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abstract:

In this paper we give two infinite families of explicit exact formulas that generalize
Jacobi’s (1829) 4 and 8 squares identities to 4n? or 4n(n + 1) squares, respectively,
without using cusp forms. Our 24 squares identity leads to a different formula for
Ramanujan’s tau function 7(n), when n is odd. These results arise in the setting
of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turdnian determi-
nants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula
for determinants, and Schur functions. We have also obtained many additional in-
finite families of identities in this same setting that are analogous to the 7-function
identities in Appendix I of Macdonald (1972). A special case of our methods yields a
proof of the two Kac—Wakimoto (1994) conjectured identities involving representing a
positive integer by sums of 4n? or 4n(n + 1) triangular numbers, respectively. Our 16
and 24 squares identities were originally obtained via multiple basic hypergeometric
series, Gustafson’s Cy nonterminating ¢¢s summation theorem, and Andrews’ basic
hypergeometric series proof of Jacobi’s 4 and 8 squares identities. We have (else-
where) applied symmetry and Schur function techniques to this original approach to
prove the existence of similar infinite families of sums of squares identities for n? or
n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not
the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916),
Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto (1994), and many
others.

résumé:

Dans ce travail on présente deux familles infinies de formules exactes qui généralisent
les identités 3 4 (resp. 8) carrés de Jacobi (1829) en identités & 4n? (resp. 4n(n+1))
carrés, sans utiliser des formes cuspoides. Notre identité & 24 carrés nous donne
une formule différente de la formule de Ramanujan pour la fonction 7(n) pour n
impair. Ces résultats apparaissent dans le cadre des fonctions elliptiques de Jacobi,
fractions continues de Jacobi, déterminants de Hankel (ou Turén), séries de Fourier,
séries de Lambert, principe d’inclusion/exclusion, développeme t de déterminants
selon Laplace et fonctions de Schur. Dans ce cadre nous avons également obtenu
plusieurs familles supplémentaires d’identités qui correspondent a des identités pour
1a fonction 7 dans I'appendice I de Macdonald (1972). Dans un cas particulier notre
méthode démontre les deux identités traitant les représentations d’un entier positif
par une somme de 4n? (resp 4n(n + 1)) nombres triangulaires, conjecturées par Kac-
Wakimoto en 1994. Nos identités 3 16 et & 24 carrés ont d’abord été obtenues par
les séries hypergéométriques basiques multiples, le théoréme de sommation pour une
série g5 non-terminante de type Cy de Gustafson, et la démonstration d’Andrews
utilisant des séries hypergéométriques basiques des identités & 4 et 3 8 carrés de
Jacobi. Nous avons employé (ailleurs) des techniques de symétrie et de fonctions
de Schur 3 cette approche originale afin de démontrer I'existence de familles infinies
semblables d’identités & n? et & n(n + 1) carrés. Nos identités 3 plus de 8 carrés
ne sont pas les mémes que les formules de Mathews (1895), Glaisher (1907), Ra-
manujan (1916), Mordell (1917,1919), Hardy (1918,1920), Kac et Wakimoto (1994)
et beaucoup d’autres.

1. INTRODUCTION

In this paper we give infinite families of explicit exact formulas involving either
squares or triangular numbers, two of which generalize Jacobi’s [27] 4 and 8 squares
identities to 4n? or 4n(n + 1) squares, respectively, without using cusp forms. Our
24 squares identity leads to a different formula for Ramanujan’s [56] tau function
7(n), when n is odd. These results arise in the setting of Jacobi elliptic functions,
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Jacobi continued fractions, Hankel or Turdnian determinants, Fourier series, Lam-
bert series, inclusion/exclusion, Laplace expansion formula for determinants, and
Schur functions. This background material is contained in [5, 6, 18, 19, 25-29, 33,
38, 59, 60, 62, 70, 71]. Further details of the proofs of all our infinite families of
identities appear in [46, 47]. Some of this work has already been announced in [44].

