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Abstract. Let Sn be the symmetric group and let Hn be the corresponding Iwahori-
Hecke algebra. Let 7^ = (l, 2,..., r) be the r-cycle in Sr and for a composition

X Siftf ^ i^n Let T.-lfMP- = (^1, ^2,..., ^) of n let 7/. = 7^i x ... x 7^  ^, x... x5^ C 5n. Let T^
be the standard basis element of the Iwahori-Hecke algebra corresponding to 7^. Let
Ltt .all<^. '^/t-l:)e t^le matrices describing the actions of the element; J\ on Jfn by left
multiplication and right multiplication respectively. We give an explicit formula for
Tr(L^Ry) as a weighted sum over the nonnegative integer matrices with row sums fi
and column sums v. This gives an explicit determination of the bitrace of the regular
representation of the Iwahori-Hecke algebra of type A. We derive several corollaries
of our main theorem and give interpretations of the value Tr{L^Ry) in terms of inner
products of symmetric functions, inner products on Iwahori-Hecke algebras, and the
Robinson-Schensted-Knuth insertion algorithm.

Resume. Soit Sn Ie groupe symetrique et Hn 1'algebre d'lwahori-Hecke corre-
spondaate. Soit 7^ = (l, 2,..., r) Ie r-cycle de Sr et pour toute composition p. =
(^1, ^2,..., ^) de n soit 7^ =7^ x . .-x 7^   5'^ x ... ^n C Sn. Salt T^
1'element de la base standard de 1'algebre d'lwahori-Hecke qui correspond a 7^. Soit
L,, (resp ^) la matrice de 1'action de T^u sur Hn par la multiplication a gauche
(resp. a droite). On donne une formule explicite pour Tr{L^R^) comme somme pon-
deree sur les matrices a coefficients entiers positlfs dont les sommes par ligne et par
colonne sont p, et v respectivement. Ceci fournit une formule explicite pour la bi-
trace de la representation reguliere d'une algebre d'lwahori-Hecke de type A. On
obtient plusieurs corollaires de ce resultat principal et on donne une interpretation
de Tr(L^R^) en termes de produits internes de fonctlons symetriques, de produits
mternes sur des algebres d'lwahori-Hecke, et de 1'algorithme d'insertion de Robinson-
Schensted-Knuth.
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1. The bitrace of the regular representation ofUn{q)

We use the notation A |= n to indicate that A is a composition of n; that is
A == (A1'A2,... ) where the parts, A,, are nonnegative for all z and ̂ , A, = n. We
write A I- nifAis a partition of n, i.e., Ai ^^3^ ... > \e. The length ̂ (A) is
the number of nonzero parts of \. If A = (A:, Az, .7. , A^)~and ̂  == (^1, ^2,. -v. ,^)
aj'e. compositions such that xi ̂  ^ for 1 <i ̂ £ then we write A C p, and denote
their difference or skew shape by /^/A. In general we adopt the notatTon of [Mac] for
partitions and symmetric functions.

Let Sn denote the symmetric group on {1, 2,... ,n}, and let 9   C such that
q ^0 and q is not a root of unity. The Iwahori-Hecke algebra ̂ n(g) corresponding
to Sn is the algebra over C given by generators 1, 'Ti, Tz, .^., Tn-i"and relations

T, r, =T,-T., if|, -j|>i,
TiTi+iTi = T, +i'T, T, 4. i, for 1 <, i <n-2,

T? == (g - 1)T. + g, for 1 ^z <n-l.
(1. 1)

Let Si = (i i + 1) e Sn denote the simple transposition that exchanges i and i + 1.
Given a reduced word w = Si, s^ . . . Si,   Sn, let T^ = T,-^,, . .. T^   'Hn{q). The
element Ty, is well-defined (independent of choice of the reduced word for w). The
elements Tu,, w 6 5'n, form a basis of %n(g).

