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Introduction

The cohomology ring of the ag variety F l

n

= SL

n

=B is isomorphic to the

quotient ring of the polynomial ring by the ideal generated by symmetric poly-

nomials without constant term. The Schubert cycles give a linear basis of the

cohomology ring and they are represented by Schubert polynomials. Our aim

is to introduce the notion of quantum double Schubert polynomials, which

represent the Schubert cycles in the equivariant quantum cohomology ring,

and investigate their properties.
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Our approach based on the quantum Cauchy identity ([KM], Theorem 3)
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and on the Lascoux-Sch�utzenberger type formula for the quantum double Schu-

bert polynomials ([KM], De�nition 4)
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We start from the Jack{Macdonald type de�nition ([M], Chapter VI) of

quantum Schubert polynomials and deduce the properties of quantum and

double quantum Schubert polynomials from the quantum Cauchy identity.

A proof of quantum Cauchy identity based on geometrical approach due to

I. Ciocan-Fontanine [C]. As a corollary of quantum Cauchy identity, we obtain

the following simple formula for the quantum Schubert polynomials:
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ww
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w

0
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:

Finally, we de�ne the extended coloured Ehresmann�oeder for the symmetric

group and give a quantum analog of Pieri's rule.

We would like to mention, that in the recent preprint \Quantum Schubert

polynomials" by S. Fomin, S. Gelfand and A. Postnikov, [FGP], developed a

di�erent approach to the theory of quantum Schubert polynomials, based on

the remarkable family of commuting operators X

i

([FGP], (3.2)). Among main

results, obtained by S. Fomin, S. Gelfand and A. Postnikov, are de�nitions,

orthogonality, quantum Monk's formula and other properties of quantum Schu-

bert polynomials; de�nition of quantization map and quantum multiplication.

Besides some overlap with the preprint of S. Fomin, S. Gelfand and A. Post-

nikov, our works were done independently and based on the di�erent ap-

proaches. We obtained, among others, the following new results:

1) de�nition of big quantum Schubert polynomials, using the residue pair-

ing ([KM], Introduction);

2) quantum Cauchy identity (Theorem B);

3) Lascoux{Sch�utzenberger's type formula for quantum Schubert polyno-

mials (Theorem C);

4) quantum double Schubert polynomials (Theorem{De�nition A, and

[KM], Section 3);
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5) equivariant quantum Pieri's rule (Theorem E, and [KM], Corollary 7);

6) Vafa{Intriligator's type formula for higher genus correlation functions

on the ag manifold (Theorem D);

7) residue formula ([KM], Section 8.3).

Schubert polynomials,

de�nition and known results

Let us remind ([LS2], [M1], [F]) some facts on the cohomology ring of the ag

variety. Let

0 = E

0

� E

1

� � � � � E

n

= C

n


O

F l

n

be the universal ag of subbundles on F l

n

: It is well known that the cohomology

ring H

�

(F l

n

;Z) is generated by x

i

= c

1

(E

n�i+1

=E

n�i

); i = 1; : : : ; n; and

H

�

(F l

n

;Z) = P

n

=I

n

;

where P

n

= Z[x

1

; : : : ; x

n

] and I

n

is an ideal generated by elementary symmetric

polynomials e

1

(x); : : : ; e

n

(x):

We consider the universal sequence of quotient bundles

L

n

! � � � ! L

1

;

where L

i

= C

n


O

F l

n

=E

n�i

and �x a ag

0 = V

0

� V

1

� � � � � V

n

= C

n

:

Then we have induced maps

f

pq

: V

p


O

F l

n

! L

q

:

For a permutation w 2 S

n

; the Schubert cycle 


w

is de�ned as the locus where

rankf

pq

� r

w

(q; p); 1 � p; q � n � 1; and r

w

(q; p) := ]fi j i � q; w

i

� pg:

Schubert cycles give an orthonormal basis of H

�

(F l

n

;Z) with respect to the

intersection pairing.

