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Summary

In this paper we give the theoretical background and the new algorithms developed
particularly for this software. First of all we give a brief survey of the existing
methods of calculating the characters of symmetric groups then present a new for-
mula for the calculation of ordinary and spin characters using the properties of
symmetric functions. This leads to a more efficient method of calculating the Kro-
necker products of ordinary and spin representations and the plethysm of S and Q
functions.

This software can calculate the ordinary ̂  and the spin ̂  characters of the irre-
ducible representation labelled by the partition A associated with the class structure
p. It can also calculate the dimension of the representation, number of elements
in a class and the characters of a given ordinary or spin representation. It also
generates the entire character table for a given integer n. Using these characters
it performs operations like Kronecker products of the spin and ordinar irreducible
representations and the plethysm of both the S' and Q functions associated with
the ordinary and spin irreducible representations respectively. For larger outputs
it has the facility of saving it on a log file either as a standard output or in MgX
format. On-line help is available to make it user friendly. The PC version of this
software is in PASCAL whereas the UNIX version is in C++.

This software is available free with the expectation that its use will be appropriately
acknowledged.
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1 Introduction

Characters of the symmetric groups have been of interest to both the mathematicians and the physi-
cists for their wide applications. Because of the complexity of their computation the explicit use
of the characters in physics has been very limited. The combinatorial properties of the symmetric
functions had been exploited instead. This method is proved to be too cumbersome for the cal-
culation of 5-function plethysm. A parallel theory of Schur's Q-functions associated with the spin
representations appears to be even more cumbersome. For example the computation of Kronecker
products of the spin irreducible representations or the Schur's Q-functions as given in [12] is painfully
slow. Where as an explicit use of characters is not only faster but makes it possible to calculate
the Kronecker products of larger group representations. Here we will give a brief description of the
theory of symmetric functions in connection with the characters of the symmetric groups and derive
the new algorithm. For details we refer to [7].

2 Ring of symmetric functions

Let a;i, ..., Xn be independent indeterminates. The symmetric group 5'n acts on the polynomial ring
Z[a;i,..., Xn] by permuting the a;'s, and we shall write [7],

An = Z[Xl,..., Xn]sn,

for the subring of symmetric polynomials in 2:1,..., a;n.
An is a graded ring

AH ^'OA^,
r>0

where A^ is the additive group of symmetric polynomials of degree r in 2;i, ..., a;n- Let

for each r >. 0, then

Ar=limA^

A=®Ar.
r>0

The graded ring A is the ring of symmetric functions. If Q is any commutative ring, we will write

As=A0^Q,

for the ring of symmetric functions with coefficients in Q.
There are various Z-bases of the ring A, and they all are indexed by partitions. Let A =

(lml, 2m2 . .. ) be a partition, where mi is number of parts equal to 1, ms is number of parts equal
to 2, and so on. It defines a monomial xx = x^x^2 . . -. The monomial symmetric function m\ is
the sum of all distinct monomials obtainable from x^ by permutation of the x.

When A = (!") we have

m(i. )==en= ^ ^... z^,
ll<... <»n

the n-th elementary symmetric function.
For A = (n) we have

m(n) =pn =^2;?,
t

the n-th power sum symmetric function.
Let l(\) be the length of the partition X and form the determinant

D, =detf^+'-JY,.,,.,
^<i, j^l(\) '
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and the Vandermonde determinant

Do = JJ(a;i -Xj),
i<]

then the quotient
sx(xi,..., xi) =Dx/Do,

is a homogeneous symmetric polynomial of degree | A | in a;i,..., xi called ̂ -functions. An 5-function
indexed by a partition A is denoted by s\. 5-functions indexed by disordered partitions are called
non-standard 5-functions and must be modified to produce either a signed standard partition or a
null result by application of the modification rules derived directly from the determinantal definition
of the 5-functions [6, 12].

A scalar product ( , ) is defined on A as follows:

where

(p\, P^} =6\^z\,

zx=]^imimi\.