The irreducible representations of ̂ ^(g) are labeled by the partitions A I- n,
and their traces ̂ ^ are thejrreducible characters of U^q). A character of Hn(q) is
a linear map x--Hn(q) -^ C which satisfies ̂ (a6) = ^(ba) for all a, & 6 ^n(g).vlet
7r = (1, 2,... , r)   5'r in cycle notation and for a composition p. = (/xi, ... , /z<) |= n
define ̂  =^x ... x^^S^x---xS^. Any character of ̂ ^(g)'is completely
determined by its values on the elements T^, ̂  h n (see [Ca] and [Ral]).

The bitrace

Let x, y ^ Sn and define

btr(T,, r, )= ̂ T^Ty\^
Z^Sn

(1. 2)

where T^Ty\T, denotes thecoefficient of the basis element T^ when T^Ty is ex-
panded in terms of the basis Tw, w   ̂ . If x ^ Sn let L^ and R^ denote the linear
transformations of-H^(g) induced by the action of T., on ̂ ^(g) by "left multliplication
and by right multiplication, respectively. If a;, y   Sn then £., and I?y commute and

btr(T,, Ty)=Tr(L^). (1. 3)

Left and right multiplication make Hn(q') into a bimodule and, by double cen-
tralizer theory, we have

nn (q)^QH^0H\
Al-n

- 266 -



BlTRACES AND SYMMETRIC FUNCTIONS

as^n(9)-bimodules, where H^ is the irreducible left ̂ n(g)-module labeled by A and
Hx is the irreducible right 'Hn(g)-module labeled by X. Taking traces on both sides
of this identity gives

btr(T,, r, )=^^(T, )^(r, ). (1.4)
Al-n

This formula is an Hn(q) analogue of the second orthogonality relation for the irre-
ducible characters of the symmetric group Sn.

Keeping in mind that any character of 'Hn(g) is completely determined by its
values on the elements T^ , /uh- n, we define

btr(^^)==btr(T^, T^)

for any two compositions fi, i/ [= n.

(1. 5)

An inner product on 'Hn(q)

Suppose that g is a prime power and let F, be the finite field with q elements. Let
B be the subgroup of the general linear group G'£n(F, ) consisting of upper triangular
matrices Let igbe the G'Ln(F, )-modufe which as a vector space is the linear span of
the cosets in G/B and where the_G'-action on cosets is by left multiplication. There
is a natural action of 'Hn(g) on 1^ and

^(g)^Endo(lg).

Let w   5n. Then the trace of the action of Ty, on 1J is given by the formula

[n]!, if w is the
/W;=:10/' otherwise';'"""""'

where M = l+q+g2+... + qn-i and [nj! = [n][n- 1] ... [2][1]. Define a bilinear
form on "Hn(g) by

(a, b) = ^tr{ab), fora, 6 ^(g).
Note that the inner product (a, &) is the coefficient of 1 in the product ab. The dual
basis to the basis Ty,, w   Sn, with respect to the inner product (, ) is the basis
q-£(w)T^, w^Sn. ' * --,---",

Very general arguments [CR] 9. 17, which work for any semisimple algebra, com-
bined with the computation of the generic degrees in type A ([Ca2] 13. 5 or [Hfl 3.4.
will show that

E X\T^(C^T^)=S^q"'WH^\
w S.

(1. 6)

where

^)=n/. (. ), ^(, )=n!^^, "(A) = f;(z - I)A- ^
r A ^ 1-9 ' ' ^
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ifa;   A is the box in position {i, j) in A then h{x) == A,-+A^. -z -j + 1 is the hook
length at x. Formula (1. 6) is the 'Hn(g)-analogue of the first orthogonality relation
for the irreducible characters of the symmetric group Sn.

