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Abstract

We de�ne new actions of the symmetric group and the degenerate Hecke algebra

on polynomials for which quasi-symmetric functions are the invariants. We give an

interpretation of these actions in terms of the representation theory of a degenerate

quantum group. The extension of these actions to the generic Hecke algebra allows us

to de�ne quasi-symmetric and non-commutative analogs of Hall-Littlewood functions.

R�esum�e

Nous d�e�nissons deux nouvelles actions du groupe sym�etrique et de l'alg�ebre de

Hecke d�eg�en�er�ee sur les polynômes pour lesquelles les fonctions quasi-sym�etriques sont

les invariants. Nous donnons une interpr�etation de ces actions en termes de th�eorie

des repr�esentations d'un groupe quantique d�eg�en�er�e. L'extension de ces actions �a

l'alg�ebre de Hecke g�en�erique nous permet de d�e�nir des analogues quasi-sym�etriques

et non commutatifs des fonctions de Hall-Littlewood.

1 Introduction

Recently, two generalizations of symmetric functions have been introduced:

noncommutative symmetric functions Sym [8] and quasi-symmetric functions

QSym [9]. These two Hopf algebras are dual to each other [18]. They appear

as character rings of various quantized algebras at q = 0: Hecke algebras, the

quantum group of Dipper and Donkin [3, 6], and a degenerate version of U

q

(gl

N

)

called U

0

(gl

N

) [7].

In this paper, we de�ne actions of the symmetric group and of the degener-

ate Hecke algebra on polynomials for which the quasi-symmetric functions are

the invariants. We interpret these operators as Weyl and Demazure operators

for the algebra U

0

(gl

N

). Extending then this action to the generic Hecke al-

gebra, we get a q-analog of the Weyl symmetrizer. This allows us to de�ne

quasi-symmetric analogs of Hall-Littlewood functions, and by duality noncom-

mutative ones. We describe then their expansion in the natural basis of Sym

and QSym corresponding to simple and projective indecomposable modules for

H

N

(0) together with some other properties which generalizes the classical ones.

The classical Hall-Littlewood functions arise in many contexts, such as the

calculation of the character table of �nite linear groups, the description of graded

representations of the symmetric group in the cohomology of unipotent varieties,

�
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or in the representation theory of a�ne Lie algebras. It would be of interest

to �nd similar interpretations for the quasi-symmetric and the noncommutative

ones.

The author wishes to thank J.-Y. Thibon without the one this work were not

possible, and D. Krob, A. Lascoux and J.-C. Novelli for their helpful comments

on this work.

1.1 Background

A composition K (resp. a pseudo-composition) of n is a p-tuple of positive (resp.

non-negative) integers whose sum is n. These integers are called the parts

of the composition, p is called the length of K and is denoted by `(K). A

non-increasing composition is called a partition. Let I = (i

1

; : : : ; i

q

) and J =

(j

1

; : : : ; j

p

) be two compositions. By (I; J) we mean the concatenation of the

two compositions de�ned by (I; J) = (i

1

; : : : ; i

q

; j

1

; : : : ; j

p

). We denote by

I B J the composition (i

1

; : : : ; i

q

+ j

1

; : : : ; j

p

). Subsets of f1; : : : ; n� 1g are in

one-to-one correspondence with compositions of n:

S = fi

1

< i

2

< � � � < i

p

g 7�! C(S) = (i

1

; i

2

� i

1

; i

3

� i

2

; : : : ; n� i

p

):

The inverse bijection (descent set of a composition) is given by:

K = (k

1

; : : : ; k

p

) 7�! Des(K) = fk

1

+ � � �+ k

j

; j = 1 : : : p� 1g:

For instance, the composition (3; 1; 2) of 6 corresponds to the subset f3; 4g of

f1; 2; 3; 4; 5g.

A composition can be represented by a skew Young diagram called a ribbon

diagram of shape I (see [17]). For example, the ribbon diagram of I = (3; 2; 1; 4)

is

The conjugate composition I~ of I is obtained by reading from left to right

the heights of the columns of the ribbon diagram of I . On their descent

set, the conjugate is the complement in f1 : : : ng. For example, the compo-

sitions (3; 2; 1; 4)~ = (1; 1; 2; 3; 1; 1; 1) correspond to descent sets f3; 5; 6g and

f1; 2; 4; 7; 8; 9g.

