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Abstract. Two di�erent factorizations of the Fibonacci in�nite word were

given independently in [7] and [5]. Our work started after a remark by J. Bers-

tel, who observed (and consequently conjectured) that the words of the factor-

ization in [5] were products of two consecutive words of the factorization in [7].

The results we give here con�rm J. Berstel's claim and fully describe the links

between the two factorizations.

R�esum�e. Deux factorisations du mot de Fibonacci ont �et�e donn�e dans deux

articles ind�ependants, [7] et [5]. Notre travail a pris sa source suite �a une remar-

que de J. Berstel, qui avait observ�e (et par le fait même avait conjectur�e) que les

mots de la factorisation [5] �etaient obtenus en concat�enant deux mots cons�ecutifs

de la seconde factorisation [7]. Nos r�esultats con�rment l'observation de J. bers-

tel et d�etaillent les liens entre ces deux factorisations.

1 Introduction

The numerous aspects under which the combinatorial properties of the Fi-

bonacci word have been studied are amazing. A huge set of di�erent notions

in algebraic combinatorics on words

2

may be illustrated by using this in�nite

word as an example. It is also of interest in other �elds such as number theory,

quasicrystals, computational complexity, to name only a few (see [1]).

The combinatorial structure of an in�nite word is often revealed by the study of

the set of its factors: that is, the �nite words appearing within it. As far as the

Fibonacci word is concerned, this is well illustrated by the recent work of Berstel

and de Luca [2]. Wen and Wen [7] have looked at a particular set of factors of

the Fibonacci word, they call singular factors. They are the consecutive factors

of the Fibonacci word of lengths F

0

, F

1

, F

2

, etc, where (F

n

)

n�0

is the Fibonacci

sequence given by F

0

= F

1

= 1 and F

n+1

= F

n

+ F

n�1

(n � 1).

Our work started from a remark by Jean Berstel linking the singular factors

to the Lyndon words appearing in the Lyndon factorization of the Fibonacci

word we gave in [5]. Our investigation not only con�rmed the remark made by

J. Berstel but also lead us to a full description of the link between the singular

factors and the Lyndon factors of the Fibonacci word. This paper is the result

of this work. We were also able to generalize our construction to characteristic

sturmian words, a set of in�nite words of which the Fibonacci word is the most

famous example.
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The paper is structured as follows. The �rst section briey describes the results

in [7] concerned with the present work. More precisely, we de�ne the singular

factors of the Fibonacci word, list some of their properties and state the two

main theorems in [7]. The next section begins by recalling the Lyndon factor-

ization of the Fibonacci word given in [5]. We then study the link between

singular factors and Lyndon factors of the Fibonacci word. Expressing Lyndon

words in terms of the singular factors leads to two theorems from which we

are able to deduce the two main results in [7]. We conclude by sketching the

generalization of our results to characteristic sturmian words.

2 Singular factors

Throughout the paper, we only consider the two letter alphabet A = fa; bg.

We totally order A by a < b and extend this order to the set A

�

of all words

lexicographically. The notations we use are those usual in theoretical computer

science (see [4]). We shall make great use of the notation wa

�1

, denoting the

word obtained from w by deleting an a at the end of w (if possible). Let us

start by recalling the de�nition of the Fibonacci word.

De�nition 2.1 Let f

0

= b, f

1

= a and de�ne f

n+1

= f

n

f

n�1

, for n � 1. The

words f

n

(n � 0) are usually called the �nite Fibonacci words. Hence, e.g.,

f

2

= ab, f

3

= aba, f

4

= abaab, and so on. Since f

n

is a left factor of f

n+1

for

all n � 0, we may consider the (right) in�nite word

f = lim

n!1

f

n

= abaababaabaababaabab � � �

The word f is called the (in�nite) Fibonacci word.

For more details on the Fibonacci word, the reader is refered to J. Berstel's

recent survey on sturmian words [1].

Remarks 2.2 1. The length of f

n

is the nth Fibonacci number F

n

(where

the Fibonacci sequence is de�ned by F

0

= F

1

= 1 and F

n+1

= F

n

+F

n�1

,

for n � 1).

2. Moreover, for all n � 2, we have (jf

n

j

a

; jf

n

j

b

) = (F

n�2

; F

n�1

).

3. For all n � 1, the word f

2n

ends with ab and the word f

2n+1

ends with

ba.