For any element a; 6 5'n define

[T. ]= ̂ T^q-^T^-..
w 5n

This is some sort of analogue of a conjugacy class sum in the group algebra of Sn. If
x, y^Sn,

{T. ATy})= ̂ {T., T^g-<(w)T, -. )= ̂  ^-^tr^Ar^-.)
w S» ^S^ li"JI;

= Y, {T^Ty, q-t^T^}= ^ T,T^|
" Sn W 5n

and thus

<T,, [T, ]) = {[T, ], T, ) = btr(T,, T, ). (1. 7)

Specializing q to 1

For each ̂  ^ n the character x^(T^ ) is a polynomial in q with integer coefficients
and

^(^)1, =1=A),
where x\fJ. ) denotes the irreducible character of the symmetric group Sn correspond-
ing to the partition A evaluated at a permutation of cycle type p.. It follows from
(1.4) and the second orthogonality relation for the characters of the symmetric group
that

btr(^, i/)[^ = ^^A(^A(^) = ^^^ where ̂  = lmimi!2m=m2! . ..
Ahn

if p. is the partition /^ = (lmi2m2 . . . ).

Symmetric functions

Let a; i ^2,... , a;n be commuting variables. Define qo(x^, x-2,... , Xn;q) == 1 and
for r > 0, define 9r(a;i, a-2,..., a-n; g) by the generating function

1 - XiZ

nr-^=l+('-l)E^^r.
FOLa composition ^ = (/^1^2,..., ^), define q^x;q) = q^q^-'-q^. From [Ral],
[VK], [KW] we know that \f ^'^ n^/7 ~"~" "v~"/ ^1^2 '""" ""^ l"a'AJ'

^.^}=^X^T^)sx{x),
Al-n

(1. 8)
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where s\{x) is the Schur function corresponding to \, see [Mac]. There is a standard
inner product on the ring of symmetric functions given by {s^, Sv} = 8y.v for all
partitions p., v. It follows from (1. 8) and (1.4) that

btr(/^, z/) = {qtt(x;q), q^{x;q)}. (1. 9)

2. The main theorem and corollaries

The following theorem is the main result of this paper, its proof is outlined in
Section 3.

Theorem 2. 1. Let ̂ x, i/[= n and iet/x = (/^i,.. ., ^) and !/= (i/i,... , i/m). Then

btr(/., ̂ ) = (g - 1)-<(^)-<(1/) ̂  wt(M),
M

where the sum is over all£xm nonnegative integer matrices with row sums /^i,... , ^i<,
and column, sums vi,..., i/mi and

wt(M)= H (g-l)2M.
.c -P(M)

r2i

where P{M) is the multiset of nonzero entries x in the matrix M and [.r]g2 = 1 +
g2+94+-.. +g2(2;-1).

Corollary 2.2. The trace of the regular representation of the Iwahori-Hecke algebra
'Hn(g) is gives by

Tr(T^) = (9 - 1)"~<('1) -T-T--T, ^ ^ compositions ̂  = (^i,... , ^<) h= ".
pi:/^2; . '. f^e'.

For a non-negative integer r, define the symmetric function tr by the formula

(1 - qxiz}2
.
r TT I1 - 9a:<-

s<^,)/=n^_^^^, (2. 3)

and for a composition /^ == (^1, ^25- .. , ^<) define <^(a;; g) = t^t^y ... t^.

Corollary 2. 4. Jf^, i/[= n, tiien

btr(^)=. (q-l)-t^-eWt^q)\^
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where t^(x;q)\^ denotes the coe&cient of the monomial symmetric function m^ i:
the symmetric function t^.

in

Corollary 2.5. Let ̂ , v\=n and let q^, and t^ be the symmetric functions defined
in (1. 8) and (2. 3), respectively. Then

{<l^q\q^x;q)} = (g - l)-^)-^")^^; g)^^(^^

where /i^(a;) is the homogeneous symmetric function and (, } is the inner product on
symmetric functions that makes the Scbur functions orthoiiormal.