Let I and J be two compositions of the same number n. We say that I is

�ner than J i� Des(I) � Des(J). We will denote this by I�J . This can be read

on compositions in the following way: Let J = (j

1

; : : : ; j

p

). The composition

I is �ner than J i� there exist compositions I

1

of j

1

, I

2

of j

2

, : : : , I

p

of j

p

such that I = (I

1

; I

2

; : : : ; I

p

) is the composition obtained by gluing I

1

; : : : I

p

one

after another. In this case we call the composition #(I; J) = (`(I

1

); : : : ; `(I

p

))

the re�ning composition.

Finally let K = (k

1

; : : : ; k

m

) be a composition. The major index of Mac-

Mahon [17] is de�ned: Maj(K) =

P

i2Des(K)

i.

Example 1 Let I = (2; 2; 1; 2; 1; 1; 1; 2; 1; 1) and J = (2; 3; 5; 2; 1; 1). Then we

can write J = (2; 2 + 1; 2 + 1 + 1 + 1; 2; 1; 1), and so I is �ner than J . Then

#(I; J) = (1; 2; 4; 1; 1; 1) and Maj(J) = 2 + 5+ 10 + 12 + 13 = 42.
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Let (A;<) be a totally ordered alphabet. A quasi-tableau of ribbon shape

I is an object obtained by �lling a ribbon diagram r of shape I by letters of

A in such a way that each row of r is non-decreasing from left to right and

each column of r is strictly increasing from top to bottom. A word is said to

be a quasi-ribbon word of shape I if it can be obtained by reading from bottom

to top and from left to right the columns of a quasi-tableau of shape I . For

example, the word u = aacbabbac is not a quasi-ribbon word since the planar

representation of u obtained by writing its decreasing factors as columns is not

a quasi-tableau. On the other hand, the word v = aacbacdcd is a quasi-ribbon

word of shape (3; 1; 3; 2).

a a a

b

c b a

b c

a a a

b

c c c

d d

The algebra of noncommutative symmetric functions [8] is the free associative

algebra Sym = C hS

1

; S

2

; : : : i generated by an in�nite sequence of noncommuta-

tive indeterminates S

k

, called complete symmetric functions. For a composition

I = (i

1

; i

2

; : : : ; i

r

), one sets S

I

= S

i

1

S

i

2

: : : S

i

r

. The family (S

I

) is a linear ba-

sis of Sym. A useful realization can be obtained by taking an in�nite alphabet

A = f a

1

; a

2

; : : : g and de�ning its complete homogeneous symmetric functions

by the generating function

X

n�0

t

n

S

n

(A) = (1� t a

1

)

�1

(1� t a

2

)

�1

(1� t a

3

)

�1

: : : (1)

The noncommutative ribbon Schur functions R

I

can be de�ned by

R

I

=

X

J�I

(�1)

`(I)�`(J)

S

J

: (2)

The R

I

form a basis of Sym. In the realization of Sym given by equation (1),

R

I

reduces to the sum of all words of shape I [8].

The algebra of noncommutative symmetric functions is in natural duality

with the algebra of quasi-symmetric functions introduced by Gessel in [9] (cf.

[8, 18]).

Let X = fx

1

< x

2

< � � � < x

n

g be a totally ordered set of commutative

indeterminates. We denote P(X) (resp. P

k

(X)) the set of the subsets (resp.

k-elements subsets) of X . Let m be the monomial x

k

1

1

: : : x

k

n

n

where the k

i

are

possibly zero. For readability, we identifym = X

K

with the pseudo-composition

denoted by K = [k

1

; k

2

; : : : ; k

n

]. We de�ne the support of m as the subset

A � X of the x

i

whose exponent is non-zero and the composition I of non-zero

exponents written in the order of the variables. In the sequel we write A

I

in

place of the monomial m. For example if X = fx

1

< x

2

< x

3

< x

4

g, we write

x

2

1

x

3

= [2; 0; 1; 0] = fx

1

; x

3

g

(2;1)

and x

3

1

x

5

2

x

4

= [3; 5; 0; 1] = fx

1

; x

2

; x

4

g

(3;5;1)

.

