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Abstract

We present here a second step in solving the algebraic identi�cation problem for the causal

analytic functionals in the sense of Fliess. These functionals are symbolically represented by

non commutative formal power series G =

P

w2Z

?

< G j w > w, where w is a word on a �nite

encoding alphabet. The problem consists in computing the coe�cients hG j wi from the choice

of a �nite set of informations on the input/output behaviour of the functional.

We have already presented a �rst step, in a previous work: we have shown that one can

compute the contribution of G on a family of non commutative polynomials g

�

with integer

coe�cients, indexed by the set of partitions.

These polynomials are linear combinations of the words w. We present here an algorithm,

devoted to inverse this relations, by computing the words w as linear combinations of the g

�

.

This very e�cient algorithm is implemented in MAPLE. As example we present here a test set

covering the identi�cation of 2048 words. Since the algorithm is generic, parametrized by the

length of the words, we conjecture that it actually solves the identi�cation at any order.

R�esum�e

Nous proposons une deuxi�eme �etape dans la r�esolution du probl�eme de l'identi�cation

alg�ebrique des fonctionnelles causales au sens de Fliess. Une telle fonctionnelle est repr�esent�ee

par une s�erie formelle non commutative G =

P

w2Z

?

< G j w > w, o�u w parcourt l'ensemble des

mots sur un alphabet �ni de codage. Il s'agit de calculer les coe�cients hG j wi �a partir d'un

ensemble �ni d'informations sur le comportement entr�ee-sortie de la fonctionnelle.

Nous avons d�ej�a calcul, dans un pr�ec�edent travail, les contributions de G relatives �a une

famille g

�

p! de polynômes non commutatifs index�ee par l'ensemble des partitions.

Ces polynômes sont combinaisons lin�eaires de mots w. Nous pr�esentons ici un algorithme

d'inversion, qui calcule les mots w comme combinaisons lin�eaires des g

�

. Cet algorithme tr�es

e�cace est impl�ement�e en MAPLE. Nous pr�esentons en exemple un jeu d'essais permettant

d'identi�er 2048 mots. Cet algorithme est g�en�erique, param�etr�e par la longueur des mots. Nous

conjecturons qu'il su�t �a r�esoudre l'identi�cation pour tous les mots w de toute longueur.
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1 Introduction

Let a(t) = (a

j

(t))

j=1::m

be an input time function, and let Z = fz

1

� � � z

m

g be a �nite encoding

alphabet. Following Fliess [2, 3], we call causal functional any input/output relation encoded by

a noncommutative generating series hG j wi, where w is a word over Z, the evaluation of which

is obtained by replacing in G any word w by the corresponding Chen iterated integral over the

input a(t) [1].

A natural question is then to decide if the generating series of a causal functional is a

canonical form. We know three answers to that problem, given by Fliess (see [4, 6]), Reutenauer

[10] and Sonntag and Wang [11]. Namely, they prove that any generating series encoding the

null functional is equal to zero. But they do not give any e�ective computation.

Here we deal with a stronger property, designed as the Algebraic Identi�cation Problem:

can we compute iteratively the coe�cients of a causal functional by some e�ective computation

involving only some information panels on polynomial inputs, and on some corresponding jet

values at zero of the output?

In a �rst work [6], we have computed from such a data panel, the contributions of G on a

family of noncommutative polynomials g

�

indexed by the partitions �.

Here a give a careful analysis of the polynomial g

�

, in order to explain our recursive

splitting algorithm, implemented in MAPLE.

2 Causal Functionals and Algebraic Identi�cation

2.1 Encoding of causal functionals

Let us consider the n-dimensional dynamical system:

(�)

8

>

<

>

:

_q = f

0

(q) +

X

j=1::m

f

j

(q)a

j

(t)

y(t) = h(q(t))

where a(t) = (a

j

(t))

j=1::m

is the m-dimensional input, q(t) 2 IR

n

is the current state, and

y = h(q(t)) is the output.

