l)|.
Similarly \AR\ = \R'\ + \AR^-1)\. Since we already know that \C'\ ^ \R'\, it will be
enough to prove that |AC(al-l)| ^ |AJ?(a'-l)|. By the induction hypothesis this will in
turn follow if |(7(al-l)| ^ |^(al-l)|. Assume on the contrary that |C'(al-l)| < |^(al-l)[.
Since |C"| ̂  \R'\ it follows that there exists a f ^ 1 such that \C^\ > \RW\. Applying
Lemmas 3. 1 and 3. 2 again we see as before that there exists an initial rev-lex segment
R3R with the properties that \RW\ < \R^\+1 and A^(') = R(i+1) for < ^z ̂  ai-2.
Then |C'(t)| > \R^\ and by the induction hypothesis we conclude as in the proof of
part (1) that \C^\ ^ \R(')\ ^ \RW\ for r <i ^ a, -l. But this contradicts our
assumption that |C'(al-l)| < |^(ai-l)|, so |C(al-l)j > [J?(ai-l)|, which proves (2).

Finally, we prove (3). We have that \C'\ + |AC'(ai-l)| = |A(7| = |AA| = \K\ +
|A7?^-1)|. Since \C'\ > \R'\ and |AC'^-1)| ^ |A7?(a'-l)|, it follows that \C'\ = |^/|.
Thus |C'(°)| = |C'| - \C'\ = \R\ - \R'\ = \RW\, which proves (3). D

Proof of Theorem 2. 1. Let C, RC Sa be the unique sets of monomials such that the
image of C (resp. R} in SdfV (resp. 5'^/-L) forms a basis of Sd/V (resp. ^/Z). It is
easily seen that if we reverse the order of the variables, x^, < a;n_i < ... < a;i, then
C becomes strongly stable and R becomes an initial rev-lex segment. Therefore (1)
follows from Theorem 2. 2 (1).

Since (2) and (3) are easily seen to be true when n = 1, we can use induction to
prove them. So let ra > 1 and assume we have already proved (2) and (3) for n - 1. We
have that V is strongly stable, L is an initial lex-segment in §d, and dim V > dim Z.
Then the induction hypothesis implies that dimVSi ^ dimZ^i. Thus dimy5'i =
dimV.S'i + dim V ^ dimLSi + dimL = dimLSi, which proves (2).

To prove (3), note that liK C Sd'is a, vector space generated by an initial lex-
segment such that dim ̂  = dim V, then K 3 L, so dimV^i > dim ̂ 5i ^ dimZ^i.
This implies that dimVSi = dimKSi = dimLSi, so by the induction hypothesis
dimy5'2 = dimKS-i. Since KSi and LSi are both generated by initial lex-segments in
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Sd+i, it also follows that KSi = LSi, so Ar5'2 = LS^. Therefore dim V^ = dimLS-i.

We have that VS^ = VS^ C XnVSy and LS^ = LS^ © .En2.5'i, so

dimVSz = dimVS^ + dimVSi = dimL^z + dimLSi = dim 152,

which proves (3). D
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