An polynomial f 2 C [X ] is said to be quasi-symmetric i� for each com-

position I = (i

1

; : : : ; i

r

) the coe�cient of the monomials A

I

are independent

of the set of variables A 2 P

r

(X). The quasi-symmetric polynomials form a

subalgebra of C [X ] denoted by QSym.
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It is obvious to see that the family of quasi-monomial functions de�ned by

M

I

=

X

A2P

r

(X)

A

I

=

X

j

1

<���<j

r

x

i

1

j

1

: : : x

i

r

j

r

(3)

labeled by compositions I = (i

1

: : : ; i

r

) form a basis of QSym. For example

M

(2;1)

= fx

1

; x

2

g

(2;1)

+fx

1

; x

3

g

(2;1)

+fx

1

; x

4

g

(2;1)

+fx

2

; x

3

g

(2;1)

+fx

2

; x

4

g

(2;1)

+

fx

3

; x

4

g

(2;1)

and we writeM

(2;1)

= [2; 1; 0; 0]+[2; 0; 1; 0]+[2; 0; 0; 1]+[0; 2; 1; 0]+

[0; 2; 0; 1]+[0; 0; 2; 1] in side ofM

(2;1)

= x

2

1

x

2

+x

2

1

x

3

+x

2

1

x

4

+x

2

2

x

3

+x

2

2

x

4

+x

2

3

x

4

Another important basis of Qsym is given by the quasi-ribbon functions

F

I

=

X

I�J

M

J

; (4)

e.g., F

122

= M

122

+ M

1112

+ M

1211

+ M

11111

. It is important to note that

F

I

is the commutative image of the sum of all quasi-ribbon words of shape

I . The pairing h�; �i between QSym and Sym is de�ned by hM

I

; S

J

i = �

IJ

or

equivalently hF

I

; R

J

i = �

IJ

(cf. [18, 8]). This duality can be interpreted as the

canonical duality between the Grothendieck groups respectively associated with

�nite dimensional and projective modules over 0-Hecke algebras [5, 6].

2 Quasi-symmetrizing actions

The aim of this section is to show that there are actions of the symmetric

group and of the degenerate Hecke Algebra on polynomials whose invariants

are the quasi-symmetric functions. A representation-theoretical interpretation

of these actions is provided by the 0-Hecke algebra and a degenerate quantum

group studied by Krob and Thibon in [7]. The following construction provides

Weyl and Demazure character formulas for this quantum group.

The set of permutations of the alphabet X = fx

1

; : : : ; x

n

g will be identi�ed

with the symmetric group S

n

. For i = 1; 2; : : : ; n� 1, let �

i

denote the trans-

position that interchanges x

i

and x

i+1

, and �xes all other elements. We denote

the usual action of S

n

on Z[X ] by � �m.

Let q be a formal or complex parameter. The Hecke algebra H

n

(q) of type

A

n�1

is the algebra generated by the (T

i

)

i=1;::: ;n�1

with the relations:

T

2

i

= (q � 1)T

i

+q for 1 � i � n� 1;

T

i

T

j

= T

j

T

i

for ji� jj > 1; (5)

T

i

T

i+1

T

i

= T

i+1

T

i

T

i+1

for 1 � i � n� 2:

For generic q (di�erent from 0 or a non-trivial root of unity) H

n

(q) is isomorphic

to C[S

n

].

Let � = �

i

1

� � ��

i

p

be a reduced word (i.e. a minimal length decomposition).

The de�ning relations of H

n

(q) ensure that the element T

�

= T

i

1

� � �T

i

p

is

independent of the reduced word for �. The family (T

�

)

�2S

n

is a basis of the

Hecke algebra.
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De�nition 1 Let 0 < i < n. And m = x

k

1

1

: : : x

k

n

n

= [k

1

; : : : ; k

n

] a monomial.

the operator �

i

� act on m by

�

i

� [k

1

; : : : ; k

i

; k

i+1

; : : : ; k

n

] =

�

[k

1

; : : : ; k

i+1

; k

i

; : : : ; k

n

] if k

i

= 0 or k

i+1

= 0

[k

1

; : : : ; k

i

; k

i+1

; : : : ; k

n

] if k

i

6= 0 and k

i+1

6= 0

(6)

This de�ne an action of the symmetric group S

n

on Z[X] called the quasi-

symmetrizing action.