The vector �eld f

0

is called the drift of (�). It is currently studied by introducing a �ctive

input a

0

(t) � 1. A system without drift (f

0

� 0) is also called homogeneous in the inputs.

We introduce a symbolic alphabet of m colors Z = fz

1

; z

2

; � � � ; z

m

g, and the free monoid

Z

?

of words over Z. A noncommutative power series S on Z is any map from Z

?

to IR, usually

written as a formal sum S =

X

w2Z

?

hS j wi w. Then, starting at the state q(0) = q

0

, the output

of (�) can be obtained as an in�nite sum

y(t) =

X

w2Z

?

hG

�

j wi hC

a

(t) j wi where
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� G

�

=

X

w

hG

�

j wiw is the generating series, or Fliess series of the system [2]. It depends

only on the geometry of the system, and is de�ned by the Lie derivative formulas:

hG

�

j z

i

1

z

i

2

� � � z

i

k

i = f

i

1

� f

i

2

� � � � � f

i

k

� h

j

q

0

� C

a

(t) =

X

w

hC

a

(t) j wiw is the Chen series of the input a(t) and is de�ned as the solution

of the di�erential equation:

d

dt

C

a

(t) = C

a

(t)

X

z

j

2Z

a

j

(t) z

j

with C

a

(0) = 1

Thus the Chen series C

a

(t) appears as a symbolic encoding of the input a(t), and the Fliess

series G

�

plays the same role as the transfer function for a linear dynamical system.

We shall put afterwards L

a

(t) =

X

z

j

2Z

a

j

(t)z

j

.

2.2 Identi�cation problem

More generally, any noncommutative power series G, up to some convergence condition, can

be seen as the symbolic encoding of a causal functional that, from an input a(t), produces the

output given by the same summation:

y(t) =

X

w2Z

?

hG j wi hC

a

(t) j wi

Now we can point out the following two problems:

� The Identi�cation Problem consists in computing the coe�cients hG j wi by using the

knowledge (or measure) of a panel of input/output correspondences, between inputs and

resulting outputs, in a neighbourhood of t = 0.

� The Algebraic Identi�cation Problem is the same formulation, but we restrict in-

put/output knowledge to panels of �nite set of jets of the input, and �nite set of jets of

the resulting output, at time t = 0.

2.3 Our results

Our answer to the Algebraic Identi�cation Problem is based on the construction of a family of

non commutative polynomials g

�

indexed by the set of the colored partitions �. In case of a

non input homogeneous system, we have to re�ne this indices in a family of colored partitions of

the special form : � = 1

p


 �. The parts 3 and 4 of the paper are devoted to the combinatorial

recursive structure of the polynomials g

�

.

In a previous paper, we have done a �rst step [6, 5] of the solution, by computing, from

convenient data panel, each system contribution hG j g

�

i (or hG j g

1

p


�

i).
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It remains in a second step to compute, from the contributions g

�

, all the coe�cients

hG j wi. That could be reduced to compute the inverse of the matrix describing the polynomials

g

�

(or g

1

p


�

) as linear combination of the words w 2 Z

?

.

The part 5 of this paper is devoted to the description of vector and matrix encoding. Then

the part 6 presents the Maple package. This package is generic, not bounded (except by space

and time computation). It has been able to solve the inversion problem for all words of length

at most 11 on two letters (that is 2048 words), in non homogeneous case. We conjecture that

this algorithm actually solves the identi�cation at any order.