Specializations of {q^, g;,)

Define go{x;q, t) = 1 and, for positive integers r, define symmetric functions
qr(x;q, t) by the formula

(, -<)E^<. y=nf^.
r>0

(2. 6)

For a composition ^_== (^1, ^2,. .. , ^), define ̂ (a;; g, ^) = q^q^ ... ̂ . These sym-
metric functions differ from the symmetric functions ^ (a;; g) only by a change in
normalization. On the other hand they have the advantage that one can specialize
either q or t or both as follows:

(a) q^x;q, 0) = q^\~e(^h,, {x), where h,, is the homogeneous symmetric function,
(b) q^x;0, t) = (-t)W-e(it)e,, (x), where e^ is the elementary symmetric function,
(c) q^x; g, q) = qitt}~£(ii)p,, {x), where p^ is the power symmetric function.

The combinatorics of the symmetric functions q^(x; q, t) is studied in depth in [RRWj.
The appropriate modifications to Theorem 2. 1 give

{q^q.} =(q- t)~t(tt)~e(v)^^(M), where wt(M) = JJ(g - <)2*2(z-l)H^, -2,
M x

where the sum is over all nonnegative integer matrices M with row sums ^ and
column sums i/, the product is over all nonzero entries x in the matrix M. and
<2('-1)M,., -. 

= t2(x-1) + q2 t2(x-2) +... + q2 (x-^t2 +g2(J--lVByspedalizingg 'and^
we have new proofs of the following well known formulas ([Mac] I (6. 6) (iv), (6. 7)(ii),

). 7a) (e^, e^) is the number of nonnegative integer matrices with row sums /i and
column sums i/,

{h^, hv) is the number of nonnegative integer matrices with row sums p. and
column sums v,

(2. 7c) {p,^p^ = 8^z^, where 2^ = lmlmi!2m2m2! . . . if ̂  is the partition u =
>m2 . . .'
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The adjoint of multiplication by qr

If / is a symmetric function define f-L to be the adjoint of multiplicatioa by /,
with respect to the inner product {, }, i. e.

{f9i ,92} == {gi, f gi) for all symmetric functions ̂ i, 52.

In Section 3 we will prove the following recursion rule for the bitrace.

Proposition 2.8. Let ̂ , v^=n and t/ = (^,..., ̂ ). T^ezi

btr(p, i.) = ^(q-iy(ot'^btr^/a^t)btr(a, ^))
a

where the sum is over all compositions a \= ^ such that are a C y and s(a. u} =
Card({fc|0<a, <^}). ~ . ' -_ ̂ ---, -"

It follows from Theorem 2. 1 that ifa = (ai,... , a^) is a composition of n then

btr(a, (n))=(g-l/(°)-^[^.
o.-^O

Combining this formula with Proposition 2. 8 and 1.9 gives the following corollary,
where we have done the necessary modifications to use ̂  instead of q,,.

Corollary 2.9. Let r be a positive integer and let fi be a composition. Let q^x; q, t)
be the symmetric function defined in (2. 6) and, if a is a composition contained in fi,
let s(a, fJi) be as given in. Proposition 2. 8 Then

9^^ = ^ /(o'^)^/a, wAere /(a, ^) = (g-^<(°)-i+s(a, /z) JJ <2(ai-l)[a, |^(-2.
al=r a7^0

By specializing q and t we get the following results:
(a) e,Le^=^^e^/^,
(b)/lrL^=Eat=r^/a, and
(c) P^~Pti = 2-/x2;i71Pi/, if r is a part of p, and z/ is the partition obtained by

removing one part of size r from p..

The result in (c) is well known, see [Mac] I §5 Ex 3c and the results in (a) and (b)
can also be deduced directly from (2. 7a) and (2. 7b), above.
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3. A Recurrence Relation for the Bitrace.