De�nition 2.3 ([7, page 589])

Let n � 2 and suppose f

n

ends with �� (with �; � 2 A and � 6= �). We de�ne

the word w

n

by w

n

= �f

n

�

�1

.

The word w

n

is a factor of the Fibonacci word f and is called the nth singular

factor of f . We also de�ne w

0

= a, w

1

= b; it is useful to set w

�1

= � (the

empty word).
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Hence, we have w

2

= aa, w

3

= bab, w

4

= aabaa, w

5

= babaabab, and so forth.

Remarks 2.4 We collect here some remarks from [7].

1. The length of w

n

is the nth Fibonacci number F

n

. Let us verify that w

n

is indeed a factor of f . As is known, any conjugate of a factor of f is also

a factor of f . Hence, the word af

2n

f

2n+1

a

�1

is a factor of f , since it is

conjugated to f

2n+2

. Thus w

2n

and w

2n+1

are factors of f since they are

consecutive factors of af

2n

f

2n+1

a

�1

= (af

2n

b

�1

)(bf

2n+1

a

�1

).

2. Note that, for all n � 0, we have

(jw

n

j

a

; jw

n

j

b

) =

(

(jf

n

j

a

+ 1; jf

n

j

b

� 1) if n is odd

(jf

n

j

a

� 1; jf

n

j

b

+ 1) if n is even

3. As a consequence, w

n

is not conjugated to f

n

.

We are now able to formulate [7]'s �rst fundamental result:

Theorem 2.5 ([7, Theorem 1])

We have:

f =

1

Y

j=0

w

j

:

That is,

f = (a)(b)(aa)(bab)(aabaa)(babaabab) � � �

The set of factors of the Fibonacci word has received great attention from a

large number of authors (again, see [1]; see also [2]). From this point of view,

the next fundamental result of [7] is the following:

Theorem 2.6 ([7, Theorem 2])

Two occurences of the singular factor w

m

(n � 0) never overlap. Denote these

occurences by w

m;1

, w

m;2

, w

m;3

, and so forth (from left to right). Then we have:

f = (

m�1

Y

j=0

w

j

)(w

m;1

z

1

w

m;2

z

2

w

m;3

z

3

� � � )

where z

k

2 fw

m+1

; w

m�1

g, for all k � 1, and z

1

z

2

z

3

� � � is the Fibonacci word

over the alphabet fw

m+1

; w

m�1

g.

For example, with m = 2, we have w

m

= aa, w

m+1

= bab and w

m�1

= b. Thus:

f = (a b)( aa bab aa b aa bab aa bab aa � � � )

Note that the theorem is true also for m = 0 (recall that w

�1

= �). The word

z

1

z

2

z

3

� � � is then equal to the Fibonacci word over the << alphabet >> fb; �g.
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3 Lyndon factorization

Lyndon words are words strictly smaller than their proper right factors. Al-

though these may be de�ned over an arbitrary alphabet, we shall restrict our-

selves to the two letter alphabet A = fa; bg. For instance, letters are Lyndon

words. The words ab, abb, aab, aabb, etc, are Lyndon words. Denote by L

the set of Lyndon words (over A). More generally, given u; v 2 L, we have:

uv 2 L , u < v. Hence, e.g., aababb is a Lyndon word. For more details

concerning Lyndon words, the reader is refered to [4, Chap. 5].

Any Lyndon word ` of length at least two is a product of two Lyndon words u; v

with u < v. For example, we have aababb = (a)(ababb), aababb = (aab)(abb)

and aababb = (aabab)(b). The standard factorization of ` is obtained by taking

v of maximal length. We usually denote the standard factorization of ` by

` = `

0

`

00

. Hence, e.g., (aababb)

0

= a and (aababb)

00

= ababb. The Lyndon tree

associated with the Lyndon word ` is the (planar rooted binary) tree obtained

by computing, recursively down to letters, the standard factorization of `

0

and

`

00

, and that of (`

0

)

0

, and (`

0

)

00

and so on. Figure 1 shows the Lyndon tree

associated with ` = aababb. Note that each Lyndon tree is complete, that is,

every interior vertex has both a right and left son. We will only deal with

complete planar rooted binary trees, having their leaves labelled by letters of

A, which will simply be called trees from now on.

a

ba

a b
b

Figure 1: The Lyndon tree associated with ` = aababb

The fundamental result concerning Lyndon words is the factorization theorem:

Theorem 3.1 ([3], see also [4])

Any non empty word is a unique product of non increasing Lyndon words. That

is, given any non empty word w 2 A

�

, there exist `

1

, . . . , `

n

2 L (n � 1), with

`

1

� � � � � `

n

such that w = `

1

� � � `

n

.