Proof | It is easy to see that ��A

I

= f�(x) j x 2 Ag

I

. �

Example 2 �

1

�x

6

1

x

2

= �

1

� [6; 2; 0] = [6; 2; 0] = x

6

1

x

2

and �

1

�x

6

1

x

2

3

=

�

1

� [6; 0; 2] = [0; 6; 2] = x

6

2

x

3

. If � is the permutation which exchanges 1

and 4 then ��x

1

x

2

3

= �� [1; 0; 2; 0] = ��fx

1

; x

3

g

(1;2)

= fx

3

; x

4

g

(1;2)

=

[0; 0; 1; 2] = x

3

x

2

4

. This actions is di�erent from the classical one, for exam-

ple: �

1

�x

2

1

x

2

= x

1

x

2

2

instead of �

1

�x

2

1

x

2

= x

2

1

x

2

. It is important to see that

the quasi-symmetrizing action is an action on the vector space of polynomials,

with no relation with the algebra structure: (�

1

�x

2

1

)(�

1

�x

2

) = x

1

x

2

2

whereas

(�

1

�x

2

1

x

2

) = x

2

1

x

2

.

Proposition 1 A polynomial f is quasi-symmetric i� �� f = f for all permu-

tations �.

In [13], Lascoux and Sch�utzenberger showed that there exist several families

of operators acting on K [X ] which satisfy the braids and Hecke relations. In

particular the so-called isobaric divided di�erences, given by

�

i

:f =

x

i

f � x

i+1

�

i

:f

x

i

� x

i+1

give an action of the degenerate Hecke algebra H

n

(0) (see, e.g., [16, 2, 1]).

In the sequel, unless explicitly stated, we always use the quasi-symmetrizing

action. We write � f instead of �� f .

De�nition 2 Let f be a polynomial and i < n. The quasi-symmetrizing isobaric

divided di�erences are de�ned by

�

i

f =

x

i

f � x

i+1

�

i

f

x

i

� x

i+1

and �

i

= �

i

�Id: (7)

Proposition 2 The action of � and � is given by

�

i

[k

1

; : : : ; k

i

; k

i+1

; : : : ; k

n

] =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

k

i

P

u=0

[k

1

; : : : ; k

i

� u; u; : : : ; k

n

] if k

i

6= 0 and k

i+1

= 0

[k

1

; : : : ; k

n

] if k

i

6= 0 and k

i+1

6= 0

�

k

i+1

�1

P

u=1

[k

1

; : : : ; u; k

i+1

� u; : : : ; k

n

] if k

i

= 0 and k

i+1

> 1

[k

1

; : : : ; k

n

] if k

i

= 0 and k

i+1

= 0

0 if k

i

= 0 and k

i+1

= 1

(8)
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�

i

[k

1

; : : : ; k

i

; k

i+1

; : : : ; k

n

] =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

k

i

P

u=1

[k

1

; : : : ; u; k

i

� u; : : : ; k

n

] if k

i

6= 0 and k

i+1

= 0

�

k

i+1

P

u=1

[k

1

; : : : ; u; k

i+1

� u; : : : ; k

n

] if k

i

= 0 and k

i+1

6= 0

0 if k

i

= 0 and k

i+1

= 0

0 if k

i

6= 0 and k

i+1

6= 0

(9)

Proof | These formulas are obvious consequences of the identity:

x

n

� y

n

= (x� y)

X

u+v=n�1

x

u

y

v

:

For example : �

1

[1; 2; 3] = [1; 2; 3] and �

2

[1; 0; 3] = � [1; 2; 1] � [1; 1; 2]. Using

this we derive the following:

Theorem 1 The �

i

and �

i

operators satisfy the braid relations, together with

�

2

i

= �

i

and �

2

i

= ��

i

.

Let � = �

i

1

; : : : ; �

i

p

be a reduced word. This ensures that the operators

�

�

= �

i

1

; : : : ; �

i

p

and �

�

= �

i

1

; : : : ; �

i

p

are independent of the reduced word

for �. For convenience, we state that �

e

= Id where e is the indentity of the

symmetric group.