The Roichman formula

The starting point for the proof of our main result is a recent formula of Y.
Roichman [Ro] which expresses the irreducible character of the Iwahori-Hecke algebra
as a weighted sum over standard tableaux. Let /-(, A I- n be partitions of n and let Q
be a standard tableau of shape A. Then the p. -Roichman weight of Q is

n

rwt^(Q) = JJ /^(i, Q) where 5(yu) = {^i +/^2+... +^J 1 ^ r ^ ^(^)}, and
«=l

ieBw

-1, ifi + 1 is southwest of i in Q,
a. 0} = I °' i{ i +_1 is nol'theast oftin Q, i+1 ̂  B{p.},

"tv"' ̂ 7 ~ ) and i +2 is southwest of i + 1 in Q,
g, otherwise.

In the definition of the Roichman weight our notations for partitions and their Ferrers
diagrams are as in [Mac], "northeast" means weakly north and strictly east, and
southwest" means strictly south and weakly west.

Theorem 3. 1. [Ro] If\\-n and ̂  \=n, then

^(T-rJ=E^(Q)
Q

where ̂  is the irreducible character of Hn{q) indexed by the partition X and the
sum is taken over all standard tableaux Q of shape X.

An elementary proof of (the type A case) of Roichman's theorem was given in
[Ra2]. One of the ideas of [Ra2] was to convert the Roichman weight to a weight
on sequences as follows. A sequence wi, W2,... , Wr of elements of {1, 2,..., n} has
weight

1, ifr = 1 or the sequence is empty;
Wt(u;i, W2,..., W^) == <{ (-l)t-l^-^ if ̂  <^ <... <U7t>Wt+i->'... >Wr;

0, otherwise.

? ̂  ,= (^l'^2'-.., A<) is a composition of n and w   5'n isa permutation, de-
fine (w, A) to be the injective A-tableau obtained by filling in the boxes of A with
w(l), w(2),..., w(n) from left-to-right and top-to-bottom. Define

wt\(w) = the product of the weights of the rows of (w, A) and
wtA(w) = wt), {w~1).

- 272 -



BlTRACES AND SYMMETRIC FUNCTIONS

For w   5n, write w = [wi, u;2,... ,Wn] if w(i) == w, for each K, i < n. IfA = (4, 3, 2)
and w = [2, 7, 5, 1, 9, 8, 3, 4, 6], then w-1 = [4, 1, 7, 8, 3, 9, 2, 6, 5],

275
(w, A) = 9 8 3

4 6
(w-\A) =

4

3

6

1

9

5

7

2

wtA(w) = (-g2)(g2)(_^ ^ ^4^ ̂ j wtA(w) = 0(-g)g = 0.
The connection between this definition and the Roichman weight of a tableaux

Q is via Robinson-Schensted-Knuth (RSK) column insertion. (The original references
for the RSK insertion scheme are [Sz], [Sch] ajid [Knj; for an expository treatment see
[Sa] ) Applying RSK insertion on the sequence w produces a pair (P, Q) of standard
tableaux of the same shape A I- n, where P is the result of insertion and Q is the
so-called "recording tableau."

(a) RSK column insertion is a bijection between Sn and the set of all pairs of standard
tableaux (P, Q) having the same shape \\- n.

(b) If applying RSK insertion to w e Sn produces the pair (P, Q) then applying RSK
insertion to w-l produces {Q, P) ([Scii], [Sa]).

(c) We have rwt^(Q) = wt/, (w), where Q is the recording tableau produced by
column insertion of the sequence w = [w^,... , Wn} (cf. [Ra2]).
The following lemma uses Roichman's result and RSK insertion to write the

bitrace in terms of weights on symmetric group elements. We use this reformulation
to prove the recurrence relation for btr(/x, !/).