For example, we have abaababaabaababaabab = (ab)(aabab)(aabaababaabab).

Theorem 3.1 extends to right in�nite words. We shall not detail this extension

here, but refer the reader to [6]. In [5], we gave the expression of the Lyndon

words appearing in the factorization of the Fibonacci word.

Proposition 3.2 ([5, Prop. 3.2])

Let ' : A

�

! A

�

be the morphism de�ned by a 7! aab and b 7! ab. De�ne
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words by `

0

= ab and `

n+1

= '(`

n

), for n � 0. Then (`

n

)

n�0

is a sequence of

decreasing Lyndon words and we have

f =

1

Y

n=0

`

n

: (1)

Thus, we have f = (ab)(aabab)(aabaababaabab) � � �

Remarks 3.3 1. The length of `

n

is F

2n+2

. This is easily veri�ed by using

the morphism ' and by noting that j'(w)j

a

= 2jwj

a

+ jwj

b

and j'(w)j

b

=

jwj

a

+ jwj

b

.

2. J. Berstel had pointed out that the Lyndon words `

0

, `

1

, `

2

, . . . were

concatenation of two consecutive singular factors, i.e. `

0

= ab = (a)(b) =

w

0

w

1

, `

1

= abbab = (aa)(bab) = w

2

w

3

, etc. This is in accordance with the

fact that j`

n

j = F

2n+2

= F

2n+1

+ F

2n

= jw

2n+1

j + jw

2n

j. Now, the word

`

n

is also equal to af

2n

f

2n+1

a

�1

, as may be veri�ed by induction. Hence,

J. Berstel's claim is correct since af

2n

f

2n+1

a

�1

= (af

2n

b

�1

)(bf

2n+1

a

�1

).

3. As a consequence, Eq. (1) reproves Thm. 2.5 ([7, Theorem 1]).

4. Note that, from the de�nition of the words `

n

, we �nd: w

2n+2

= '(w

2n

)b

�1

and w

2n+3

= b'(w

2n+1

) (n � 0).

5. The morphism ' preserves the standard factorization of the words `

n

.

More precisely, we have `

0

n+1

= '(`

0

n

) and `

00

n+1

= '(`

00

n

). This property

has a geometrical interpretation: to obtain the Lyndon tree of `

n+1

one

only needs to replace in that of `

n

the leaves labelled by a by the Lyndon

subtree (a (a; b) ) and those labelled by b by the Lyndon subtree (a; b).

See �gure 2.

a a b

ϕ

a b
a b

a
a b

a b
a

a b
a b

a

Figure 2: The tree structure of `

n

is preserved by '

3.1 L�R operators

Rem. 3.3.2, proving `

n

= w

2n

w

2n+1

, may be re�ned. For this, we need to de�ne

operators L and R corresponding to paths in a tree. The idea we describe here
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is intuitively clear and is best described with pictures (see the �gures), although

we do need to tranlate it with proper notations. Let it be understood that L

and R act on a given tree and let x be an interior vertex of that tree. Then,

we denote by L:x (resp. R:x) the left (resp. right) son of x.

.
.
.

.
.
.

.
.
.

x

L.x

.
.
.

.
.
.

.
.
.

x

R.x

Figure 3: Operators R and L acting on trees

We will use sequences of operators L and R always acting from the root of

Lyndon trees. Figure 4 illustrates the e�ect of the operator RLR over the Lyn-

don tree associated with the Lyndon word aabaabab. Note that any sequence

of L � R operators is of the form L

a

2n

R

a

2n�1

� � �R

a

1

L

a

0

(with a

0

; a

2n

� 0 and

a

i

> 0 for all 1 � i � 2n� 1) and acts from the right; that is,

L

a

2n

R

a

2n�1

� � �R

a

1

L

a

0

: ` = � � � (R � � � (R

| {z }

a

1

(L � � � (L

| {z }

a

0

: `) � � �)) � � �)

a b
a b

a

a

a b

Figure 4: The decomposition induced by an R� L operator

Let T be the Lyndon tree associated with the word `. For any vertex x of

a tree, there is a unique path going from the root downto x described by a

unique sequence of operators L

a

2n

R

a

2n�1

� � �R

a

1

L

a

0

. Suppose that x is an inte-

rior vertex; then, the L � R path going from the root downto x determines a

unique decomposition of ` as a product ` = uv, with u; v 2 A

�

non empty. We

write L

a

2n

R

a

2n�1

R

a

1

L

a

0

: ` = (u; v). The decomposition illustrated in �gure 4

is precisely (RLR):aabaabab = (aabaa; bab). Note that, with this convention,

the identity operator gives the decomposition (`

0

; `

00

) cutting the tree of ` at its

root.

