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Summary

While in the univariate case solutions of linear recurrences with constant coe�cients have rational gener-

ating functions, in the multivariate case the situation is much more interesting: even though initial conditions

have rational generating functions, the corresponding solutions can have generating functions which are al-

gebraic but not rational, and perhaps even non-algebraic.

We start by an existence and uniqueness theorem for partial recurrences of the form

a

n

= �(a

n+h

1

; a

n+h

2

; : : : ; a

n+h

k

) ; for n � s ;

where the values of a

n

for n 6� s are given explicitly. In particular, we show that the lattice points in the

�rst orthant can be enumerated in such a way that for all n the points n+h

i

precede n in this enumeration,

if and only if the convex hull of the set H = fh

1

;h

2

; : : : ;h

k

g does not intersect the �rst orthant. This

condition on H which ensures existence and uniqueness of solution is assumed to be satis�ed in the sequel.

For linear partial recurrences with constant coe�cients we show that when initial conditions grow at

most exponentially, the same is true of the solution, which is consequently analytic in a neighbourhood

of the origin. Next we consider the algebraic nature of the generating function of the solution of such

recurrences, and de�ne the apex of H as the componentwise maximum of the points in H [ f0g. When the

initial conditions have rational generating functions and the apex of H is 0, the generating function of the

solution is rational and is given by an explicit formula. When the initial conditions have algebraic generating

functions and the apex of H has at most one positive coordinate, the generating function of the solution is

algebraic and can be found by solving an algebraic equation and a system of linear equations. We give several

applications of this procedure to enumeration of various lattice paths with algebraic generating functions

such as generalized Dyck paths and paths consisting of nonnegative steps and staying below a certain line.

Finally, when the apex has more than one positive coordinate, and the initial conditions have rational

generating functions, the generating function of the solution need not be rational, which we demonstrate on

the problem of the chess knight with restricted moves. We also conjecture that in this case the generating

function is not even algebraic.

R�esum�e

Alors que dans le cas d'une seule variable les s�eries g�en�eratrices des solutions des �equations de r�ecurrences

lin�eaires �a coe�cients constants sont rationnelles, dans le cas de plusieurs variables ces s�eries peuvent être

alg�ebriques non-rationnelles, ou pas même alg�ebriques.

Nous commen�cons par donner un th�eor�eme d'existence et d'unicit�e pour des r�ecurrences partielles ayant

la forme

a

n

= �(a

n+h

1

; a

n+h

2

; : : : ; a

n+h

k

) ; pour n � s ;
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o�u les valeurs a

n

pour n 6� s sont connues. Nous montrons qu'il existe une �enum�eration des points entiers

naturels, telle que pour tout n les points n + h

i

pr�ec�edent n dans cette �enum�eration si et seulement

si l'intersection de l'enveloppe convexe de H = fh

1

;h

2

; : : : ;h

k

g avec le premier orthant est vide. Nous

supposons que cette condition pour H qu'implique l'existence et l'unicit�e de la solution est satisfaite par

toutes les r�ecurrences que nous consid�erons.

Pour des r�ecurrences partielles lin�eaires �a coe�cients constants nous montrons que la solution est ana-

lytique dans un voisinage de l'origine si les conditions initiales sont born�ees par une fonction exponentielle

de n. Nous appelons l'apex de H le maximum des points de H [ f0g calcul�e par coordonn�ees. Si les s�eries

g�en�eratrices des conditions initiales sont rationnelles et l'apex de H est 0, la s�erie g�en�eratrice de la solution

est rationnelle et peut être calcul�ee par une formule explicite. Si les s�eries g�en�eratrices des conditions initiales

sont alg�ebriques et l'apex de H a une coordonn�ee positive au plus, la s�erie g�en�eratrice de la solution est

alg�ebrique. Pour la trouver on doit r�esoudre une �equation alg�ebrique et un syst�eme d'�equations lin�eaires.