The problem of representing an integer as a sum of squares of integers has had
a long and interesting history, which is surveyed in [20] and chapters 6-9 of [9].
The review article [63] presents many questions connected with representations
of integers as sums of squares. Direct applications of sums of squares to lattice
point problems and crystallography can be found in [17]. One such example is the
computation of the constant Zy that occurs in the evaluation of a certain Epstein
zeta function, needed in the study of the stability of rare gas crystals, and in that
of the so-called Madelung constants of ionic salts.

The s squares problem is to count the number r,(n) of integer solutions (Z1,---,%4)
of the diophantine equation

itetal=n, 1)

in which changing the sign or order of the z;’s give distinct solutions.

Diophantus (325-409 A.D.) knew that no integer of the form 4n — 1 is a sum
of two squares. Girard conjectured in 1632 that n is a sum of two squares if and
only if all prime divisors g of n with ¢ = 3 (mod 4) occur in 7 to an even power.
Fermat in 1641 gave an “irrefutable proof” of this conjecture. Euler gave the first
known proof in 1749. Early explicit formulas for ro(n) were given by Legendre in
1798 and Gauss in 1801. It appears that Diophantus was aware that all positive
integers are sums of four integral squares. Bachet conjectured this result in 1621,
and Lagrange gave the first proof in 1770.

Jacobi in his famous Fundamenta Nova [27] of 1829 introduced elliptic and theta
functions, and utilized them as tools in the study of (1). Motivated by Euler’s work

on 4 squares, Jacobi knew that the number r,(n) of integer solutions of (1) was
also determined by

93(0,—q)° =1+ Y (—1)"r,(n)q", (2)
n=1

where 93(0, ¢) is the z = 0 case of the theta function 93(z2, ) in [70, pp. 464)] given
by

(e o]
930,¢) = > ¢ (3)
j=—o0
Jacobi then used his theory of elliptic and theta functions to derive remarkable
identities for the s = 2, 4,6, 8 cases of 93(0, —¢)*. He immediately obtained elegant
explicit formulas for r,(n), where s = 2, 4,6, 8.
We recall Jacobi’s identities for s = 4 and 8 in

Theorem 1.1 (Jacobi).

%500 =1-83 -0 —1 8y (Tl (@
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and

93(0 —q)8—1+162( 1)r

-—1+162 > (-1)4d*]q™.  (5)

n=1 d|n,d>0
Consequently, we have
ran)=8» d and rg(n) =16y (-1)"+4d°, (6)
dlr:.;;)l) d|n,d>0
respectively.
In general it is true that
T25(n) = d25(n) + e25(n), (7

where d25(n) is a divisor function and eg,(n) is a function of order substantially lower
than that of dz5(n). If 2s = 2,4,6,8, then ey;(n) = 0, and (7) becomes Jacobi’s
formulas for r54(n), including (6). On the other hand, if 2s > 8 then e, (n) is
never 0. The function eys(n) is the coefficient of g™ in a suitable “cusp form”. The
difficulties of computing (7), and especially the non-dominate term ez4(n), increase
rapidly with 2s. The modular function approach to (7) and the cusp form e, (n)
is discussed in [59, pp. 241-244]. For 2s > 8 modular function methods such as
those in [21, 23, 24, 36, 53, 58], or the more classical elliptic function approach
of [7, 31, 32], are used to determine general formulas for d,(n) and ez, (n) in (7).
Explicit, exact examples of (7) have been worked out for 2 < 2s < 32. Similarly,
explicit formulas for r,(n) have been found for (odd) s < 32. Alternate, elementary
approaches to sums of squares formulas can be found in [39, 61, 64-67].

We next consider classical analogs of (4) and (5) corresponding to the s = 8 and
12 cases of (7).

Glaisher [15, pp. 210] utilized elliptic function methods, rather than modular
functions, to prove

Theorem 1.2 (Glaisher).