Proposition 3.4 We have:

(RL)

n

: `

n

= (w

2n

; w

2n+1

):
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Moreover,

(RL)

n�1

R : `

0

n

= (w

2n

; w

2n�1

); (RL)

n�1

: `

00

n

= (w

2n�2

; w

2n�1

):

The proof is best understood using pictures; see the �gures. We proceed by

induction. Suppose (RL)

n

: `

n

= (w

2n

; w

2n+1

) and that, moreover, the left and

right sons of the vertex (RL)

n

: `

n

are leaves (�gure 5).

a

ba}

w w
2n 2n + 1

}
Figure 5: (RL)

n

: `

n

= (w

2n

; w

2n+1

)

The tree associated with `

n+1

is obtained from that associated with `

n

by

replacing the leaves labelled by a's with (a; (a; b) ) and those labelled by b's with

(a; b) (cf Rem. 3.3.5). Hence, the factorization induced by the operator (RL)

n

on `

n+1

is (RL)

n

: `

n+1

= ('(w

2n

); '(w

2n+1

)) (�gure 6). Now, observe that w

2n

ends with aa; thus, the left subtree of the vertex (RL)

n

: `

n+1

is (a; (a; b) ).

a}

ϕ(w    ) ϕ(w         )
2n 2n + 1

b

a b
a b

a

a }

Figure 6: (RL)

n

: `

n+1

= (RL)

n

: '(`

n

) = ('(w

2n�1

); '(w

2n

))

Since w

2n+2

= '(w

2n

)b

�1

and w

2n+3

= b'(w

2n+1

) (cf Rem. 3.3.4), we see that

the decomposition (w

2n+2

; w

2n+3

) is obtained by going down this left subtree fol-

lowing the path RL. Thus (w

2n+2

; w

2n+3

) = RL (RL)

n

: `

n+1

= (RL)

n+1

: `

n+1

(�gure 7).

The second part of the proposition is proved in a similar manner.
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a

w         = ϕ(w    )b bϕ(w         ) = w
2n 2n + 1

b

a b
a b

a

a

-1
2n+ 2 2n + 3

} }

Figure 7: (RL)

n+1

: `

n+1

= (w

2n+2

; w

2n+3

)

3.2 Invariance Property

In this section, we prove an invariance property of the factorization (1) which

leads, as a corollary, to a new proof of Thm. 2.6 ([7, Theorem 2]).

Theorem 3.5 We have:

(i)

f = (

n�1

Y

j=0

`

j

)'

n

(f): (2)

Moreover, '

n

(f) is equal to the Fibonacci word over the alphabet f`

0

n

; `

00

n

g.

(ii) Furthermore, '

n

(f) is also equal to the Fibonacci word over the alphabet

f`

n

; `

0

n

g.

We claim: for any n � 0, '

n

(a) = `

0

n

and '

n

(b) = `

00

n

; consequently, the words

`

0

m

; `

00

m

(m � n) are Lyndon words over the alphabet f`

0

n

; `

00

n

g, which shall prove

the theorem.

That f`

0

n

; `

00

n

g and f`

0

n

; `

n

g may be considered as alphabets (or, more precisely,

as codes) follows from the fact that `

0

n

is not a su�x of `

00

n

nor `

n

; indeed, no

word is both a su�x and a pre�x of the same Lyndon word.

We see at once that `

n

is the image of the word ab under '

n

; that is, it is a

Lyndon word over f`

0

n

; `

00

n

g. Similarly, one sees that `

m

(m > n) is the image of

`

m�n

under the morphism '

n

. That shows part (i). Part (ii) follows from the

fact that '

n

(ab) = `

n

, again, and that the morphism a 7! ab, b 7! a leaves f

invariant (that is, f is equal to the Fibonacci word over the alphabet fab; ag).
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3.3 A New Proof of Thm. 2.6