Corollary 1 The mapping T

�

7! �

�

de�nes an action of the Hecke algebra at

q = 0.

Let ! be the maximal permutation n; n � 1; : : : ; 1. The operator �

!

=

P

�2S

n

�

�

is called the maximal symmetrizer.

Proposition 3 A polynomial f is quasi-symmetric i� �

!

f = f .

3 Weyl and Demazure formulas for U

0

(gl

N

)

A representation-theoretical explanation of the previous construction is pro-

vided by the degenerate quantum group U

0

(gl

N

) studied by Krob and Thibon

in [7]. It is the specialization q = 0 of a non-standard analogue of the universal

enveloping algebra of gl

N

. They show that the characters of the irreducible

polynomial modules over this algebra are the quasi-symmetric functions F

I

.

The algebra U

0

(gl

N

) is generated by three kinds of elements called Chevalley

generators: the raising (e

i

)

1�i�N�1

, the lowering (f

i

)

1�i�N�1

and the diagonal

(k

i

)

1�i�N

ones. We denote by U

0

(b

+

) the subalgebra generated by e

i

and k

i

.

The irreducible polynomial modules of degree n are indexed by compositions

K of n. The basis of the module D

K

is indexed by the quasi-ribbon words of

shape K over the alphabet f1; : : : ; Ng. The evaluation of a word w (i.e. the

pseudo-composition whose i-th part is the number of i's in w) is called the

weight of the corresponding vector. We identify the weight of a word with its

commutative images. The action of the Weyl group S

N

on weights is then the

quasi-symmetrizing action.

Let us describe the action of the Chevalley generators on the quasi-ribbon

basis of D

K

. Let w be a word, and i a integer. The diagonal generator k

i

6
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Figure 1: Quasi-crystal graph of the module D

(1;2)

for U

0

(gl

4

).

sends all the words w which contain the letter i to 0, keeping the other words

unchanged. Let w

+

(resp. w

�

) be the word obtained by replacing the last i by

an i+1 (resp. the last i+1 by a i). If there is no such letter w

+

is not de�ned.

The raising operator e

i

sends w to w

�

if w

�

exists and is a quasi-ribbon word

of shape K, otherwise it sends w to 0. The lowering operator f

i

send w to w

+

if w

+

exists and is a quasi-ribbon word of shape K, otherwise it sends w to

0. Figure (1) shows the structure of a U

0

(gl

N

)-module. We call this graph a

quasi-crystal graph. For simpli�cation we only show the action of the f

i

. The

action of e

i

reverses that of the f

i

.

Example 3 In the module D

(1;2)

for U

0

(gl

4

) the vector 212 is sent to 0 by f

1

because 222 is not a quasi-ribbon word of shape (1; 2). On the other hand f

2

sends it to 213.

Krob and Thibon showed that the character of this module D

K

is the quasi

ribbon function F

K

. Recall that in the classical case (i.e. gl

N

) the character

is the Schur function s

�

which can been obtained by the action of the Weyl-

Demazure symmetrizer : s

�

= �

!

x

�

. So it is natural to ask whether, in the

degenerate case, there is a symmetrization formula which gives the character.

The answer is positive :

7



Theorem 2 Let K = (k

1

; : : : ; k

p

) be a composition. The character of the irre-

ducible U

0

(gl

N

)-module D

K

is given by

F

K

= �

!

X

K

(10)

where X

K

= x

k

1

1

� � �x

k

p

p

= [k

1

; : : : ; k

p

; 0; : : : ; 0].

The second natural question is the following. Is the Demazure-Weyl sym-

metrizer re�nable into Demazure partial symmetrizers as in [2] ? The answer

is again positive. The extremal weight vectors are, by de�nition, the vectors

of weight �X

K

, the action of the Weyl group being the quasi-symmetrizing

action. They appear in bold-type on the �gure 1. The operators �

�

, called the

Demazure operators, allow to compute the character of the Demazure modules;

that is, the U

0

(b

+

)-modules generated by the extremal weight vectors.

Theorem 3 Let K be a composition and � a permutation. The Demazure

module U

0

(b

+

)v generated by the unique vector v 2 D

K

of extremal weight

�(X

K

) is the space generated by the vectors of weight less or equal than �(X

K

).