3 The output derivatives

The n

th

time derivative of the output y is given by:

d

n

dt

n

y(t) = hG jj

d

n

dt

n

C

a

(t)i =

X

w2Z

?

hG j wih

d

n

dt

n

C

a

(t) j wi

We obtain, by a straightforward computation:

d

n

dt

n

C

a

(t) = C

a

(t) A

n

(t)

where the A

n

are the noncommutative polynomials recursively de�ned as follows:

A

n+1

(t) = L

a

(t)A

n

(t) +

d

dt

A

n

(t) with A

0

(t) = 1

For instance:

A

2

= L

a

L

a

+

d

dt

L

a

=

X

i;j

a

i

a

j

: z

i

z

j

+

X

j

_a

j

z

j

=

X

i<j

a

i

a

j

: (z

i

z

j

+ z

j

z

i

) +

X

j

a

2

j

: z

2

j

+

X

j

_a

j

z

j

3.1 The generic equation

By setting the in�nite sum A =

X

n2IN

A

n

, we get the following generic equation:

A = "+ L

a

A+

d

dt

A where L

a

=

X

z

j

2Z

a

j

z

j

4 Di�erential algebra and colored partitions

We analyse now these equations in the light of the free di�erential calculus. Indeed, considering

now the inputs a

k

specialized in time t = 0, as di�erential letters, it is clear that each A

n

is a noncommutative polynomial in Z, the coe�cients of which are (commutative) di�erential

monomials in the a

k

.
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4.1 Partitions and multiplicities

For any �nite sequence of strictly positive integers � = (�

1

; �

2

; � � ��

n

), that we call here \multi-

index", we note �

+

the sequence obtained by reordering it in increasing order. We callmultiplicity

of � the usual notation of �

+

as a partition. For example:

if � = (3; 2; 6; 2; 1; 3; 2) then �

+

= 1222336 and �(�) = 1

1

2

3

3

2

6

1

On a single letter a

1

= a, the di�erential monomials become:

a

�

= (a

(i

1

�1)

)

e

1

(a

(i

2

�1)

)

e

2

: : : (a

(i

q

�1)

)

e

q

; 1 � i

1

< i

2

< : : : < i

q

Such a monomial � is indexed by the following partition ([9]):

� =

�

i

e

1

1

i

e

2

2

: : : i

e

q

q

�

; 1 � i

1

< i

2

< : : : < i

q

The weight and the size of � are de�ned as usually as follows:

wgt(�) =

X

k

e

k

:i

k

size(�) =

X

k

e

k

The empty partition is noted ".

We de�ne now a derivation law D on partitions, in order to re
ect the e�ect of time

derivative

d

dt

on di�erential monomials.

� For a di�erential letter:

d

dt

(a

(i

k

)

) = a

(i

k+1

)

; and then: D(i

k

) = i

k+1

� We extend D to any partition (as for di�erential monomials) by the Leibnitz derivation

rule and commutative reordering (the result being a linear combination of partitions):

D

�

i

e

1

1

i

e

2

2

: : : i

e

q

q

�

=

X

k=1::q

e

k

?

�

i

e

1

1

� � � i

e

k

�1

k

i

e

k+1

+1

k+1

: : : i

e

q

q

�

+

D� =

X

k=1::q

e

k

?

�

i

k+1

@

@i

k

(�)

�

+

Thus D� is a linear combinations of partitions that cover � in the Young lattice (i.e. for

dominance ordering [9]). For example, we have:

D(1

1

2

3

3

2

6

1

) = 2

4

3

2

6

1

+ 3 ? 1

1

2

2

3

3

6

1

+ 2 ? 1

1

2

3

3

1

4

1

6

1

+ 1

1

2

3

3

2

7

1

We obtain so a linear equation, with adequate de�nition of the coe�cients <�j�>:

D� =

X

�2partitions

<�j�>� with <�j�> 2 IN

Remark If <�j�> 6= 0, then size(�) = size(�). In other words, the operator D preserve the size.
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4.2 Colored partitions and multiplicities

Let Z = fz

1

; z

2

; � � � ; z

m

g be a �nite alphabet of colors. We call colored multi-index any �nite

sequence of \colored strictly positive integers" � = (�

1

z

i

1

; �

2

z

i

2

; � � � ; �

m

z

i

m

) (for any k, �

k

is a

strictly positive integer, and z

i

k

belongs to the alphabet of colors).