In the quotient ring P

n

=I

n

= H

�

(F l

n

;Z); the Schubert cycles are repre-

sented by Schubert polynomials. Let us de�ne the divided di�erence operator

@

i

acting on P

n

by

(@

i

f)(x) =

f(x

1

; : : : ; x

i

; x

i+1

; : : : ; x

n

)� f(x

1

; : : : ; x

i+1

; x

i

; : : : ; x

n

)

x

i

� x

i+1

:
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Any permutation w 2 S

n

is decomposed into a product of simple transposi-

tions. We choose a reduced decomposition w = s

a

1

� � � s

a

p

; where p = l(w) and

s

i

is the simple transposition (i; i + 1): Then the operator @

w

is given by

@

w

= @

a

1

� � �@

a

p

:

De�nition (Lascoux-Sch�utzenberger [LS1]). For each permutation w 2 S

n

the Schubert polynomial S

w

is de�ned to be

S

w

(x) = @

w

�1

w

0

(x

�

);

where w

0

is the longest element of S

n

and � is a multi-index (n� 1; : : : ; 1; 0):

The intersection pairing on the cohomology ring coincides with a pairing

induced by the Grothendieck residue

hf; gi

I

n

= Res

I

n

(fg); f; g 2 P

n

;

where P

n

:= Z[x

1

; : : : ; x

n

].

We refer to [GH], Chapter 5, for de�nition and basic properties of Grothen-

dieck's residue.

It is well known that the Schubert polynomials form an orthonormal ba-

sis with respect to the pairing h; i

I

n

. Conversely, this property characterize

the Schubert polynomials. Namely, Schubert polynomials can be obtained

as Gram-Schmidt's orthogonalization of the set of ordered lexicographically

monomials fx

I

g

I��

, with respect to the scalar product h; i

I

n

, cf. [KV]. We

will use this property of classical Schubert polynomials in order to de�ne the

quantum Schubert polynomials. The study of quantum Schubert polynomials

was initiated in [FGP] and, independently, in [KM]. The Grassmanian case was

considered earlier in [B], [C] and [W]. We refer to [MS] and [RT] for de�nition

and basic properties of the quantum cohomology.

Main results

Let us explain briey the de�nition of quantum and quantum double Schu-

bert polynomials and the main results on them. Follow to A. Givental and

B. Kim [GK], and I. Ciocan{Fontanine [C], we de�ne the quantum elementary
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symmetric polynomials

e
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by the formula
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e

e

1

t
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+

e

e

2

t

n�2

+ � � �+

e

e

n

;

where q

1

; : : : ; q

n�1

are the independent parameters. The de�ning ideal

~

I

n

of

the small quantum cohomology ring is generated by the quantum elementary

symmetric polynomials, namely

QH

�

(F l

n

) = Z[x

1

; : : : ; x

n

; q

1

; : : : ; q

n�1

]=(

e

e

1

; : : : ;

e

e

n

):

We have to �nd the polynomials which represent the Schubert cycles in the

quantum cohomology ring. In the quantum cohomology ring, the intersection

pairing is identi�ed with the pairing induced by the residue pairing

hf; gi

Q

= Res

~

I

n

(fg); f; g 2

�

P

n

= Z[x; q];

with values in Z[q]: Based on the analogy with classical case (cf. [KV]), we

give the Jack-Macdonald type de�nition (see [M2], chapter VI) of quantum

Schubert polynomials

De�nition De�ne the quantum Schubert polynomials

e

S

w

as Gram-Schmidt's

orthogonalization of the set of lexicographically ordered monomials fx

I

j I � �g

with respect to the residue pairing h; i

Q

:

1) h

e

S

u

;

e

S

v

i

Q

= hS

u

;S

v

i =

(

1; if v = w

0

u

0 otherwise

2)

e

S

w

(x) = x

c(w)

+

P

I<c(w)

a

I

(q)x

I

, where a

I

(q) 2 Z[q

1

; : : : ; q

n�1

] and

I < c(w) means the lexicographic order.

Here c(w) is the code of a permutation w 2 S

n

, [M], p.9.