93(0,—q)'® =1+ £ (-1)™m]gmw: (8a)
y1,m121
- 32 9(g:9)%, (%)%, (8b)
where we have
(@90 = [J(1—4q (9)
r>1

Glaisher took the coefficient of ¢ to obtain r15(n). The same formula appears
in [59, Eqn. (7.4.32), pp. 242].

In order to find r24(n), Ramanujan [56, Entry 7, table VI], see also [59, Eqn.
(7.4.37), pp. 243], first proved
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Theorem 1.3 (Ramanujan). Let (g;q). be defined by (9). Then

93(0,-)* =1+ &S (1™ mitgmu (102)
y1,m12>1
4 24
- B (690 - B P (% P)2. (10b)

One of the main motivations for this paper was to generalize Theorem 1.1 to 4n2
or 4n(n+ 1) squares, respectively, without using cusp forms such as (8b) and (10b),
while still utilizing just sums of products of at most n Lambert series similar to
either (4) or (5), respectively. This is done in Theorems 2.2 and 2.4 below. Here,
we state the n = 2 cases, which determine different formulas for 16 and 24 squares.

Theorem 1.4.

93(0,—¢q)* =1 - L2 (U +Us + Us) + %8 (0Us - U2), (11)
where
) rog" )
—_ e r—1 — d+n/d
Us=Uh(@ =) (-0 ;r==2[ S (-n* el (1)
r=1 n=1 d]n,d>0

= E (_1)y1+m1miqm1y1'
N ,m121

Analogous to Theorem 1.3, we have

Theorem 1.5.
93(0, —q)%* =1+ 18 (17G; + 8Gs + 2G7) + 52 (G3G7 - G?), (13)
where
s e = r ,rsqr _ = _1\d n
Gy =G,(g) =) (-1) =g =2 2 Die]q (14)
r=1 n=1 d|n,d>0

= Y (-L)™migm,

Yi,m1 21

An analysis of (10b) depends upon Ramanujan’s [56] tau function 7(n) defined

by
4592 =Y m(n)g". (15)
n=1

For example, 7(1) = 1, 7(2) = —24, 7(3) = 252, 7(4) = —1472, 7(5) = 4830,
7(6) = —6048, and 7(7) = —16744. Ramanujan [56, Eqn. (103)] conjectured, and
Mordell [52] proved that 7(n) is multiplicative.

In the case where n is an odd integer [in particular an odd prime], equating
(10a-b) and (13) yields two formulas for 7(n) that are different from Dyson’s [10]
formula. We first obtain
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Theorem 1.6. Let 7(n) be defined by (15) and let n be odd. Then
2597(n) = sz [17 - 69103(n) + 8 - 69105(n) +2 - 69107(n) — 9011(n)]

n—1
- %}i Z [Ug(m)ajz(n —-m)- ag(m)og(n - m)] ,
m=1
where
Ur('n) = z dr and O‘I(n) = Z (_1)ddr (17)
d|n,d>0 d|n,d>0

Remark. We can use (16) to compute 7(n) in < 6nlnn steps when n is an odd
integer. This may also be done in n2te steps by appealing to Euler’s infinite-
product-representation algorithm (EIPRA) [3, pp.104 ] applied to (g; q)24 in (15).

o0
A different simplification involving a power series formulation of (13) leads to

Theorem 1.7. Let 7(n) be defined by (15) and let n > 3 be odd. Then

2507(n) =& > (-1)%d" — 5% > (-1)%d® (17 + 84 + 2d°)

djn,d>0 d|n,d>0 (18a)
02

SR S (s mymy o — ) 3 1
mi>ma>1 V1, y221 (18b)
my+maS<n miy1+mey2=n

ged(my,ma)|n

Remark. The inner sum in (18b) counts the number of solutions (y3,y2) of the
classical linear diophantine equation m1y; + may2 = n. This relates (18a-b) to the
combinatorics in sections 4.6 and 4.7 of [62].

