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abstract:

In this paper we give two infinite famiUes of explicit exact formulas that generalize
Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively,
without using cusp forms. Our 24 squares identity leads to a different formula for
Ramanujan's tau function r(n), when n is odd. These results arise in the setting
of Jacobi emptic functions, Jacobi continued fractions, Hankel or TurAnian detenm-
nants, Fouria- series, Lambert series, inclusion/exclusion, Laplace expansion forinula
for determmants, and Schur functions. We have also obtained many additional in-
finite famUies of identities in this same setting that are analogous to the ̂ -function
identities m Appenduc I of Macdonald (1972). A special case of our methods yields a
proof of the two Kac-Wakunoto (1994) conjectured identities mvolving representing a
positive integer by siuiis of 4n2 or 4n(n +1) triangular numbers, respectively. Our 16
and 24 squares identities were originally obtained via miiltiple basic hypergeometric
series, Gustafeon's Ct nonterminatmg e^s summation theorem, and Andrews' basic
hypergeometric series proof of Jacobi's 4 and 8 squares identities. We have (else-
where) appUed symmetry and Schur function techniques to this original approach to
prove the existence of similar infinite families of sums of squares identities for n2 or
n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not
the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916),
MordeU (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto (1994), and many
others.

resume:

Dans ce travail on pr&ente deux families infinies de formules exactes qui g6n&alisent
les identity & 4 (resp. 8) caiT& de Jacobi (1829) en identites S, 4n2 (resp. 4n(n+l))
carr&, sans utiliser des formes cuspoides.. Notre identity & 24 carr& nous donne
une formule di£F6rente de la formule de Ramanujan pour la fonction r(n) pour n
impair. Ces r6sultats apparaissent dans Ie cadre des fonctions elliptiques de Jacobi,
fractions continues de Jacobi, determinants de Hankel (ou Turdn), series de Fourier,
series de Lambert, principe d'inclusion/exclusion, d6veloppeme t de determinants
selon Laplace et fonctions de Schur. Dans ce cadre nous avons 6galement obtenu
plusieurs families suppl6mentau-es d'identit6s qui correspondent & des identit6s pour
la fonction r) dans 1'appendice I de Macdonald (1972). Dans un cas particuUer notre
methode demontre les deux identit6s traitant les representations d'un entier positif
par une somme de 4n2 (resp 4n(n +1)) nombres triangulaires, conjectur6es par Kac-
Wakimoto en 1994. Nos identites ^ 16 et ^ 24 carres ont d'abord 6t6 obtenues par
les series hypergeom6triques basiques multiples, Ie th6orfeme de sommation pour une
s&ie e'^5 non-terminante de type Ci de Gustafeon, et la dimonstration d'Andrews
utilisant des s6ries hypergfomitriques basiques des identitis &4 et S. 8 carr6s de
Jacobi. Nous avons employ^ (ailleurs) des techniques de symetrie et de fonctions
de Schur & cette approche originale afin de demontrer 1'existence de families uifinies
semblables d'identitfa & n2 et S, n(n + 1) carr6s. Nos identites & pills de 8 carrfe
ne sont pas les memes que les formules de Mathews (1895), Glaisher (1907), Ra-
manujan (1916), MordeU (1917,1919), Hardy (1918,1920), Kac et Wakunoto (1994)
et beaucoup d'autres.

1. INTRODUCTION

In this paper we give iiifinite families of explicit exact formulas involving either
squares or triangular numbers, two of which generalize Jacobi's [27] 4 and 8 squares
identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. Our
24 squares identity leads to a different formula for Ramanujan's [56] tau function
r(n), when n is odd. These results arise m the setting of Jacobi elliptic functions,
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SUMS OF 4n2 OR 4n(n + 1)SQUARES

Jacobi continued fractions, Hankel or Turanian determinants, Fourier series, Lam-
bert series, inclusion/exclusion, Laplace expansion formula for determinants, and
Schur functions. This background material is contained in [5, 6, 18, 19, 25-29, 33,
38, 59, 60, 62, 70, 71]. Further details of the proofs of all our infinite families of
identities appear in [46, 47]. Some of this work has already been announced in [44].