Though we treat the (small) quantum cohomology ring, it turns out that to

work with the equivariant quantum cohomology algebra ([GK], [K2]) is more

5



convenient. The main reason is that one can �nd Lascoux{Sch�utzenberger's

type representative for any equivariant quantum cohomology class. In other

words, each quantum double Schubert polynomial

e

S

w

(x; y) can be obtained

from the top one by using the divided di�erence operators.

Theorem-De�nition A Let x = (x

1

; : : : ; x

n

), y = (y

1

; : : : ; y

n

) be two sets of

variables, and

e

S

w

0

(x; y) :=

n�1

Y

i=1

�

i

(y

n�i

j x

1

; : : : ; x

i

);

where �

k

(t j x

1

; : : : ; x

k

) :=

k

X

j=0

t

k�j

e

j

(x

1

; : : : ; x

k

j q

1

; : : : ; q

k�1

) is the generating

function for the quantum elementary symmetric functions in x

1

; : : : ; x

k

. Then

e

S

w

(x; y) = @

(y)

ww

0

e

S

w

0

(x; y).

One of our main results is the quantum analog of Cauchy's identity for

(classical) Schubert polynomials, [M], (5.10).

Theorem B (Quantum Cauchy's identity)

X
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w
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0
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e
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0

(x; y): (1)

Corollary For each permutation w 2 S

n

,

e

S

w

(x; y) =

X

u2S

n

; l(u)+l(uw

�1

)=l(w)

e

S

u

(x; z)S

uw

�1

(y;�z):

This theorem is proved in geometric way by using the arguments due to

I. Ciocan-Fontanine [C] (see also [K1]); more particularly, we reduce directly

a proof of Theorem B to that of the following geometric statement:

Lemma Let I � � = (n � 1; n � 2; : : : ; 1; 0) and w 2 S

n

be a permutation,

then

h

e

e

I

(x);

e

S

w

(x)i

Q

= he

I

(x);S

w

(x)i; (2)

where e

I

(x) :=

n�1

Y

k=1

e

i

k

(x

1

; : : : ; x

n�k

)

(resp.

e

e

I

(x) :=

n�1

Y

k=1

e

e

i

k

(x

1

; : : : ; x

n�k

j q

1

; : : : ; q

n�k�1

))

is the elementary polynomial (resp. quantum elementary polynomial).
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By product, it follows from our proof that quantum Schubert polynomials

^

S

w

(x) de�ned geometrically (cf. [C]) coincide with those de�ned algebraically:

^

S

w

(x) �

e

S

w

�1

(x) (mod

e

I):

It is interesting to note, that the intersection numbers he

I

(x);S

w

(x)i (which

are nonnegative!) are precisely the coe�cients of corresponding Schubert poly-

nomial:

S

w

(x) =

X

I��

he

I

(x);S

w

(x)ix

��I

:

The quantum Cauchy formula (1) plays the important role in our approach

to the quantum double Schubert polynomials. As a direct consequence of (1),

we obtain the Lascoux{Sch�utzenberger type formula for quantum Schubert

polynomials (cf. Theorem-De�nition A).

Theorem C Let

e

S

w

0

(x; y) be as in Theorem-De�nition A, then

e

S

w

(x) = @

(y)

ww

0

e

S

w

0

(x; y)j

y=0

:

We introduce a quantization map

P

n

! P

n

; f 7!

~

f

by the rule

e

f(x) =

X

w2S

(n)

@

(y)

w

f(y)

e

S

w

(x; y) j

P

n

;

where for a polynomial f 2 P

1

, the symbol f j

P

m

means the restriction of f

to the ring of polynomials P

m

.