Its character (generating function of the weights), is given by

� (U

0

(b

+

)v) = �

�

(X

K

): (11)

Example 4 For the algebra U

0

(gl

4

) the module D

(1;2)

is of dimension 10. Its

basis is indexed by the words: 212, 213, 313, 214, 323, 314, 324, 414, 424,

434, of respective weights: [1; 2; 0; 0], [1; 1; 1; 0], [1; 0; 2; 0], [1; 1; 0; 1], [0; 1; 2; 0],

[1; 0; 1; 1], [0; 1; 1; 1], [1; 0; 0; 2], [0; 1; 0; 2], [0; 0; 1; 2].

The extremal weights are the following:

[1; 2; 0; 0], [1; 0; 2; 0], [0; 1; 2; 0], [1; 0; 0; 2], [0; 1; 0; 2], [0; 0; 1; 2].

Fix � = (1423). The vector v of weight [1; 0; 0; 2] = �� [1; 2; 0; 0] generate a

Demazure module of dimension 6 whose character is given by:

� (U

0

(b

+

)v) = �

�

[1; 2; 0; 0] = [1; 2; 0; 0] + [1; 1; 1; 0] + [1; 0; 2; 0] + [1; 1; 0; 1] +

[1; 0; 1; 1] + [1; 0; 0; 2].

4 Generic Hecke algebra and Hall-Littlewood

functions

We �rst recall some facts of the classical theory. Our notations will be

essentially those of [15], to which the reader is referred for more details.

Let �

n

(q) =

Q

i<j�n

(qx

i

�x

j

). Then, on the one hand, the Hall-Littlewood

polynomial Q

�

(x

1

; : : : ; x

n

; q) indexed by a partition � of length � n is de�ned

by [14]

Q

�

=

(1� q)

`(�)

[m

0

]

q

!

X

�2S

n

�

�

x

�

�

n

(q)

�

n

(1)

�

(12)

wherem

0

= n�`(�) and the q-integers are here de�ned by [n]

q

= (1�q

n

)=(1�q).

On the other hand, H

n

(q) acts on C [X ] by the formula T

i

= (q � 1)�

i

+�

i

and it is shown in [4] that if one de�nes the q-symmetrizing operator�

!

2 H

n

(q)

8



by �

!

=

P

�2S

n

T

�

, then

Q

�

(x

1

; : : : ; x

n

; q

�1

) = q

�

(

N

2

)

(1� q

�1

)

`(�)

[m

0

]

q

�1

!

�

!

(x

�

) : (13)

The normalization factor 1=[m

0

]

q

! is here to ensure stability with respect

to the adjunction of variables, and if we denote by X the in�nite set X =

fx

1

; x

2

; : : : ; g then Q

�

(X ; q) = lim

n!1

Q

�

(x

1

; : : : ; x

n

; q).

We have the specializations: Q

�

(X ; 0) is equal to the Schur function s

�

and

Q

�

(X ; 1) is equal to the monomial function m

�

,

The P -functions are de�ned by

P

�

(X ; q) =

1

(1� q)

`(�)

[m

1

]

q

! � � � [m

n

]

q

!

Q

�

(X ; q)

where m

i

is the multiplicity of the part i in �.

We consider these functions as elements of the algebra sym = sym(X) of

symmetric functions with coe�cients in C (q). There is a scalar product h ; i

on sym, for which the Schur functions s

�

form an orthonormal basis. We

denote by (Q

0

�

(X ; q)) the adjoint basis of P

�

(X ; q) for this scalar product. It is

easy to see that Q

0

�

(X ; q) is the image of Q

�

(X ; q) by the ring homomorphism

p

k

7! (1 � q

k

)

�1

p

k

(in �-ring notation, Q

0

�

(X ; q) = Q(X=(1 � q); q)). In the

Schur basis,

Q

0

�

(X ; q) =

X

�

K

��

(q)s

�

(X) (14)

where the K

��

(q) are the Kotska-Foulkes polynomials. The polynomial K

��

(q)

is the generating function of a statistic c called charge on the set Tab(�; �) of

Young tableaux of shape � and weight � [15].

Motivated by these remarks, we may seek a quasi-symmetrizing action of

the generic Hecke Algebra.