The problem of representing an integer as a sum of squares of integers has had
a long and interesting history, which is surveyed in [20] and chapters 6-9 of [9].
The review article [63] presents many questions connected with representations
of integers as sums of squares. Direct applications of siims of squares to lattice
point problems and crystallography can be found in [17]. One such example is the
computation of the constant ZN that occurs in the evaluation of a certain Epstein
zeta function, needed in the study of the stabiUty of rare gas crystals, and in that
of the so-called Madelung constants of ionic salts.

The s squares problem is to count the number r, (n) ofinteger solutions (a;i,... , a:,)
of the diophantine equation

x^+ + a;; = n, (1)
in which changing the sign or order of the a;, 's give distinct solutions.

Diophantus (325-409 A. D. ) knew that no integer of the form 4n- 1 is a sum
of two squares. Girard conjectured in 1632 that n is a sum of two squares if and
only if all prime divisors q of n with 9 s 3 (mod 4) occur in n to an even power.
Fermat in 1641 gave an "irrefutable proof of this conjecture. Euler gave the first
known proof in 1749. Early explicit formulas for r2(n) were given by Legendre in
1798 and Gauss in 1801. It appears that Diophantiis was aware that all positive
integers are sums of four integral squares. Bachet conjectured this result in 1621,
and Lagrange gave the first proof in 1770.

Jacobi in his famous Fundamenta Nova [27] of 1829 introduced eUiptic and theta
functions, and utiUzed them as tools in the study of (1). Motivated by Euler's work
on 4 squares, Jacobi knew that the number r, (n) of integer solutions of (1) was
also determined by

i?3(0, -g)3:=l+^;(-l)nr, (n)g", (2)
n=l

where '03(0, q) is the z=0 case of the theta function 193(2', g) in [70, pp. 464] given
by

^3(0, g):= ^ ^'2. (3)
3=-<x>

Jacobi then used his theory of emptic and theta fimctions to derive remarkable
identities for the s = 2, 4, 6, 8 cases of i?3 (0, -q)s. He immediately obtained elegant
expUcit formulas for r, (n), where s = 2, 4, 6, 8.

We recall Jacobi's identities for s = 4 and 8 in

Theorem 1. 1 (Jacobi).

^(0, -g)4=l-8^(-l)^. ^=l4. 8S(-l)"[^d]g",
r=l l+gr (4)

n=l d|n,d>0
4^d
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r3gr
^3(0, -g)8=l+16^(-l)r^, :=l+16^[ ^(-l)dd3}qn. (5)

r=l n=l d|n,d>0

Consequently, we have

r4(n) = 8 ^ d and rg(n) = 16 ̂  (-l)n+dd3,
d\n, d>0

(6)
d]n,d>0

4td

respectively.

In general it is true that

r2s{n) = S-is(n) + e-2s(n), (7)

where 52s (") is a divisor function and egs (n) is a function of order substantially lower
than that of Szs(n'). If 2s = 2, 4, 6, 8, then C2s(n) = 0, and (7) becomes Jacobi's
formulas for r2s(n), including (6). On the other hand, if 2s > 8 then e^s{n) is
never 0. The function C2s(n) is the coefficient of qn in a suitable "cusp form". The
difficulties of computing (7), and especially the non-dominate term e2s(n), increase
rapidly with 2s. The modular function approach to (7) and the cusp form 62, (n)
is discussed in [59, pp. 241-244]. For 2s > 8 modiilar function methods such as
those in [21, 23, 24, 36, 53, 58], or the more classical elliptic function approach
of [7, 31, 32], are used to determine general formulas for S^(n) and 633 (n) in (7).
Explicit, exact examples of (7) have been worked out for 2 <, 2s < 32. Similarly,
explicit formulas for r, (n) have been found for (odd) s < 32. Alternate, elementary
approaches to sums of squares formulas can be found in [39, 61, 64-67].

We next consider classical analogs of (4) and (5) corresponding to the s = 8 and
12 cases of (7).