The quantization is a linear map which preserves the pairings, i.e.,

h

~

f; ~gi

Q

= hf; gi; f; g 2 P

n

:

Using the quantum Cauchy formula (1), we prove that the quantum double

Schubert polynomials are the quantization of classical ones. Another class of

polynomials having a nice quantization is the set of elementary polynomials

e

I

(x) :=

n�1

Y

k=1

e

i

k

(x

1

; : : : x

n�k

); I = (i

1

; : : : ; i

n�1

) � �:
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It follows from Theorem B that the quantization ~e

I

(x) of elementary polyno-

mial e

I

(x) is given by

~e

I

(x) =

n�1

Y

k=1

e

i

k

(x

1

; : : : ; x

n�k

j q

1

; : : : ; q

n�k�1

):

Remark To our knowledge, originally, construction of the quantization map,

using a remarkable family of commuting operators X

i

, appeared in [FGP];

independently, construction of quantization map was introduced in [KM] in a

di�erent form, using the Interpolation formula and quantum double Schubert

polynomials. The fact that the quantum elementary polynomials

e

e

I

(x) are the

quantization of classical ones (in the sense of [FGP]) was obtained in [FGP]. It

can be shown that two forms of quantizations mentioned above are equivalent.

Based on several examples, we make a conjecture ("quantum Schur func-

tions ") that quantization of the agged Schur function (see [M], (3.1), (4.9)

and (6.16))

s

�=�

(X

1

; : : : ; X

n

) = det

�

h

�

i

��

j

�i+j

(X

i

)

�

1�i;j�n

is given by

~s

�=�

(X

1

; : : : ; X

n

) = det

�

~

h

�

i

��

j

�i+j

(X

i

)

�

1�i;j�n

;

where

~

h

k

(X) is the quantum complete homogeneous symmetric polynomial of

degree k; andX

1

� � � � � X

n

are the agged sets of variables (for the de�nitions

of polynomials

e

h

k

(x) see [FGP], Section 7.3, and [KM], Section 5.2).

More generally, using the quantization procedure, we can de�ne the quan-

tum Grothendieck, quantum Macdonald and quantum Key polynomials. The

work is in progress and we hope to present our results in the nearest future.

Now let us consider a problem how to quantize the monomials. It seems to

be di�cult to �nd an explicit determinantal formula for a quantum monomial

~x

I

; i.e., to �nd a quantum analog of the Billey-Jockusch-Stanley formula for

Schubert polynomials in terms of compatible sequences [BJS]. We obtain the

following formulae for quantum monomials

~x

I

=

X

w2S

n

�(@

w

x

I

)

~

S

w

(x); I � �;
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~

S

w

0

(x; y) =

X

I��

~x

I

e

��I

(y):

As an application of our results, we give the higher genus analog of the

Vafa{Intriligator type formula for the ag manifold.

Theorem D Let hP (x

1

; : : : ; x

n

)i

g

be the genus g correlation function corre-

sponding to a polynomial P . Then

hP (x

1

; : : : ; x

n

)i

g

= Res

e

I

(P�

g

)

=

X

ee

1

=���=ee

n

=0

P (x

1

; : : : ; x

n

) det

 

@

e

e

i

@x

j

!

�1

(�(x

1

; : : : ; x

n

))

g

;

where �(x) := �(xjq) = h

e

S

w

0

(x; y);

e

S

w

0

(x; y)i

(y)

=

X

w2S

n

e

S

w

(x)

e

S

w

0

w

(x).

We also study a problem how to compute the quantum residues. This is

very important for computation of small quantum cohomology ring correlation

functions and the Gromov{Witten invariants. For this purpose we introduce

the quantum residues generating function

	(t) = h

n�1

Y

i=1

t

i

t

i

� x

i

i:

Then we have

Res

~

I

P (t

1

; : : : ; t

n�1

) = Res

I

(P (x

1

; : : : ; x

n�1

)	(x)) :

So it is important to determine this generating function. We can give a charac-

terization of this function as the unique solution to some system of di�erential

equations, see [KM], Proposition 16.

Finally, we introduce the extended coloured Ehresmann�oeder and give the

equivariant quantum Pieri rule, [KM], Corollary 7. The extended coloured

Ehresmann�oeder for S

n

is a set of all Ehresmann-Bruhat paths on S

n

(cf.

[LS2]). Let us de�ne the Ehresmann{Bruhat path (BE{path, for short) v ( w

on S

n

. First of all, let us remind a de�nition of the relation v ! w, [M1], p.5.

Relation v ! w means that

1) l(w) = l(v) + 1,

2) w = v � t, where t is a transposition.