Let x = (a;i, 2;2, ...) and y = (yi, y2, -) be two sequences of indeterminates over A(, where t is

another indeterminate and define [7],

- tXiVi^. o = n^^.
= ^^(f)P^(x;t)PA(y;t),

A

= ^Px^;t)Qx(y;t),
A

= ^^(x;t)mA(y;f),
A

as the generating function of Hall-Littlewood symmetric functions P\(t). Q\{y;t) is defined as

Qx{y;t)=b^t)P^t),

where

bxw = n^. (x)(t), ^nw = n (i - ^') .
i>l J'^l

A scalar product ( , )(<) over A( is defined as follows:

(PA>P(^)(t) =5\^Z\(t),

where

zx{t)=z^(l-tx')-1.
t

For t = 0 we have 5-functions where asforf = -1 we obtain Schur's Q-functions. Also for t = 0
the generalised homogeneous symmetric functions q\{t) become /IA. For t= -1 we get

Qw= n ̂ -^q(x) (1)

where

and

JRy9(Ai,...,A,,..., A,,..., A, ^)) =Q'(AI,...,A, +I,...A, -I,...,A|(^))

9(A) :=9(Ai)9(A2)---9(A,(^)-

- 526 -



3 Ordinary characters of the synimetric groups

5-functions can be expressed in the basis of power sum symmetric functions as follows.

s>=Y., zpl^pp (2)

where ̂  is the character of the representation A and class p.
There have been three methods of calculating characters. Here we will give a brief review and

then move on to the new algorithm that is much more simple and elegant.

3. 1 Polynomial expansion

This method is derived from the properties of the symmetric functions and requires the following
four steps [7].

1. To calculate the characters of the irreducible representation ^A, expand the 5-function s\ in
terms of power sum symmetric functions using Eq. 2.

2. Expand s\ in terms of homogeneous symmetric functions

h\ = h^, h^, ---, h\,,

where I is the length of the partition A.

SA= IJ (1-^y)^
T-<i<3<t

(3)

where jRy is Young raising operator defined as

Rij{h^, --- , h^, --- , h^, ---, hx, ) =
h\i, --- , h(^^), ---, h^_^ ... , h\,

remembering that fao = 1 and hn is zero for n <0.

3. Expand each h\^ in terms of power sum symmetric functions as

hn=^z^pp,
p

where p is a partition of n.

4. Now comparing the coefRcients of the power sum symmetric functions pp, one can calculate
the characters ^.

There are obvious disadvantages of this method. It requires three huge expansions that grow fast
with increasing length of the partitions. Secondly, it doesn't facilitate the calculation of individual
characters as required for the plethysm of S'-functions, shown later.

3. 2 Young permutation operators

Associated with every partition \= X^, ^, -. ., ̂ i(\), there exist a Young diagram Yx of Ai boxes
in first row, Az boxes in second row and so on. If A is a partition of n then a standard tableaux is
obtained by filling in the boxes of Yx such that Y^j < Y,^^ and Y.A, < Y,^ where Y^. is the box
in ith row and jfh column. As an example, following are the possible standard Young tableau for
A =(2, 1).
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DEFINITION 1 A Young row operator is defined as

Y^=^PR
where sum is taken over all the permutations of the objects in the rows of the tableaux.

DEFINITION 2 A Young column operator is defined as

Y^=^±PC
where sum is taken over all the column permutations with + or - signs for even or odd permutations
respectively.

DEFINITION 3 A Young permutation operator is defined as
. \ _ -^\\^\

'RIC-

As an example if we consider the first tableaux of A = (2, 1) then

Y^2-l)=e+(12)
where e = (1) (2) (3) is the identity element and (12) is the permutation of objects 1 and ̂2.

This method has same disadvantages as the previous one. It requires the expansion of the whole
representation and the number of permutations grow too large for higher values of n and even a
powerful computer can't handle it.

3. 3 Staircase method

The recursive staircase method for calculating the characters of the irreducible representations of
the symmetric group exploits the combinatorial properties of Young diagrams [2].
DEFINITION 4 The staircase of a Young diagram consists of all the boxes in a continuous outer
ribbon going from the upper right to the lower left.

As an example, consider A = (6, 32, 1)

The shaded boxes are the staircase of the graph.
Let ̂ ^ be the character of the class p of 5n in the irreducible representation . \>'

the class (p) contains a cycle of length pi. Then we have

^=E±^^

Suppose that

(4)

where the sum is over all legitimate Young graphs of A with n - p, boxes. The (+) sign above is
when the subtracted staircase segment lies on an odd number of rows. We can strip off as many
cycles until we reach very simple groups such as 5i or 52. In order to complete the calculations, we
must assume that the characters of So are all equal to +1.

Though this method has the advantage of calculating a specific character with out expanding the
whole representation, it lacks the computational simplicity. Since it requires the Young diagrams
and the hooklenths, it takes up a lot of space in a computer as 2-dimensional array and hence limits
the capacity. We have to admit this is far better than the other two.
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4 The new algorithm for ordinary characters

In this section we derive a new method for the calculation of the ordinary characters of the symmetric
groups and will give an example, reflecting its power and usefulness.