Glaisher [15, pp. 210] utilized elliptic function methods, rather than modiilar
functions, to prove

Theorem 1.2 (Glaisher).

^(0, -g)16 =1 + ^^ (-l)m^mlgm1^
}/i,mi^l

8 C/,2. ^2^8
00

where we have

-W9(9;^(92;^2)

(9; 9)oo== 11(1-9").

(8a)

(Sb)

(9)
r>l

Glaisher took the coe£5cient of qn to obtain rig (n). The same fonnula appears
in [59, Eqn. (7.4.32), pp. 242].

In order to find r24(n), Ramanujan [56, Entry 7, table VI], see also [59, Eqn.
(7. 4. 37), pp. 243], first proved
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Theorem 1.3 (Ramanujan). Let (q;q)^ be defined by (9). Then

^3(0, -g)24 = 1 + ^^ (-l)^mll gm^^
l/i,mi^l

(lOa)

-3W^^ -6^i2(^2}2^ (lOb)

One of the main motivations for this paper was to generalize Theorem 1. 1 to 4n2
or 4n("+l) S5uares' respectively, without iising cusp forins such as (8b) and (lOb),
wUle still utilizing just sums of products of at most n Lambert senes similar to
either (4) or (5), respectively. This is done in Theorems 2. 2 and 2. 4 below. Here,
we state the n = 2 cases, which determine different formulas for 16 and 24 squares.
Theorem 1.4.

^3(0, -q)16 = 1- f(C/i +£73 + (7s)+ 2|£ (C/, ^ - Uj},
where

u, = UsW :=^(-1)-^ = ^[ $: (-1)^",^],
r=l - " ~1 n=:

(11)

(12)
n=l d\n, d>0

= ^(-l)yl+mlm^mlyl.
Vl,»"l^l

Analogous to Theorem 1.3, we have
Theorem 1.5.

^3(0, -9)24 = 1 + f (17G'3 + SGs + 2G'7) + 5|2 (G'aG'r - GJ), (13)
where

G^G^):=^-iy^^^[ ^(-i)^],
r=l ~ '* n=:

(14)
n=l d\n, d>0

by

= ^(-l)mlm^mli'1.
yi,mi^l

An analysis of (lOb) depends upon Ramanujan's [56] tau function r(n) defined

9(9;C==E^(»)9n-2_^
n=l

(15)

For example, r(l) =1, r(2) = -24, r(3) = 252, r(4) = -1472, r(5) = 4830,
r!6^ =..-6048'and T(7^= -16744- Ramanujan [56, Eqn. (103)] conjectured, and
Mordell [52] proved that r(n) is multiplicative.

In the case where n is an odd integer [in particular an odd prime], equating
(lOa-b) and (13) yields two formulas for r(n) that are diff'erent from Dyson's [10]
formula. We first obtain
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Theorem 1. 6. Let r(n) be defined by (15) and let n be odd. Then

259r(n) = ^ [17. 691as(n) + 8 . 691<T5(n) + 2 . 691<77(n) - 9<7ii(n)]

_ 6^21 ̂ J [^(m)<7?(n - m) - ^(m)^(n - m)] ,

(16)

where

m=l

a, (n):= ^<T
d]n,d>0

and 4{n):= Y^-l)ddr/^
d\n, d>0

(17)

Remark. We can use (16) to compute r(n) in <, 6nhin steps when n is an odd
integer. This may also be done in n2+e steps by appeaUng to Euler's infinite-
product-representation algorithm (EIPRA) [3, pp. 104 ] appUed to (q; q)^ in (15).

A dififerent simplification involving a power series formulation of (13) leads to

Theorem 1.7. Let r(n) 6e defined by (15) and ;et n ^ 3 be odd. Then

259r(n) = ^ ̂  {-l)dd11 - ^ E (-l)dd3 (17 + 8d2 + 2d4)
d\n, d>0 d\n, d>0

-69^2 E (-l)ml+m2(^i^)3(m?-mj)2 ^ 1.
VI-»2 21

">l+">2Sn
gcd(vn^,m^)\n

TnlVl+T"2V2=n

(18a)

(18b)

Remark. The inner sum in (18b) coiints the number of solutions (yi, y2 ) of the

classical linear diophantine equation miyi + m-iV2 = ". This relates (18a-b) to the
combinatorics in sections 4.6 and 4. 7 of [62].