In Section 2 we present infinite families of explicit exact formulas that include
generalizations of Theorems 1.1, 1.4, and 1.5.

Our methods yield in [46-49] many additional infinite families of identities analo-
gous to the 7-function identities in Appendix I of Macdonald [37]. A special case of
our analysis gives a proof in [47] of the two Kac-Wakimoto [30] conjectured identi-
ties involving representing a positive integer by sums of 4n? or 4n(n+1) triangular
numbers, respectively. The n = 1 case gives the classical identities of Legendre [34].
See also [5, Eqns. (ii) and (iii), pp. 139].

Theorems 1.4 and 1.5 were originally obtained via multiple basic hypergeometric
series [35, 4043, 45, 50, 51] and Gustafson’s [22] C; nonterminating ¢¢s summation
theorem combined with Andrews’ [2] basic hypergeometric series proof of Jacobi’s
4 and 8 squares identities. We have in [48] applied symmetry and Schur function
techniques to this original approach to prove the existence of similar infinite families
of sums of squares identities for n? or n(n + 1) squares, respectively.

Our sums of more than 8 squares identities are not the same as the formulas of
Mathews [39], Glaisher [13-16], Sierpinski [61], Uspensky [64-66], Bulygin [7, 8],
Ramanujan [56], Mordell [53, 54], Hardy [23, 24], Bell [4], Estermann [11], Rankin
[57, 58], Lomadze [36], Walton [69], Walfisz [68], Ananda-Rau [1], van der Pol [55],
Kritzel [31, 32], Gundlach [21], and, Kac and Wakimoto [30].
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2. THE 4n? AND 4n(n + 1) SQUARES IDENTITIES

In order to state our identities we first need the Bernoulli numbers B, defined
by

¢ =t
e ZOB,,;—!, for |t| < 2. (19)
n=

We also use the notation I, := {1,2,...,n}, ||| is the cardinality of the set S,
and det(M) is the determinant of the n x n matrix M.
The single Hankel determinant form of the 4n2 squares identity is

Theorem 2.1. Let 93(0,—q) be determined by (3), and let n = 1,2,3,---. We
then have
. . 2n—1
93(0,—¢)*" = {(—1)"22" 11 (T!)'l} - det(gris—1)1<r,5<n, (20)
r=1
with
gi '=Uzi_1 — ¢, (21)
where Uy;_; is determined by (12) and ¢; is defined by
) 2 _
C; = (_1)1-1(2*41:1_) : |BZil? for i = 172a 3’ R} (22)

with By; the Bernoulli numbers defined by (19).
The determinant sum form of the 4n? squares identity is
Theorem 2.2. Letn=1,2,3,---. Then

n 2n—-1
93(0,~)*"" =1+ > (=1)p22>"+» [T (r1)"? S det(My,5), (23)
p=1 r=1 0CSClIy

Isli=»

where 93(0, —q) is determined by (3), and M, s is the n X n matriz whose i-th row
18

Uzi-1,Uz(i+1)-1,"** s Uz(ign-1)-1, Hi€S and ¢, cipq,-- yCitn—1, if1 % S),

24
where Uy, is determined by (12), and c; is defined by (22), with Bs; the Bernoulli
numbers defined by (19).

The single Hankel determinant form of the 4n(n + 1) squares identity is

Theorem 2.3. Let 93(0,—q) be determined by (3), and let n = 1,2,3,---. We
then have
2n
93(0, —)*" ™+ = {22"’“” H(r!)“} ~det(gres-1)igrosn, (25
r=1
with
9i = Gaiy1 — a;, (26)

where Gyiy1 and a; := ¢4y are determined by (14) and (22), respectively.