DEFINITION 5 In the basis of power sum symmetric functions we define the adjoint multiplication
bypn, D(pn) :A-^A, as [7]

{D(pn}p^, p^ = (p^, pn p^)

which is zero if p, ^ vU(n), and is equal to Zp, if p, = vU (n) .

It follows that D(pn) = n-^ acting on symmetric functions expressed in terms of power sum

symmetric functions and for a partition A = (Ai, - . . ,A;) we have D(p\) = D(p\^)D(p\^) . . . D{p\^.
This leads to the following property of these operators.

D(pn)f\ = ^/Ai, A2,..., A, -n,... (5)

where f\ is an element of A indexed by the partition A. The above list is obtained by subtracting
n from each part of A. The resulting list of symmetric functions are modified according to the rules
related to them. For example, 5-functions are modified by the following rules given in [5].

1.

S(...,A,, A, +i,... ) = -S(..., A,+i-l,A, +l,... ),

whenever \\i+i\ > |A»|, remembering that S(^^o) = S(^).

2. 5-functions with A,+i = Ai + 1 are null.

3. Any 5-function indexed by a partition in non decreasing order with last part a negative number
is null and SQ = 1.

As an example,

.D(P3)S(6,3,2, 1) = 5(3, 3, 2, 1) + 5(6,0,2, 1) + 5(6, 3, -1,1) + s(6,3, 2, -2)-

According to rule 1, S(6,3,-i, i) = -S(e,3) and S(6,o,2, i) = -S(e,1, 1, 1)- By rule 3, S(6,s,2, -2) = 0 Thus

D (Ps) 3(6, 3,2,1) = 5(3, 3, 2, 1) - 5(6, 2, 1) - 5(6, 3)-

THEOREM 1 The character \^ is the integer D(pn)s\.

Proof
We apply the operator D(p^) on both sides of (1).

1\"^-1^\D(p^)sx = D(p^^z^xApPp
p

then a repetitive use of (5) gives an integer k on the left side of the above equation where as on the
right hand side, all the terms will be zero except for p = TT. In that case we get

Thus

k=z^x^.

k=D(p^sx=x^-
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As an example,

. 421
XA3' D(p43)S421

D(p4)D(p3)s^i
= Z?(p4 ){S42-2+S4-ll+Sl2l}

D(p4 )(-S4)

-so

-1

Using this algorithm one can produce the character tables for very large groups.

5 Kronecker product of ordinary representations
Now that we can calculate the characters that efficiently, we can use the following formula for the
calculation of the inner products.

^x'=E^A'

where f^ is calculated using the charcters.

f^=^hpxKx

where the sum is taken over all the classes, g is the order of the group and hp is the number of
elements in the class p.

6 Plethysm of ̂ -functions

It is well known that the character of a polynomial representation of a linear group GL(n, C) is a
symmetric polynomial p(xi, x-2, " -, Xn) in n variables. If ̂  is the character of a representation of
GL(n, C) and i/ is the character of a representation of GL{m, C) then their composition or plethysm
will'be the character of a representation of GL(nm, C). Plethysm as a composition or substitution
ofpolynomial functions was introduced by Littlewood [5]. Since then it has found many applications
in physics [10, 16]. The 5'-function method as is very tedious and inefficient. Recently, Thibon has
inferred a formula from Murnaghan [9] using the differential operators associated with the power sum
symmetric functions [15]. This method requires the characters of symmetric groups. The algorithm
developed in this paper is very useful in carrying out this method of the plethysm of 5-functions.

THEOREM 2 Let s^, Sy   AQ, t/ie?z

D(pn)(s^®s,)=^((D(pm )s^<Ss^pm {D(p^^)s^, (6)

m. |n

where (s^ ® Sv) is the plethysm of the S-functions s^ and Sv-

As an example, let /^'^ be the number of times the cycle structure (22) appears in the expansion
of ($2 ® sz) then /^'^ is obtained by the application of £>(p(2, 2)) on (s2 ® sa) as follows.

^(P(2, 2))(S2®S2) = £>(p2 ){£>(P2)(S2®S2)}
= £>(p2 ){Sl <2> S2Pl(£>(p2 )S2) + So ® Slp2 (£)(Pl)S2)}
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D(P2){S2+P2}
1+2
3

Thus /gg) = 3. Similary f^ - 0, f^) = 1, fff^ = 3 and f^ = 1. Now the power sum
symmetric functions can be converted back using the follwing relation [7].

r, =E Xx?sx

where ̂  has the usual meaning. Thus

(S2®S2) = S(4) +S(2,2).

Our algorithm provides an easy way of calculated the individual characters as they are needed
in the expansion of 5-function plethysm.