In Section 2 we present infinite families of explicit exact formiilas that include
generalizations of Theorems 1. 1, 1.4, and 1. 5.

Our methods yield in [46-49] many additional infinite families of identities analo-
gous to the ̂ -function identities in Appendix I of Macdonald [37]. A special case of
our analysis gives a proof in [47] of the two Kac-Wakimoto [30] conjectured identi-
ties involving representing a positive integer by sums of4n2 or 4n(n+l) triangular
numbers, respectively. The n == 1 case gives the classical identities ofLegendre [34].
See also [5, Eqns. (h) and (iii), pp. 139].

Theorems 1.4 and 1.5 were originally obtained via multiple basic hypergeometric
series [35, 40-43, 45, 50, 51] and Gustafson's [22] Ct nonterminating e^s siimmation
theorem combined with Andrews' [2] basic hypergeometric series proof of Jacobi's
4 and 8 squares identities. We have in [48] applied symmetry and Schur function
techniques to this original approach to prove the existence of similar infinite families
of sums of squares identities for n2 or n{n + 1) squares, respectively.

Our sums of more than 8 squares identities are not the same as the formulas of
Mathews [39], Glaisher [13-16], Sierpinski [61], Uspensky [64-66], Bulygin [7, 8],
Ramanujan [56], Mordell [53, 54], Hardy [23, 24], Bell [4], Estermann [ll], Rankin
[57, 58], Lomadze [36], Walton [69], Walfisz [68], Ananda-Rau [I], van der Pol [55],
Kratzel [31, 32], Gundlach [21], and, Kac and Wakimoto [30].
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2. THE 4n2 AND 4n(n + 1) SQUARES IDENTITIES

In order to state our identities we first need the Bernoulli numbers Bn defined

t ^. ^ tn
rrT:=^^^' for|<|<27T.

n=0
(19)

We also use the notation Jn := {1, 2,... , n}, ||5'|| is the cardinality of the set S,
and det(M) is the determinant of the n x n matrix M.

The single Hankel determinant form of the 4n2 squares identity is
Theorem 2. 1. Let i?3(0, -g) 6e determined by (3), and fef n = 1, 2, 3, .... We
then have

<3(0, -<)4"' = .{(-l)'2'"'+-HI (r!)-^ .det(,, +.. i)K,,.^,

with

(20)

(21)

(22)

9i '. = U-ii-l - Ci,

where U-a-i is determined by (12) and c, is defined by

^:=(-l). -i(2;^l). [^|, for z= 1, 2, 3,...,
mth Bu the Bemoulli numbers defined by (19).

The determinant siim form of the 4n2 squares identity is
Theorem 2.2. Let n = 1, 2, 3, -. -. Then

n 2n-l

^3(0, -g)4n2 = l+^(-l)^2n2+n H (r!)-^ ̂  det(M^),
P=l r=l acSC/n

\\s\\=p~

where ̂ 3(0, -q) is determined by (3), and Mn, s is thenxn matrix whose i-th row
IS

C/2t-i, U'2(t+i)-i, ---, ^2(»+n-i)-i, ift 5 and c,, Ci+i,... , Ci+n_i, ift-^5,
(24)

where U^-ijis determined by (12), and c, is defined by (22), with B-a the Bemoulli
numbers defined by (19).