The word of colors of � is the word w = w(�) = z

i

1

z

i

2

� � � z

i

m

. The sequence of integers

occuring in � for the color z

j

, after increasing reordering, forms a partition �

j

(�). We de�ne the

multiplicity of � as being the family of the �

j

(�) for all the colors z

j

.

Such a family � of partitions indexed by colors is called a colored partition. In order to

deal with linear combinations of colored partitions, it is convenient to adopt the tensor product

notation:

� = �

1


 �

2


 � � � 
 �

m

where the partition �

j

is the component of � for color z

j

. So, on the set of di�erential letters

fa

j

g

j=1::m

, the colored partition � will denote the di�erential monomial

a

�

= a

�

1


�

2


���
�

m

= a

�

1

1

a

�

2

2

� � �a

�

m

m

For each color z

j

, we denote by a

j

the colored partition

a

j

= "


(j�1)


 1
 "


(m�j)

The derivation law D on colored partitions, re
ecting the time derivative

d

dt

of

di�erential monomials on m di�erential letters, is given by multilinearly extending the law D

de�ned on each color component:

D(�

1


 �

2


 � � � 
 �

m

) =

X

j=1::m

�

1


 � � � 
 �

j�1


D(�

j

)
 �

j+1


 � � � 
 �

m

In terms of linear algebra, we get so for any colored partition � the (sparse) linear equation:

D� =

X

�2colored partitions

<�j�> ? � with <�j�> 2 IN

4.3 Combinatorial analysis of the generic equation

Let us now interpret combinatorially the series A, by identifying each di�erential monomial with

its colored multiplicity. By factorizing this series according to the colored partitions, it can be

rewritten in the form A =

X

�

� : g

�

. Then the generic equation becomes:

X

�

� : g

�

= "+

m

X

j=1

X

�

a

j

� : z

j

g

�

+

X

�

D(�) : g

�

By identifying in the two members the factors of the same non trivial colored partition

� 6= ", we obtain:

g

�

=

m

X

j=1

z

j

g

�.a

j

+

X

�

<�j�> ?g

�

with<�j�> 2 IN
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where we the symbol . is used as follows:

� . a

j

=

�

� if j� = �

0 in other cases

The coe�cients <�j�> are related to the primitives of the colored partition �.

4.4 Non homogeneous colored multiplicities

We specify here the problem in case of non input homogeneous sytems with one controlled input:

(�)

�

_q = f

0

(q) + f

1

(q)a

1

(t)

y(t) = h(q(t))

Then we must set a

0

(t) � 1, hence the 2-colored mutiplicity of weight n must be written as:

� = �

0


 � where

�

�

0

= 1

p

wgt(�) = p+ wgt(�)

The derivation law must be adapted. Indeed, we have to set D(�

0

) = 0, and then:

D(1

p


 �) = 1

p


D(�)

The integer p is called the depth of the colored partition 1

p


 �. In addition we have:

wgt(1

p


 �) = p+ wgt(�) and size(1

p


 �) = p+ size(�)

Then the recursive equations become:

g

1

p


�

= z

0

g

1

p�1


�

+ z

1

g

1

p


�.1

+

X

�

<�j�> ?g

1

p


�

In the right hand side, the �rst term vanishes if p = 0. The second term vanishes if the partition

� has no part equal to 1. The third sum, extended to the \primitives" � of �, is �nite.

5 The algorithm

Let us rewrite the recursive equations as follows:

g

1

p


�

�

X

�

<�j�> ?g

1

p


�

= z

0

g

1

p�1


�

+ z

1

g

1

p


�.1

Then the left member is a linear combinations of partitions of the same size n = p+size(�).