7 Spin characters of the synimetric groups

Spin characters arise from Schur's study of the linear fractional substitution representation group
Fn of the symmetric group Sn- For details we refer to [3, 8]. A detailed method for the calculation
of spin characters is given in [1, 8]. Morris has given a polynomial expansion method that we will
briefly describe here.

Let ̂  denote the spin character associated with the irreceducible representation A and class

THEOREM 3 (Theorem 4, [8])
The basic spin character of the class (p) = (l"ll, 3m3, 5Tn5, . .. ), that is, ^ of Fn is 2('^)-l-e)/2,
where e =0 or 1 according as n is odd or even. Further, the basic spin character of class (n) when
n is even, is ?"//2 ̂ /(n/2), luftere i = -\/^T. TAe Sast'c spm character of all other classes is zero.

In order to calculate the remaining spin characters of Tn, Schur's Q-functions are used.

THEOREM 4 (Theorem 5, [8])
For each partition (A) = (Ai, A2, --. , A;(A)) of n into l(\) distinct parts, the simple spin character
^ of the positive class (p) of Fn are given by"(p)

Q, = ^ 2('(A)+^)+ )/2^-1C((>,
p OP^

(7)

where e is 0 if I (\) + l{p) is even and 1 otherwise and OPn is the set of odd part partitions of weight
n. Ife=0, C/^ is a double spin character, and t/e == 1, Cr^ is tin associate spin character. When
e = 1, the negative class X has a nonzero spin character, given by

^W _-. rn-KAl+l)/2. /Al XA2 X. --XA;(A)
^=z'- ---"-v-^.

In his method, Eq. 1 is used to expand Q\ in terms of q^s and then these q'(p)'s are expanded
in terms of power sum symmetric functions using the relation

,. = ^ z^2'(^, (8)
p OP,

Then comparing the coefficients of the power sum symmetric functions from Eq. 7, the characters
'^>} are calculated. This method requires huge

exapnded even if a single character is needed.
<^^ are calculated. This method requires huge expansions and the whole representations has to be
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EXAMPLE 1 Consider T^. The basic spin characters, ̂  can 6e calculated using Theorem 3. The
basic spin characters of positive classes, (I4) and (3, 1) are given by

and

,-(4) _ ^4-1-1)/2 ̂ ,
S(l4) - ^- . -^'

>(4) _ 92-1-1)/2 _
'(3, 1)

Since n is even and e = 1, we also have the basic spin character of the class (4), that is,

Cg=z4/2v^72)=-^.
The basic spin character of all other classes is zero.

For the characters C,^) we need to expand Q^^) in terms of q^)S using Eq. 1, that is,
0(3, 1) = (1 - 2I?12)9(3, 1)

= 9(3, 1) - 29(4) (9)

Now using Eq. 8 we can exapnd the q^)S in terms of power sum symmetric functions, that is,

9(3) = JP(3) + IP(I, I, I)
9(1) = ^(i)

9(3, 1) = 9(3)9(1) = |-p(3)+3^, l, l)
9(4) = fP (3, l) + tP(l, l, l, l)

Substituting the above to Eq. 9 we get
4 . 4

<3(3,1) = ~^P(3,1) + ^P(l, l, l, l) (10)

Now we expand <?(3, i) in terms of power sum symmetric functions and spin characters, using
Eq. 7, that is,

0(3. 1) = |C((33;ll))P(3, l) + JC&l)l, l)P(l, l, l, l) (n)

Finally comparing the coefficients of power sum symmetric function in the equations 10 and 11
we calculate the following characters.

Cg5=-l and C;^, )-4.

8 The new algorithm for spin characters

In this section we develop a very efficient and simple method of calculating the spin characters.
Other main advantage of this method is that a particular character associated with a particular
class can be calculated without expanding the whole representation. This feature enables us to
calculate the Kronecker products of the irreducuble representations of Tn for very large values of n.

In the basis of power sum symmetric functions we have the adjoint multiplication by pn, D(pn ) :

A( ->. At, defined as [7]
(£>(pn )p^, P^)t = (p^, PnPv}t

which is zero if /K / i/U (n), and is equal to z^(t) ifju = i/ U (n). It follows that -D(pn) = ^^-^
acting on symmetric functions expressed in terms of power sum symmetric functions and for a
partition X~= (X^X^, -. ., A;) we have D(p^) = D(px, )D(p^) . . . D(p^). This leads to the following
property of these operators.

^(Pn)/A=^^, A,,..., A. -n,... (12)
z

where /A is an element of A( indexed by the partition A. The above list is obtained by subtracting
n from each part of A. The resulting list of symmetric functions are modified according to the rules
related to them. For example, Schur's Q-functions are modified by the following rules given in [12].
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1.