(23)

The single Haiikel determinant form of the 4n(n + 1) squares identity is
Theorem 2. 3. Let i?3(0, -g) be determined by (3), and let n = 1, 2, 3, -.
then have

2n

<?3(0, -g)^^ = <j 22»2+3n H(r!)-^ \ . det(^^-i)^,, ^,
r=l

with

9i '.= G'2»+l -Ot,

where G-^+i and a, := c,+i are determined by (14) anrf (22), respectively.
The determinant sum form of the 4n(n + 1) squares identity is

We

(25)

(26)
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Theorem 2.4. Let n = 1, 2, 3, " .. Then

<?3(0, -g)4n(n+l) = 1 + ^(-i)"-P22n2+3n H(r!)-1 ̂  det(M^^), (27)
2n

p=l r=l ecsc/n
II S 11 =p

where i9s(0, -g) t's determined by (3), and Afn 5 ts thenxn matrix whose i-th row
IS

G'2»+i>G'2(t+i)+i,---, G'2(i+n-i)+ii if»'  5 and a^ai+i, ---, a,+n_i, if i ^ 5,

(28)
where G'2»+i cind a, := c,+i are determined by (14) and (22), respectively.

After seeing an earlier version of this paper, Garvan [12] observed via modiilar
forms that (23) could be written as (20), and suggested the same be done for (27).
The paper [46] already contained Theorems 2. 1 and 2. 3, and many similar results.
We give some of these here in Theorems 2.3, 2.5, and 2.7. Garvan also conjectured
that the square of the series in (15) could be written asa 3 by 3 Hankel determinant
of classical Eisenstein series. This and similar results were subsequently proven in
section 9 of [46].

The analysis of the formulas for r^n-^W and r4n(n+i)(^V) obtained by taking
the coeflScient of qN in Theorems 2.2 eind 2.4 is analogous to the formulas for

rie(n) and r24(n) in [46]. The dominate terms for r^n^{N) and r4n(n+i)(-^) arise
from the p = n terms in (23) and (27), respectively. The other terms are all of
a strictly decreasing lower order of magnitude. That is, the terms for r^n2 (^)
and r4n(n+i)(N) corresponding to the p-th terms in (23) and (27) have orders of
magnitude 7V-(4nP-2P2-1) and Ar(4nP-2P2+2P-1), respectively. The dominate p = n
cases are consistent with [20, Eqn. (9.20), pp. 122]. Note that this analysis does
not apply to the n == 1 case of Theorem 2.2.

In order to state the next identity we need the Euler numbers En defined by
2e(

e2t+T:=E^^T' for|t|<7T/2.
n=0

We next have the single Hankel determinant identity in

Theorem 2.5. Let i93(0, -g) 6e determined by (3), and (ef n = 1, 2, 3, ....
then have

^3(0, g)2n(n-l)^(0, -g)2n2 = <; (-l)n22Tl H(2r)!-2 ̂  . det(^+, _i)i^^,
with

9i := -R2»-2 - &t>

where R^i-z and 6, are defined by
^2. . Or --\\2i-2r, 2r-l

J?2._2 = ^-2(9) := E(-l)r+l^r7^2rT *' for i = 1>2, 3,...
and

&. := (-l)l-4 . |£?2. -2|, fort =1, 2, 3,...,
with E^i-2 the Euler numbers defined by (29).

The corresponding determinant sum identity is

(29)

We

(30)

(31)

(32)

(33)
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Theorem2.6. Let n= 1, 2, 3, -... Then

n-1

^(0, g)2n(n-l)^(0, -g)2n2 = l+^(-l)^22n U(2r)!-2 ̂  det(Mn, 5), (34)
P=l r=l flCSC/n

l|S||=p

where .03(0, -q) is determined by (3), and M^, s is thenxn matrix whose i-th row
tS

-R2»-2, ^2(i+i)-2, ---, -R2(»+n-i)-2, ift   5 and &,, 6t+i, ---, 6,+n-i, ifz'^5',
(35)

where R'a-2 and &, are defined by (32) and (33), respectively, with E-a-2 the Euler
numbers defined by (29).