The determinant sum form of the 4n(n + 1) squares identity is
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Theorem 2.4. Letn=1,2,3,---. Then

93(0, q)4"‘"+1>—1+2( Jjeeng’ +3"H(r')- > det(Mn,s),  (27)
P = e
=p

where 93(0, —q) is determined by (3), and M, s is the n X n matriz whose i-th row

is

Gai+1, Gait1)+1> * »Go(ign—1)41, 1 €S and a;,ai41, " ,Gitn-1, HiES,
(28)

where Gai41 and a; := ¢;41 are determined by (14) and (22), respectively.

After seeing an earlier version of this paper, Garvan [12] observed via modular
forms that (23) could be written as (20), and suggested the same be done for (27).
The paper [46] already contained Theorems 2.1 and 2.3, and many similar results.
We give some of these here in Theorems 2.3, 2.5, and 2.7. Garvan also conjectured
that the square of the series in (15) could be written as a 3 by 3 Hankel determinant
of classical Eisenstein series. This and similar results were subsequently proven in
section 9 of [46].

The analysis of the formulas for r4,2(IN) and r4n(n+1)(/N) obtained by taking
the coefficient of ¢/ in Theorems 2.2 and 2.4 is analogous to the formulas for
716(n) and r24(n) in [46]. The dominate terms for 74,2 (V) and r4p(n41)(V) arise
from the p = n terms in (23) and (27), respectively. The other terms are all of
a strictly decreasing lower order of magnitude. That is, the terms for r4,2(V)
and 74p(n+1) (V) corresponding to the p-th terms in (23) and (27) have orders of
magnitude N(4nP=2"~1) and N(4np=2p"+2p=1) respectively. The dominate p = n
cases are consistent with [20, Eqn. (9.20), pp. 122]. Note that this analysis does
not apply to the n =1 case of Theorem 2.2.

In order to state the next identity we need the Euler numbers E,, defined by

eZt 7 z% n for |t| < 7/2. (29)
n=
We next have the single Hankel determinant identity in
Theorem 2.5. Let 93(0,—q) be determined by (3), and let n = 1,2,3,- We
then have
. n—1
93(0,¢) "D 93(0, —¢)*" = {(—1)"22’1 H(QT)!'Z} - det(gr+s—1)1<r,s<ns (30)
r=1
with
9i = Rpi_2—b;, (31)
where Ry;_o and b; are defined by
o 2i-2 2r—1
. 0= Ro: s +1(2r—1)%q g
Roi—a = R21—2(q) = ;(-l)r 1+ q2r—1 2 for i = 1,23, (32)
and _
bi = (—1)1_1% . lEz,'._z‘, fori= 1, 2, 3, ey (33)

with Eg;_o the Euler numbers defined by (29).

The corresponding determinant sum identity is
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Theorem 2.6. Letn=1,2,3,---. Then

n n—1
93(0,9)"" D050, ~)*" =1+ Y (-1pp22 [ @12 3 det(Ma5), (34)
p:l r=1 9CSCIqn

lsli=p

where 93(0, —q) is determined by (3), and M, s is the n X n matriz whose i-th row
18

Rai—2, Ra(ia1)-2,* , Ra(ign—-1)=2, {4 €S and b;,biyy,--- ,biyn_y, ifi¢5,

(35)
where Ry;_» and b; are defined by (32) and (33), respectively, with Ey;_o the Euler
numbers defined by (29).

The next identities involve the z = 0 case of the theta function J2(2,q) in [70,
pp. 464], defined by

(o o)

92(0,q) == U1/’ (36)
J==—o0
We have
Theorem 2.7. Let 95(0,q) be defined by (36), and let n = 1,2,3,---. We then
have

2n-1

'192(01 Q)4n2 == {4n(n+1) H (T!)_l} : det(CZ(r-i-a—l)—l)lSr,sSnv (37)
r=1

and
2n
92(0, q1/2)4n(n+1) - {2n(4n+5) H(r!)—l} 'det(D2(r+3-1)+1)15r,8$'n1 (38)
r=1

where Cg;—1 and Do;ty are defined by

o .
2 —1 2i-1_2r—1 .
Cg,‘_] = Cgi-l(q) = Z ( 1= 32(21':11) ) for ¢ = 1, 2, 3, ey, (39)

r=1

and
2i+1 7

o

(3 .