The right member is a linear combinations of partitions of size n� 1. We shall use this fact to

put the partitions occurring in this left member into a triangular set.
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5.1 The matrix encoding

5.1.1 Partitions and words ordering

For any integers m and k, we note M

k

m

the set of partitions that can be written in the form:

j

1

j

2

� � � j

m

with 1 � j

1

� j

2

� j

3

� : : : � j

m

� k

ordered by the lexicographical ordering.

We denote by Z

m;k

the set of words on Z of length m in z

1

and k � 1 on z

0

, ordered by

lexicographical ordering according to the convention z

1

< z

0

. Then the application de�ned by

j

1

j

2

� � � j

m

7! z

j

1

�1

0

z

1

z

j

2

�j

1

0

z

1

z

j

3

�j

2

0

: : : z

1

z

j

m

�j

m�1

0

z

1

z

k�j

m

0

is a ordered bijection of M

k

m

on Z

m;k

. Their common cardinality is equal to

�

m+ k � 1

m

�

.

5.1.2 Vector encoding

Let k be a �xed positive integer. For any integers m; p we note G

m

=p

(k) the column vector of all

polynomials g

1

p


�

for � 2 M

k

m

, presented in lexicographical ordering. We obtain so a vector

equation:

(Id � P

k

m

) �G

m

=p

(k) = z

1

ext(G

m�1

=p

(k); 0) + z

0

G

m

=p�1

(k)

where ext(G

m�1

=p

(k); 0) denotes the column vector G

m�1

=p

(k) (of dimension

�

m+ k � 2

m� 1

�

) com-

pleted by 0 polynomials up to dimension

�

m+ k � 1

m

�

. The transformation (Id � P

k

m

) is rep-

resented by a matrix J

k

m

sparse and lower triangular, with 1 only on the main diagonal, where

appear only some primitive coe�cients. We note T

k

m

the inverse matrix of J

k

m

.

5.1.3 Expansion of G

m

=p

(k) on the basis Z

m;k

We compute here the vector G

m

=p

(k) on the basis Z

m;k

. In the right member of the previous

equation, the splitting sum with the pre�xes z

1

and z

0

must then be interpreted as horizontal

concatenation of sub-blocks (that we note here by ==). We obtain so:

G

m

=p

(p) = T

p

m

" 

G

m�1

=p

(p)

0

!

==G

m

=p�1

(p)

#

G

m

=p�1

(p) = T

p

m

" 

G

m�1

=p�1

(p)

0

!

==G

m

=p�2

(p)

#

� � � G

m

=1

(p) = T

p

m

" 

G

m�1

=1

(p)

0

!

==G

m

=0

(p)

#

G

m

=0

(p) = T

p

m

 

G

m�1

=0

(p)

0

!

� � � G

1

=0

(p) = T

p

1

0

B

B

B

B

B

B

@

1

0

.

.

.

0

1

C

C

C

C

C

C

A
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5.2 Splitting analysis

5.2.1 The �rst splitting

The �rst splitting is obtained by computing J

p

m

G

m

=p

(p), which has upper block triangular form,

the �rst block of which is G

m�1

=p

(p).

The remaining second square diagonal block is a restriction G

m

=p�1

(p) to its lower part. We

shall now describe this lower part, and continue recursively its splitting.

5.2.2 The recursive splitting

For any integers m, and 1 � j � k, we note M

[j;k]

m

the set of partitions that can be written in

the form:

i

j

1

1

i

j

2

2

� � � i

j

m

m

with j � j

1

� j

2

� j

3

� : : : � j

m

� k

The restriction of J

k

m

to the partitions of M

[j;k]

m

will be noted J

k

m

[j;k]. The diagonal block of

G

m

=p

(k) restricted to the lines of M

[j;k]

m

will be noted G

m

=p

[j;k]. This allows to split recursively:

J

p

m

[1;p]G

m

=p�1

[1;p] =

" 

G

m�1

=p�1

[1;p]

0

!

==G

m

=p�2

[1;p]

#

J

p

m

[2;p]G

m

=p�2

[2;p] =

" 

G

m�1

=p�2

[2;p]

0

!