The next identities involve the 2; = 0 case of the theta function -ff^z. a) in
pp. 464], defined by "~ --'""'~ -^-'^ " ^"'

i?2(0, g):= ^ ^.+1/2)2. (36)
J=-00

We have

Theorem 2. 7. Let ̂ (O. g) fee defined by (36), and /ef n = 1, 2, 3,.... We then
have

^(0, s)4-' - ^"l'«)nl (r!)-^ .det(Q^.. y_, ), ^,. ^, (37)

and

^(0,, V')<-<-+') = ^.-«"^n(r!)-J . detfC^.., )^), ^,,^, (38)
where C^i-i and -Dzi+i are defined by

^ f2r - l}2i~la2r~1
C2,-i =C'2, -i(g) :=i. ^'i-_^2(2r-vi) ' forz=l, 2, 3,... , (39)

and

^ r2i+lor
£>2.+i=£>2.+i(9):=^_;Y-^, for 1=1, 2, 3,..., (40)

respectively.

Theorem 2. 7 is the first step of oiu- proof [47] of the Kac-Wakimoto conjectures.
We next utiUze Schur functions S), (xi,... , Xp)to rewrite Theorems 2.2, 2.4, and

2. 6. Let A = (AI, Az,... , \r,... ) bea partition ofnonnegative integers in decreasing
order, \i>. \2 >.... >. \r---, such that only finitely many of the A, are nonzero.
The length £(\) is the number of nonzero parts of A.
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Given a partition A = (Ai,... , Ap) of length ^ p,

^)=^,,...,., )»^^:)
^~3)

(41)

is the Schur function [38] corresponding to the partition A. (Here, det(a, j) denotes
the deterininant of&pxp matrbc with (i, j')-th entry a,j). The Schur ftmction s\(x)
is a symmetric polynomial in a;i,... , x? with nonnegative integer coefficients. We
typically have 1 <. p <:n.

We use Schiir functions in (41) corresponding to the partitions A and v, with

\r:=ep-r+z-^+r-p and i/r :=.7'p-r+i-ji+r-p, forr = 1, 2,... , p, (42)

where the ir and jr are elements of the sets S and T, with

5:={^i<^<---<^} and 5C := {^+1 < ... <^}, (43)

T:={ji<J2<---<jp} and Tc := Qp+i < ... <jn}, (44)
where Sc := In- S is the compliment of the set S. We also have

2(5):=^+^+---+^ and S(T) :=^+^ + ... +^. (45)

Keeping in mind (41)-(45), symmetry and skew-symmetry argtiments, row and
column operations, and the Laplace expansion formula [28, pp. 396-397] for a
determinant, we now rewrite Theorem 2.2 as

Theorem 2.8. Let n= 1, 2, 3, -... Then

2n-l

<?3(0, -g)4n2=l+^(-l)p22n2+n J](r!)-1 ^ (_i)!/i+-+^
P=l r=l vi, -, vo>'-

(46)
r=l »r..., l/p>l

ml>'"2>-">"»p2l

,

2\2. (_l)m, +...+m^m^, +... +m, ^ -^ ̂  _ ^y
l$r<s$p

. (m^... m, ) ^ (-l)E(s)+s^. det(^_^c. ^)
SCS.TCJn
||S||=||T'||=p

. (mim2... mp)^+2^-4^(m^,... , m^)^(mj,... , m^),

where -9 s{Q^-q) is determined by (3), the sets S, Sc, T, Tc are given by (43)-(44),
S^ a^S(T) by (45), the (n-p)x(n-p)matri^^^ := [c^^^^_^
where the c, are determined by (22), with the B-a in (19), and sx and s^ are'ttie^'
Schur functions in (41), with the partitions X and v given by (42).

We next rewrite Theorem 2.4 as
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Theorem 2.9. Let n =1, 2, 3, " .. Then

n 2n

i?3(0, -g)4n("+1) =1 + ^(_i)"-P22n2+3" JJ(r!)-1 ^ (_i)mi+... +mp
P=l r=l »i,..., »pS:r=l vi,...,»pSi

n»l>m2>...>mp>l
(47)

2\2. qm^+-+m^ (mim2 . . . m^)3 JJ (m^ - m,2)2
l$r<s^p

E (-Ds(s)+s(r)-det(^-^, ^)
BCS.TC/n
||S||=||Ti|=p

. (mim2... mp)^+2^-4^(m^... , m^)s, (m^... , m^),
where the same assumptions hold as in Theprem 2.8, except that the (n - p) x
{n-p} matrvcDn-p, sc,Tc := [a«p+. +jp+. -i)] ̂ ^, ^_p, where the a. := c,+i are
determined by (22).