0(...,A,, A.+i,...) = -<3(..., A.+i,A,,... ),

whenever \\i+i\ > |A, |, remembering that <3(^, o) = Q(^).

2. Q-functions with consecutive repeated parts are null.
3.

Q(Ai..., -A,, A,,..., A, ) = (-1)AF2Q(^,..., A, ).

4. Any Q-function indexed by a partition in decreasing order with last part a negative number
is null and Qo = 1.

EXAMPLE 2

D(ps)Q (6, 3, 2,1) = 0(3, 3, 2, 1) + 0(6, 0, 2, 1) + <3(6, 3, -1, 1) + Q(6, 3, 2, -2).

}IJ. W\

According to rule 2, Q(3, 3, 2, i) = 0 and the rule 4 suggests Q(6, 3,2, -i) ~= 0. Rule 3 will lead to
0(6, 3, -1, 1) = -2Q(6, 3) o.nd repeatative use of rule 1 gives Q(6, o, 2, i) = Q(6, 2, i)- Thus

-DO?3)<3(6,3, 2, 1) = 0(6,2, 1) - 2(3(6, 3).

Using these properties we give following theorem.

THEOREM 5 The simple spin character^ of positive classes ofFn is the integer2W^~lW~ )/2D(p, j.)Q
, where ]A| = |;u| = n.

Proof

We apply the operator D(p^,) on both sides of Eq.7:

D(p, )Q, =D(p, ) ^ 2('(A)+;M+£)/2z,-lC^.
p OP^

Every term on right hand side of the above equation would be zero except for ̂  = p and the left
hand side is an integer. On simplification we get

^ ^ 2(i(A)+;(^)+<)/2^1^^2-;(^)

where m is an integer. Thus

^ ̂  ^(lW-lW-e)/2^ ̂  2W^-lW-t^2D(p^)Q^.

EXAMPLE 3 Using the above theorem and the Q-function modification rules we calculate thefollwing
character in a few simple steps.

. (9, 6)
.. (7, 5, 3) = 2(3-2-l)/2D(p(7, 5, 3))Q(9, 6)

= £>(P7)-D(P5)D(P3)Q(9, 6)
= £>(P7)£)(P5){Q(9,3)+0(6,6)}
= D(P7){0(9, -2)+Q(4,3)}
= {Q(4, -4)+Q(-3, 3)}

(-l)32Qo
-2
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9 Kronecker products of spin irreducible representations

The Kronecker, or inner product corresponds to the tensor product of the representations of Fn-
For details, please see [13, 14]. If (, ^ and Ci/ are the spin irreducible representations corresponding
to the distinct part partitions p, and r then their Kronecker product is given as

(;^v=e, ^f^\^-^
A

(13)

where e^ = 2 if(n- l(p,)) is odd and 1 otherwise, A is a partition of n and \x is an ordinary
irreducible representations of Fn. An indirect method of calculating the coefficients f^ is given in
[13]. That method exploits the combinatorial properties of the shifted Young tablaux and is rather
complicated. Since we have developed a very efficient algorithm for the spin characters, it is more
reasonable to use these characters for the Kronecker products. This method is simple and efficient.
The following formula gives the coefficients f^ in terms of the characters.

^=^Ewc^ (14)

where the sum is taken over all the classes, g is the order of the group and hp is the number of
elements in the class p.

10 Plethysm of Q-functions

Analogous to the Eq. 6 of S'-function plethysm we can derive the following for Q-functions.

THEOREM 6 Let Q^, Q^ e Ag, then

D(pn)(Q^ ® Q. ) = ^ {{D(p^)Q^) ® Q. )^(I5(p^)Q. ),
m|n

where (Q^ (g) Qy) z's the plethysm of the Q-functions Q^ and Qy and m is an odd integer.

(15)

The restriction that m be an odd integer makes it computationally more efficient than the
plethysm of 5-functions

11 Important features of the software

This software can calculate the ordinary ^ and the spin ̂  characters of the irreducible represen-
tation labelled by the partition A associated with the class structure p. It can also calculate the
dimension of the representation, number of elements in a class and the characters of a given ordi-
nary or spin representation. It also generates the entire character table for a given integer n. Using
these characters it performs operations like Kronecker products of the spin and ordinar irreducible
representations and the plethysm of both the S and Q-functions associated with the ordinary and
spin irreducible representations respectively.

For larger outputs it has the facility of saving it on a log file either as a standard output or
in MgX format. A built-in demo and on-line help is available to make it user friendly. The line
command format makes it easy to follow through. Once the command is entered the software will
ask for the required inputs and options one at a time.
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