==G

m

=p�3

[2;p]

#

� � �

We deduce, in particular:

Lemma 5.1 The determinant of G

m

=p

(p) is the product of the determinant of G

m�1

=p�j

and of the

determinants of the matrices G

m�1

=p�j

[j;p] for j = 1 � � �p.

6 The package

The package is very concise. It uses intensively the recursive block structure of the matricesG

m

=p

,

The matrices of primitive coe�cients J

p

m

are sparse, with a recursive block triangular form. A

combinatorial construction of a sequence extraction procedure allows to an easy programming

in MAPLE. For example, the \choice criteria" at level 3 , are sequences extracted from the

sequence criterium(4; 0; 3) (the = and == are only written to explain the structure, and the � for

lacking elements):

criterium(4; 0; 3) = [1; 2; 3; 4=5; 6; 7=8; 9=10==11; 12; 13=14;15=16==17; 18=19==20]

criterium(4; 1; 3) = [1; 2; 3; �=5; 6; �=8; �=� ==11; 12; �=14; �=� ==17; �= � ==�]

= [1; 2; 3; 5; 6; 8; 11; 12; 14;17]

criterium(4; 2; 3) = [1; 2; �; �=5; �; �=�; �=� ==11; �; �=�; �=� ==�; �= � ==�] = [1; 2; 5; 11]

For computing the matrices T

p

m

, we avoid any Gauss elimination. We treat all inversions by a

recursive call of products, additions, and concatenation of sub-blocks.

9



The matrix G

m

=p

(p) is computed by the call A(p;m). Its analysis and prime factor decom-

position is obtained by the call analysis(p;m).

We join as examples some results returned by the analysis procedure, with computation

time in seconds, on a PowerMac G3 at 266 Mhz. We have been able to complete the analysis for

all words of length at most 11 over two letters, that represents the identi�cation of 2048 words,

starting from polynomials g

1
�

with up to 16 decimal digits integers coe�cients.

6.1 Conclusion

The package is generic, and it allows to decide for any any word w (except for lack of time or

memory size) if it is a linear combination of the polynomials g

�

.

We conjecture that it will never return zero to any call of the procedure analysis(m; k).

Hence we conjecture that the Algebraic Identi�cation Problem is completely solved by this

algorithm.

References

[1] K.T. Chen, Iterated path integrals , Bull. Amer. Math. Soc., vol.83 (1977) 831-879.

[2] M. Fliess, Fonctionnelles causales non lin�eaires et ind�etermin�ees non commutatives, Bull.

Soc. Math. France 109 (1981) 3-40.

[3] M. Fliess, M. Lamnabhi, F. Lamnabhi-Lagarrigue, An algebraic approach to nonlinear

functional expansions, IEEE Trans. Circuits and Systems, vol. CAS-30, n

o

8 (1983) 554-

570.

[4] M. Fliess, On the concept of derivatives and Taylor expansions for nonlinear input/output

systems, Proceedings of the 22nd IEEE Conf. Decision and Control, 1983, San Antonio,

Texas, pp 643-646.

[5] C. Hespel, Iterated derivatives of a non linear dynamic system and Fa�a di Bruno formula,

Mathematics and Computers in Simulation, vol. 42, pp 641-657, 1996.

[6] C. Hespel, G. Jacob, First steps towards Exact Algebraic Identi�cation, Discrete Math.,

vol. 180,pp. 211-210, 1998.

[7] G. Jacob, Algebraic methods and computer algebra for nonlinear systems' study, in: IMACS

Symposium MCTS, Modelling and Control of Technochological systems, vol.2 (lille, 1991)

599-608.

[8] F. Lamnabhi-Lagarrigue, P.E. Crouch, A formula for iterated derivatives along trajectories

of nonlinear systems, Systems and Control letters 11 (1988) 1-7.

[9] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2d ed., Oxford Science Pub-

lications, 1995.