We now rewrite Theorem 2.6 as

Theorem 2.10. Zef n = 1, 2, 3, -- .. Then

^3(0, g)2n(n-l)i93(0, -g)2n2 =1 +^;22n Q(2r)!-2 ^ (_l)i(p+mi+... +m,)
(48)P=l r=l iii,..., »p>i

">l>n»2>"->mp>l(odd)

. ^m^+... +m^ JJ(^_^)2
l<,r<s<,p

^ (-l)^)+=W. det^_^. ^)
0CS,TC/n
||S||=||T-||=p

. (mim2... mp)2^+2^-4^(m^,... , m^)^(m?,... , m^),
where the same assumptions hold as in Theorem 2. 6, except that the (n-p) x (n-p)
matrix

Dn-p, Sc,Tc := [&(^. +jp+, -l)] ̂ r, ^-p ' (49)
where the 6, are determined by (33), with the E^-2 in (29).

We close this section with some comments about the above theorems.
In order to prove Theorem 2. 2 we fiirst compare the Fourier and Taylor series

expansions of the Jacobi emptic function /i(u, k) := sc{u, A)dn(u, k), where k is the
modulus. An analysis similar to that in [5, 6, 71] leads to the relation U2m-i{-q) =
Cm+dm, for m = 1, 2, 3, - .., where U'im-i(-q) and c^ are defined by (12) and (22),
respectively, and d^ is given by d^ = ((-l)mz2m/22m+l) . (sd/c}m(k2), where
';.. :=. 2-Fl(l/2)l/2;l;A2) = 2^(fc)/7r = 2jK-/7r, with K(k) = J^'the complete
emptic integral of the first kind in [70, pp. 498] and (sd/c)ni(fe2 ) is the coefficient
ofu2m-l/(2m - 1)! in the Taylor series expansion of fi(u, k} about u = 0.
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An inclusion/exclusion argument then reduces the q ^-> -q case of (23) to find-
ing suitable product formulas for the n x n Hankel determinants det(d, 4.j-_i) and
det(ci+j-i). Row and column operations immediately imply that

det(d, +,_i) = (^2n2(-l)n/22n2+n)det((5d/c). +, -i(JS;2)). (50)

From Theorem 7. 9 of [6, pp. 26] we have z = 193(0, g)2, where q = exp{-vK(^\ - k'i)/K{K}~}.
Setting z = i?3(0, g)2 in (50) and then taking q^-q produces the i?3(0, -g)4n2 in
(23).

The proof of Theorem 2.2 is complete once we show that

2n-l 2n-l
det((sd/c), +, _i(fc2 )) = U (r!) and det(c. +, _i) = 2-(2n2+n). J] (r!). (51)

r=l r=l

By a classical result of Heilermann [25, 26], more recently presented in [29, Theo-
rem 7. 14, pp. 244-246], Haitkel determinants whose entries are the coefficients in a
formal power series £ can be expressed as a certain product of the "numerator" co-
efficients of the associated Jacobi continued fraction J corresponding to £, provided
J exists. Modular transformations, foUowed by row and column operations, reduce
the_evaluation of det((sd/c),+,_i(fc2 )) in (51) to applying Heilermaim's formula

to Rogers' [60] J-fraction expansion of the Laplace transform of sc(u, fc)dn(u, A).
The evaluation of det(c, +j_i) can be done similarly, starting with sc(u, k) and the
relation sc(u, 0) = t£in(u).

The proof of Theorem 2.4 is similar to Theorem 2.2, except that we start with
sc2(-u, fc)dn2(u, fc). For Theorem 2. 6, we start with nc(u, A;).

Our proofs of the Kac-Wakimoto conjectures do not require inclusion/exclusion,
and the analysis involving Schur functions is simpler than in (46) and (47).

we have [46] written down the n = 3 cases of Theorems 2. 8 and 2. 9 which yield
explicit formulas for 36 and 48 squares, respectively.
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