Theorem 4 The operators T

i

de�ned by

T

i

= (1� q)�

i

+q �

i

(15)

verify the Hecke relations.

In the classical case, the divided di�erences operators commute with the

multiplication by symmetric polynomials. So it is su�cient to check these iden-

tities on a basis of the module of the polynomials over the symmetric ones. The

Grothendieck and Schubert polynomials are helpful in this case [16]. In our

case, since the quasi-symmetrizing action do not commute with the product,

the ring C [X ] considered as a Qsym-module is not free. So the proof is done

by a direct calculation, checking the braid relation for all the monomials over

three variables.

This make it possible to de�ne a q-symmetrizing operator by the formulas

(see e.g., [4])

�

!

=

X

�2S

n

T

�

=

�

1 + T

n�1

+T

n�2

T

n�1

+ : : :+ T

1

� � �T

n�1

�

X

�2S

n�1

T

�

:

9



Proposition 4 The q-symmetrizing operator �

!

considered as acting on Z[q]

has for image the space of quasi symmetric functions.

Moreover, if we take coe�cients in C (q), the operator 1=[n]

q

!�

!

is a pro-

jector with range the space of quasi-symmetric functions.

For q = 0, this is nothing but the Weyl-Demazure symmetrizer �

!

. The proof

involves the Yang-Baxter factorization of �

!

using the fact that there is a

reduced word for ! ending with any elementary transposition.

De�nition 3 let I = (i

1

; : : : ; i

p

) be a composition and X

I

= x

i

1

1

: : : x

i

p

p

. The

quasi-symmetric Hall-Littlewood function G

I

is de�ned by

G

I

(x

1

; : : : ; x

n

; q) =

1

[p]

q

! [n� p]

q

!

�

!

(X

I

): (16)

As in the symmetric case the factor is for compatibility with adjunction of

variables. The functions G

I

(X ; q) form a basis of quasi-symmetric functions

with coe�cient in Z[q].

We have the following specializations: G

I

(X ; 0) is the quasi-ribbon function

F

I

and G

I

(X ; 1) is the quasi-monomial function M

I

.

For instance G

(2;1)

(x

1

; x

2

; x

3

; q) = x

2

1

x

2

+ x

2

1

x

3

+ x

2

2

x

3

+ (1� q)x

1

x

2

x

3

. On

this example, we verify that at q = 0, one has G

(2;1)

(x

1

; x

2

; x

3

; 0) = F

(2;1)

and

at q = 1, on has G

(2;1)

(x

1

; x

2

; x

3

; 1) =M

(2;1)

.

Theorem 5 The expansion of G

I

in the quasi-ribbon basis is given by

G

I

=

X

J�I

(�1)

`(J)�`(I)

q

s(I;J)

F

J

(17)

where s(I; J) is de�ned as follows. Let (k

1

; : : : ; k

p

) be the re�ning composition

#(J; I). Then s(I; J) = (k

1

� 1) + 2(k

2

� 1) + � � �+ p(k

p

� 1).

Example 5 Let us compute G

(1;1;2;1)

on X = fx

1

; x

2

; x

3

; x

4

; x

5

g. Start with

m = x

1

x

2

x

2

3

x

4

= [1; 1; 2; 1; 0]. Since m is symmetric for �

1

, �

2

, and �

3

, the

operators T

1

, T

2

, and T

3

multiply m by q. We can also deduce that �

!

0

m =

[4]

q

!m because [n]

q

! is the generating series for the permutations of S

n

counted

by their length (!

0

denote the maximal permutation for S

n�1

).

T

4

(m) = [1; 1; 2; 0; 1]

T

3

T

4

(m) = [1; 1; 0; 2; 1] + (1� q)([1; 1; 1; 1; 1])

T

2

T

3

T

4

(m) = [1; 0; 2; 1; 0] + q(1� q)([1; 1; 1; 1; 1])

T

1

T

2

T

3

T

4

(m) = [1; 1; 0; 2; 0] + q

2

(1� q)([1; 1; 1; 1; 1]):

From the factorization T

!

= (1+T

4

+T

4

T

3

+T

4

T

3

T

2

+T

4

T

3

T

2

T

1

)T

!

0

,

we get

�

!

([1; 1; 2; 1; 0]) = [4]

q

!