Lemma 3.2. If ,2, i/ |= n then btr^v) = ^ w^(w)wtl/(w).
W S»

Outline of Proof of Theorem 2.1

Let Cn denote the set of compositions of n. For (w, yu)   5'n x Cn, let (w, A) e
5'n-m x Cn-m be the mjective A-tableau obtained by deleting {n - m + 1,..., n}
from (w, ^) and left justifying the resulting tableau. Let (w/w, ^/A) be the dia-
gram obtained by deleting {1, 2,... , n - m} from (w, fJi). Reading 'the elements of

((w/w) /^/A) from left to right and top to bottom, we can view w/w as a permu-
tation in the symmetric group 5^ on {n -m+ l, n -m+ 2,... ', n}. We write
?u;/f,w^^w;^^w/w';u/A^- _AS an examPle. let m= 6, // == (4, 3, 2, 2), and w =
[2, 7, 6, 1, 9, 8, 3, 11, 10, 4, 5]   <Sii. Then the deletion of {6, 7, 8, 9, 10, 11} from

2761
9 8

(w^)=n 10 is ((w, A), (w/w, ^/A)),

where

(w, A)=

2 1
3

4 5

and {w/w, fJ, /\) =

7

9 8
11 10
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Thus, w = [2, 1, 3, 4, 5]   <?s, A = (2, 1, 0, 2), and w/w = [7, 6, 9, 8, 11, 10]   <?6.

Lemma 3.3. Assume that (w, ^)^-((w, A), (w/w, /z/A)) denotes the deletion of
{n-m+l,..., n}. Jfwt^(w) 7^0, tAen
(a) In each row of (w, /^), the elements from {n-m+1,..., n} appear in a contiguous

block;
(b) wt\(w') ^ 0 (thus the rows of (w, A) form up-down sequences).
(c) wt^/^w/w) ̂  0 (thus the rows of(w/w, /^/A) form up-down sequences).
(d) In each row of (w, p), the elements from {n - m 4- l,..., n} appear either im-

naediately to the left or immediately to the right of the largest element from
{l, 2,..., n-m}.

In Lemma 3.3 (d), an insertion to the left of the largest element is called a left
insertion and an insertion to the right of the largest element is called a right insertion.
Each (w, ^) -4 ((w, A), (w/w, ^/A)) with wt^(w) 7^ 0 gives rise to a unique sequence
-^ = {Iijh, ---, It(ii)), where for each nonempty row k of fJ, we have

T, ifAfc =0or Afc =/^fc,
Jjk = <j L, if in row k a left insertion takes ((w, A), (w/w, ju/A)) to (w, /u),

R, if in row k a right insertion takes ((w, A), (w/w, ^/A)) to (w, /^).

In our example the insertion sequence is J = (R, L, T, T).

Lemma 3.4. Let p,, i/ \= n with v = (1/1,..., ^). Let v' = (t/i,... , i/^_i) and
m = i/i. Assume that w^(w) -^ 0 and Jet

(w, /, )-^((w, A), (w/w, ^/A), J)

denote the deletion of{n-m+1,... , n} from (w, /^). Then
(a) wt^w) = (~l)R(I)qL ^wt^w)wt, ^(w/w),

where L(I) is the number ofLs in the insertion sequence I and R{I} is the number
of Rs in I, and

(b) wtv{w) = wtv\w)wt(m\w/w).

Using Lemmas 3. 2 and 3.4 we prove the following recurrence relation for the
bitrace btr(/x, i/) by deleting {n- i/< + 1,... , n} from each w 6 Sn.

Proposition 3.5. Let/^, i/|= n, i/= (z/i,... , i/^) and i//= (z/i,... , i/^_i). Then

btr^^)= ^ {q-iy^^btr{\, ^btr^/\, ^))
^1=("-"<)

>.c^

where the sum is over all compositions X ofn-ve that are contained in p, and

s(X, ^) = Card{{k | 0< Afe < /^k}).
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We then give the following closed formulas for the bitrace in the special case
where v consists of a single part.

Proposition 3.6.

(a) btr((n), (n))=[n]^.
(b) btr(a, (n)) = (g-l)<(")-i JJ IQ, ]^, if a is fAe composi^OD a = (01, 02,..., ^m).

a. 7'0

Theorem 2. 1 is then proved using Propositions 3. 4 and 3. 5.
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