Secondly, we de�ne (see, also, [FGP]) a relation v  w. Relation v  w

means that
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1) w = v � t, where t is a transposition,

2) l(w) � l(v) + l(v

�1

w). We de�ne (see also [FGP]) a weight of an arrow

v  w, denoted by wt(v  w), to be equal to the product q

i

: : : q

i+s�1

, if

t = t

ij

and 2s := l(w) + 1� l(v). We assume that weight of any arrow v ! w

is equal to 1.

Let us say that an arrow v  w (resp. v ! w) has a color k if w = vt

ij

and 1 � i � k < j � n.

Finally, the Ehresmann{Bruhat path between two (ordered) permutations

v and w in S

n

(notation v ( w) is a sequence of permutations v

0

; v

1

; : : : ; v

r

in

S

n

such that

v = v

0

*

)
v

1

*

)
v

2

*

)
� � �

*

)
v

r

= w; (3)

where symbol v

i

*

)
v

i+1

means either v

i

! v

i+1

or v

i

 v

i+1

.

We denote the number r in a representation (3) by l(v ( w).

Let us de�ne a weight of a BE{path v ( w as follows

wt(v ( w) =

r�1

Y

i=0

wt(v

i

*

)
v

i+1

):

We will say that a BE{path v ( w has a color k, notation v

k

(=w, if in the

representation (3) all arrows v

i

*

)
v

i+1

(i = 0; : : : ; r � 1) have the same color

k.

Theorem E (Quantum Pieri's rule). Let us consider the Grassmanian per-

mutation [b; d] = (1; 2; : : : ; b� d� 1; b; b� d; b� d + 1 : : : ; b� 1; b + 1; : : : ; n),

for 2 � b � n; 1 � d � b: Then

e

S

[b;d]

�

e

S

v

�

X

w

wt(v

b

(=w)

e

S

w

(mod

e

I

n

);

where the sum runs over all BE{paths v

b

(=w, such that

1) l(v ( w) = d;

2) if v

l

= v

l+1

(i

l

j

l

) (l = 0; : : : ; d� 1), then all i

l

are di�erent.

Remarks i) Generalization of Theorem E for quantum double Schubert poly-

nomials (equivariant quantum Pieri's rule) is given in [KM], Section 9.

ii) A proof of important particular case of Theorem E for d = 1 (quantum

Monk's formula) was �rst published in [FGP].
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iii) To our knowledge, in the classical case q = 0, the Pieri rule for Schubert

polynomials was �rst stated in [LS1], (2.2). Our formulation of Theorem E

is very close to that given in [BB]. The di�erence is: we use the paths in

the extended coloured Ehresmann�oeder instead of the paths in the ordinary

Ehresmann{Bruhat order (classical case). Very transparent proof of Monk's

formula one can �nd in the I. Macdonald book [M1], (4.15). It is the proof

that was generalized in [FGP] to the case of quantum Schubert polynomials.

Recently, F. Sotile [S] gave a proof of the Pieri rule based on geometrical

approach.
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Sc. Paris, t.294, 1982, p.447-450;

[LS2] Lascoux A. and Sch�utzenberger M.-P., Symmetry and ag manifolds,

Lect. Notes in Math., 1983, v.996, p.118-144;

[M1] Macdonald I.G., Notes on Schubert polynomials, Publ. LCIM, 1991,

Univ. de Quebec a Montreal;

[M2] Macdonald I.G., Symmetric Functions and Hall Polynomials, second

edition, Oxford University Press, new York/London, 1995;

[MS] McDu� D. and Salamon D., J-holomorphic curves and quantum coho-

mology, Univ. Lect., v.6, 1994, AMS;

[RT] Ruan Y. and Tian G., Mathematical theory of quantum cohomology,

J.Di�.Geom., 1995, v.42, n.2, p.259-367;

[S] Sotile F., Pieri's rule for ag manifolds and Schubert polynomials,

Preprint, 1995;

[W] Witten E., The Verlinde algebra and the cohomology of Grassmanian,

Preprint, Inst. of advanced study, Princeton, 1993, 72p.

12