D2’i+1 = D2’i+1(q) = E : 1 — qg.,.’ fori= 1’ 2,3,--- ) (40)
r=1

respectively.

Theorem 2.7 is the first step of our proof [47] of the Kac-Wakimoto conjectures.

We next utilize Schur functions sy (z, ... , zp) to rewrite Theorems 2.2, 2.4, and
2.6. Let A = (A1, A2,... ,Ar,...) bea partition of nonnegative integers in decreasing
order, Ay > Ap > --- > A.---, such that only finitely many of the )\; are nonzero.
The length £()) is the number of nonzero parts of .
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Given a partition A = (Ay,...,,) of length < p,

det(z;? 177

det(a ) )

sx(z) = sa(2yy... 4 2p) 1=

is the Schur function [38] corresponding to the partition A. (Here, det(a;;) denotes
the determinant of a p x p matrix with (%, j)-th entry a;;). The Schur function s a(z)
is a symmetric polynomial in z1,..., z, with nonnegative integer coefficients. We
typically have 1 < p < n.

We use Schur functions in (41) corresponding to the partitions A and v, with

A i=bpopy1=li+r—p and v, i= o —ji+r—p, forr=1,2,---,p, (42)
where the £, and j, are elements of the sets S and T, with
S={li<lr<- - <L} and  S:={lpy <--- < L,}, (43)

T={n<j<--<jp} and T:={jpu<--<ju}, (44
where S¢ := I,,-— S is the compliment of the set S. We also have

ZS)i=li+bl+- 44 and  B(T)i=ji+jat---+ip  (45)

Keeping in mind (41)-(45), symmetry and skew-symmetry arguments, row and
column operations, and the Laplace expansion formula [28, pp. 396-397] for a
determinant, we now rewrite Theorem 2.2 as

Theorem 2.8. Letn=1,2,3,---. Then

2n—-1

,‘93(0, _q)4n2 =1+i(_1)1722n2+n H (r!)—l Z (_1)y1+---+yﬂ (46)

V1o syp21
m1>ma>--S>mp>1

2
(SpmEEme gt mays T (m2 - m?2)

1<r<s<p

S(mamg-omp) Y (=1)EEHED) . det(D,,_, se pe)

0CS,TClIn
Isli=NTl=p

(mama - my) 204201 =45, (2 m2) s, (m3,... ,m2),

where ¥3(0, —q) is determined by (3), the sets S, S¢, T, T° are given by (43)-(44),

Z(S) and Z(T) by (45), the (n—p) X (n—p) matriz Dy _p see = [c(gp+,+,-p+,_1)] 1€rsCnmp?
where the c¢; are determined by (22), with the Bo; in (19), and sx and s, are the
Schur functions in (41), with the partitions \ and v given by (42).

We next rewrite Theorem 2.4 as
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Theorem 2.9. Letn=1,2,3,---. Then

n 2n
93(0, =)D =1 4 Jo(—1)rrgE B [ ()1 § (—qymattms

p=1 1 Y1reeesyp21 (47)
m]>ma>--S>mp>1

. qm1y1+"'+mp‘.‘lp (m1m2 v 57 Tnp)3 H (mg — nr;,g)2

1<r<s<p
Y (~L)EEED) . det(D,_p se re)
0CS,TClIn
ISI=0Tl=p
- (mymy - - my)2ati—ds, (m2 | ym2) s, (m3,... ,m2),

where the same assumptions hold as in Theorem 2.8, ezcept that the (n —p) x
(n — p) matriz D,,ep se e = [a(ep+"+jp+'_1)]1$r,35n—p’ where the a; := ¢;41 are
determined by (22).