[10] C. Reutenauer, private communication.

[11] Y. Wang, E.D. Sontag, On two de�nitions of observation spaces, Systems and Control letters

13 (1989) 279-289.

10



Annexe The call analysis(m;k) gives the prime decompositions of determinant of

diagonal blocks excepted the �rst, which is equal to 1.

> analyse(10,2); # dim(A(10,2))=55.

primes; (19)

primes; (3) (17) (19)

primes; (2)

2

(3) (17)(19)

primes; (2)

4

(3) (13) (17)

2

(19)

primes; (2)

3

(11) (13)

2

(17)

2

(19)

primes; (2)

2

(11) (13)

3

(17)

2

(19)

primes; (2)

2

(11) (13)

3

(17)

2

(19)

primes; (2)

2

(11) (13)

2

(17)

2

(19)

primes; (2) (11) (13) (17) (19)

temps local =; 9:000

> analyse(10,3)

# dim(A(10,3))=220 (maximal decimal size of integers: 12 digits)

primes; (2)

15

(3)

8

(5)

3

(7)

2

(11)

6

(13)

13

(17)

14

(19)

9

(23) (29)

primes; (2)

20

(3)

8

(5)

8

(7)

4

(11)

8

(13)

14

(17)

13

(19)

8

(23)

3

(29)

primes ( 2)

17

( 3)

10

( 5)

7

( 7)

6

( 11)

10

( 13)

14

( 17)

12

( 19)

8

( 23)

6

( 29)

primes; (2)

19

(3)

14

(5)

6

(7)

3

(11)

12

(13)

14

(17)

10

(19)

8

(23)

7

(29)

primes; (2)

12

(3)

8

(5)

7

(7) (11)

13

(13)

13

(17)

9

(19)

8

(23)

8

(29)

primes; (2)

8

(3)

6

(5)

7

(11)

11

(13)

14

(17)

6

(19)

6

(23)

7

(29)

primes; (2)

3

(3)

5

(5)

7

(11)

8

(13)

10

(17)

4

(19)

4

(23)

6

(29)

primes; (2)

3

(3)

2

(5)

4

(7) (11)

5

(13)

6

(17)

3

(19)

2

(23)

3

(29)

primes; (2) (3) (5) (7) (11)

2

(13)

2

(17) (19) (23) (29)

temps local =; 236:000

analysis(8,4)

# dim(A(10,3))=330: (maximal decimal size of integers: 16 digits).

primes ; ( 2)

21

( 3)

74

( 5)

32

( 7)

24

( 11)

55

( 13)

44

( 17)

16

( 19)

23

( 23)

10

( 29)

2

( 31)

primes ; ( 2)

35

( 3)

58

( 5)

38

( 7)

25

( 11)

48

( 13)

36

( 17)

13

( 19)

21

( 23)

13

( 29)

3

( 31)

primes ; ( 2)

16

( 3)

54

( 5)

26

( 7)

24

( 11)

39

( 13)

30

( 17)

11

( 19)

18

( 23)

14

( 29)

4

( 31)

primes; ( 2)

22

( 3)

49

( 5)

17

( 7)

15

( 11)

26

( 13)

22

( 17)

8

( 19)

13

( 23)

11

( 29)

4

( 31)

primes; ( 2)

13

( 3)

29

( 5)

12

( 7)

5

( 11)

17

( 13)

14

( 17)

7

( 19)

8

( 23)

7

( 29)

4

( 31)

primes ; ( 2)

7

( 3)

17

( 5)

7

( 11)

7

( 13)

8

( 17)

3

( 19)

4

( 23)

3

( 29)

3

( 31)

primes; ( 3)

5

( 5)

3

( 11)

2

( 13)

2

( 17) ( 19) ( 23) ( 29) ( 31)

The package \IDENTALG" (a shirt MAPLE �le) can be obtained by email address: jacob@li
.fr
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