Recall that `

n

= w

2n

w

2n+1

and that, by Prop. 3.4, we have `

0

n

= w

2n

w

2n�1

and

`

00

n

= w

2n�2

w

2n�1

. Thus, in case (i), Eq. (2) reads:

f = (

n�1

Y

j=0

w

2j

w

2j+1

)f

fw

2n

w

2n�1

;w

2n�2

w

2n�1

g

where f

fw

2n

w

2n�1

;w

2n�2

w

2n�1

g

denotes the Fibonacci word over the alphabet

fw

2n

w

2n�1

; w

2n�2

w

2n�1

g. Note that this is also equal to:

f = (

2n�2

Y

j=0

w

j

)w

2n�1

f

fw

2n

w

2n�1

;w

2n�2

w

2n�1

g

:

In other words, f

fw

2n

w

2n�1

;w

2n�2

w

2n�1

g

is obtained by �rst forming the Fibonacci

word over the alphabet fw

2n

; w

2n�2

g and then inserting before each occurence

of w

2n

or w

2n�2

the word w

2n�1

. This is precisely what says Thm. 2.6, for

m = 2n� 1 odd.

In case (ii), we �nd:

f = (

2n�1

Y

j=0

w

j

)f

w

2n

w

2n+1

g;fw

2n

w

2n�1

;

which provides a proof for m = 2n even.

4 Generalization to characteristic sturmian words

In this section, we give results generalizing Prop. 3.4 and Thm. 3.5. Their

proofs are technical; we shall limit ourselves to their statements.

Let us �rst recall some de�nitions.

De�nition 4.1 Let (c

n

)

n�0

be a sequence of integers satisfying c

0

� 0 and

c

n

> 0, for n > 0. De�ne s

0

= b, s

1

= a and s

n+1

= s

c

n�1

n

s

n�1

. Then

s = lim

n!1

s

n

is a well de�ned in�nite word.

The sequence (c

n

)

n�0

is called the directive sequence of s. Moreover, s is a

characteristic sturmian word; for more details, see [1].

The Fibonacci word is a special case of a sturmian word, with c

n

= 1, for all

n � 0. Hence, it seems natural to look for a generalization of the results in

the previous sections. In [5], we gave the Lyndon factorization of any general

characteristic sturmian word s, namely we proved:

s =

1

Y

n=0

[(as

2n+1

a

�1

)

c

2n

�1

as

2n

s

2n+1

a

�1

]

c

2n+1

9



where ((as

2n+1

a

�1

)

c

2n

�1

as

2n

s

2n+1

a

�1

)

n�0

is a sequence of strictly decreasing

Lyndon words. We write `

n

= (as

2n+1

a

�1

)

c

2n

�1

as

2n

s

2n+1

a

�1

.

De�nition 4.2 Suppose the sequence (c

n

)

n�0

is given. Let n � 2 and suppose

s

n

ends with �� (with �; � 2 A and � 6= �). We de�ne the word w

n

by

w

n

= �f

n

�

�1

. We also de�ne w

0

= a, w

1

= b.

Hence, e.g., w

2

= a

c

0

+1

, w

3

= b(a

c

0

b)

c

1

, and so on (since s

2

= s

c

0

1

s

0

= a

c

0

b,

s

3

= s

c

1

2

s

1

= (a

c

0

b)

c

1

a, etc). Those words w

n

are factors of the word s associated

with the sequence (c

n

)

n�0

and play a role analog to the singular factors studied

in the preceding sections. Write u

n

= as

2n

s

2n+1

a

�1

; then u

n

is a Lyndon word.

Moreover, we have u

0

n

= as

2n+1

a

�1

. This a key fact in proving that (`

n

)

n�0

is

a sequence of decreasing Lyndon words (see [5]). Observe that u

n

= w

2n

w

2n+1

.

Many other properties satis�ed by the words w

n

con�rm them as the proper

generalization of the singular factors for the characteristic sturmian word s

associated to (c

n

)

n�0

. We shall only state one of these properties generalizing

Prop. 3.4; it is illustrated in �gure 8.

Proposition 4.3 We have:

R

c

0

L

c

1

� � �R

c

2n

L

c

2n+1

: u

n

= (w

2n

; w

2n+1

):

We may formulate an invariance property analog to Thm. 3.5.

Theorem 4.4 We have:

s = (

n�1

Y

j=0

`

c

2j+1

j

)� �s

where �s is the sturmian word with directive sequence (d

m

)

m�0

over the alphabet

fu

0

n

; u

00

n

g, where d

m

= c

m+2n

.
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Figure 8: The R� L path giving (w

2n

; w

2n+1

) in the general case
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