We now rewrite Theorem 2.6 as
Theorem 2.10. Letn=1,2,3,---. Then

n n—1
193(0’ q)2n(n—1)193 (0, _q)znz =14+ Z 22n H (21,)!—2 Z (_1)%(p+m1+...+mp)
p=1 r=1 Y1reeesyp 21 (48)

my >m2>~-->mp21(odd)

miyi1+-+m 2 2)2
. q 1Y1 pYp H (mr — ms)

1<r<s<p
> (~)FOFED) . det(Dp_p se,7e)
0CS,TClIy
Isli=ITIl=p
: (m1m2 T mp)2£1+2j1—4sk(m§a sas 7m§) sl/(mi ks 1m12>)’

where the same assumptions hold as in Theorem 2.6, ezcept that the (n—p) % (n—p)
matric

Dn—p,Sc,Tc = [b(ep+r+jp+‘_1)] 1<r,s<n—p "’ (49)

where the b; are determined by (33), with the Eq;_ in (29).

We close this section with some comments about the above theorems.

In order to prove Theorem 2.2 we first compare the Fourier and Taylor series
expansions of the Jacobi elliptic function fi (u, k) := sc(u, k)dn(u, k), where k is the
modulus. An analysis similar to that in [5, 6, 71] leads to the relation Usyy,_; (—q)=
¢m+dm, form =1,2,3,---, where Uzn—1(—q) and ¢y, are defined by (12) and (22),
respectively, and d,, is given by d, = ((—1)™2™/22™+1) . (sd/c),(k?), where
z = 2F1(1/2,1/2;1;k?) = 2K(k)/x = 2K/, with K(k) = K the complete
elliptic integral of the first kind in [70, pp. 498] and (sd/c)., (k?) is the coefficient
of u>™~1/(2m — 1)! in the Taylor series expansion of f;(u, k) about u = 0.
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An inclusion/exclusion argument then reduces the ¢ — —gq case of (23) to find-
ing suitable product formulas for the n x n Hankel determinants det(d;4;-1) and
det(c;4+j-1). Row and column operations immediately imply that

det(diyj1) = (22 (=1)" /2" +") det((sd/)i g1 (K?)). (50)

From Theorem 7.9 of [6, pp.26] we have z = 93(0, )2, where ¢ = exp(—7K (V1 — k2) /K (k)).
2,
Setting z = 93(0,¢)? in (50) and then taking ¢ — —gq produces the 93(0,—¢)*™" in
(23).
The proof of Theorem 2.2 is complete once we show that

2n-1 2n—1
det((s/c)i;1(K*) = ] (rt) and det(cirss) =27C~"+m . T (rt). (51)
r=1 r=1

By a classical result of Heilermann [25, 26], more recently presented in [29, Theo-
rem 7.14, pp. 244-246], Hankel determinants whose entries are the coefficients in a
formal power series L can be expressed as a certain product of the “numerator” co-
efficients of the associated Jacobi continued fraction J corresponding to L, provided
J exists. Modular transformations, followed by row and column operations, reduce
the evaluation of det((sd/c)i4;—1(k?)) in (51) to applying Heilermann’s formula
to Rogers’ [60] J-fraction expansion of the Laplace transform of sc(u, k)dn(u, k).
The evaluation of det(c;4;—1) can be done similarly, starting with sc(u, k) and the
relation sc(u,0) = tan(u).

The proof of Theorem 2.4 is similar to Theorem 2.2, except that we start with
sc?(u, k)dn®(u, k). For Theorem 2.6, we start with nc(u, k).

Our proofs of the Kac-Wakimoto conjectures do not require inclusion/exclusion,
and the analysis involving Schur functions is simpler than in (46) and (47).

We have [46] written down the n = 3 cases of Theorems 2.8 and 2.9 which yield
explicit formulas for 36 and 48 squares, respectively.
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