�

[1; 1; 2; 1; 0] + [1; 1; 2; 0; 1] + [1; 1; 0; 2; 1] + [1; 0; 1; 2; 1] + [0; 1; 1; 2; 1]

(1� q)(1 + q + q

2

) [1; 1; 1; 1; 1]

�

:

10



Using the basis of QSym

�

!

([1; 1; 2; 1; 0]) = [4]

q

!(M

(1;1;2;1)

+ (1� q

3

)M

(1;1;1;1;1)

)

= [4]

q

!(F

(1;1;2;1)

� q

3

F

(1;1;1;1;1)

):

This proves that G

(1;1;2;1)

= F

(1;1;2;1)

� q

3

F

(1;1;1;1;1)

.

Similarly, one would �nd

G

(3;2)

= F

(3;2)

� q F

(2;1;2)

� q F

(1;2;2)

+ q

2

F

(1;1;1;2)

� q

2

F

(3;1;1)

+

q

3

F

(2;1;1;1

) + q

3

F

(1;2;1;1)

� q

4

F

(1;1;1;1;1)

:

The transition matrix is an upper unitriangular matrix (i.e. 1 on the diagonal,

and M

I;J

is zero unless I�J), corresponding to the inverse of the q-Kotska

matrix. The analogue of the expression s

�

=

P

K

��

(q)P

�

will be obtained by

means of the dual basis, which lives in the space of noncommutative symmetric

functions.

Indeed, we can now de�ne the noncommutative Hall-Littlewood symmetric

functions by duality. (G

I

) is a basis of the algebra of quasi-symmetric functions

with coe�cients in Z[q]. The dual basis is a basis of noncommutative symmetric

functions. We denote this basis by H

I

. The analogue of the expression Q

0

�

=

P

K

��

s

�

is the following formula.

Theorem 6 The transition matrix whose rows are the H

J

expanded in the R

I

basis is a lower unitriangular matrix with positive coe�cients. Moreover the

expansion is given by:

H

J

(A; q) =

X

J�I

q

Maj(#(J;I)~)

R

I

: (18)

We observe that the analogues of the Kotska-Foulkes polynomials reduce here

to monomials. For instance H

(1

n

)

=

P

K

q

Maj(K~)

R

K

where K~ is the conjugate

composition of K. Another example is: H

(3;2;1)

= R

(3;2;1)

+ q

2

R

(5;1)

+ qR

(3;3)

+

q

3

R

(6)

. As the H

I

(A; q) form a basis of Sym, we can express the product of

two H

I

.

Theorem 7 Let I and J two compositions of lengths i and j. Then

H

I

H

J

=

X

J�K

q

Maj(#(J;K)~)

�

c(j; k)H

(I;K)

+ c(j; k � 1)H

(IBK)

�

(19)

where k is the length of the composition K and c(u; v) = q

(v�u)

[u]!

[v]!

.

This is a consequence of the formula R

I

R

J

= R

(I;J)

+R

(IBJ)

. For example

H

(3;1;2)

H

(1;2)

=H

(3;1;2;1;2)

+ (1� q)(q + 1)H

(3;1;3;2)

+ q(1� q)(q + 1)H

(3;1;2;3)

+ q(q � 1)

2

(q + 1)H

(3;1;5)

:

We are now interested in the specializations of the Hall-Littlewood functions

at roots of the unity. The noncommutative Hall-Littlewood functions have a

factorization property similar the the one discovered by Leclerc, Lascoux and

Thibon [10, 11].
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Theorem 8 Let k be a integer and � be a kth root of the unity. Suppose that

I = (i

1

; : : : ; i

p

) is a composition. Write p = ck + r, we break the composition

I in blocks of length k. There are c compositions J

1

; : : : ; J

c

of length k and a

composition J

c+1

of length r such that I = (J

1

; : : : ; J

c+1

). Then the H

I

(A; �)

factorize in the following way:

H

I

(A; �) = H

J

1

(A; �)H

J

2

(A; �) � � �H

J

c+1

(A; �) (20)

For instance, if � is a 3rd root of the unity,

H

(3;2;4;1;5;3;2;1)

(A; �) = H

(3;2;4)

(A; �)H

(1;5;3)

(A; �)H

(2;1)

(A; �).
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