En�n, si l'apex de H a plus d'une coordonn�ee positive et les s�eries g�en�eratrices des conditions initiales

sont rationnelles, la s�erie g�en�eratrice de la solution n'est pas nec�essairement rationnelle. Nous pr�esentons

un exemple de ce type provenant du \probl�eme de cavalier". Nous conjecturons que dans ce cas-l�a, la s�erie

g�en�eratrice n'est pas même alg�ebrique.

1 An existence and uniqueness theorem

Throughout the paper, we use IN to denote the set of nonnegative integers. We write u = (u

1

; u

2

; : : : ; u

d

)

for d-tuples of numbers or indeterminates, and u � v when u

i

� v

i

for 1 � i � d.

Let A be a nonempty set. We consider d-dimensional partial recurrence equations of the form

a

n

= �(a

n+h

1

; a

n+h

2

; : : : ; a

n+h

k

) ; for n � s ; (1)

where a : IN

d

! A is the unknown d-dimensional sequence (d-sequence for short) of elements of A, � : A

k

! A

is a given function, H = fh

1

;h

2

; : : : ;h

k

g � ZZ

d

is the set of shifts , and s 2 IN

d

is the starting point satisfying

s+H � IN

d

. We assume that the initial conditions are of the form

a

n

= '(n) ; for n � 0;n 6� s ; (2)

where ' : fn 2 IN

d

; n 6� sg ! A is a given function.

We think of the h

i

as having mostly negative coordinates, and of the point n as depending on the points

n+ h

1

;n+ h

2

; : : : ;n+ h

k

as far as the value of a

n

is concerned.

The objective of this section is to characterize the sets H for which there is a well-ordering of IN

d

of

order type ! such that the points n+ h

1

;n+ h

2

; : : : ;n+ h

k

precede n in this ordering. Then there exists

a unique solution a

n

of (1), (2), and for any n 2 IN

d

it is possible to compute the value of a

n

directly from

(1), (2) in a �nite number of steps.

De�nition 1 For H � ZZ

d

and p; q 2 IN

d

, let

p �

H

q i� p 2 q +H � IN

d

: (3)

The transitive closure �

+

H

of �

H

in IN

d

is the dependency relation corresponding to H. When p �

+

H

q we

say that q depends on p. 2

For a set H � IR

d

we denote by convH its convex hull, and by i-coneH its integer cone:

i-coneH = fx 2 IR

d

; x =

k

X

i=0

�

i

h

i

; �

i

2 IN; h

i

2 Hg :

The following theorem is proved in [7, Sec. 3.3, Cor. 2]:

Theorem 1 Let H � ZZ

d

be a �nite set, and �

+

H

the corresponding dependency relation. Then the following

are equivalent:
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(i) �

+

H

is asymmetric and has no in�nite descending chain in IN

d

,

(ii) fx 2 IR

d

; x � 0g \ i-coneH = ;,

(iii) fx 2 IR

d

; x � 0g \ convH = ;,

(iv) there exists an a 2 IR

d

, a > 0, such that a � h < 0 for all h 2 H,

(v) there exists an a 2 IN

d

, a > 0, such that a � h < 0 for all h 2 H,

(vi) �

+

H

can be extended to a well-ordering of IN

d

of order type !. 2

Now it is easy to state and prove the existence and uniqueness theorem for recurrences of the form (1),

(2).

Theorem 2 Let H � ZZ

d

n f0g be a nonempty set such that fx 2 IR

d

; x � 0g \ convH = ;. Then there

exists a unique d-sequence a : IN

d

! A which satis�es (1), (2).

Proof: Write H = fh

1

;h

2

; : : : ;h

k

g. To prove existence, note that by Theorem 1 there exists a well-

ordering <

H

of IN

d

of order type ! which extends �

+

H

. Let p : IN ! IN

d

be a bijection which satis�es

i < j , p

i

<

H

p

j

. Such a bijection exists because <

H

has order type !. De�ne a function f : IN ! A

recursively by f(0) = '(p

0

) and

f(i) =

�

�(f(p

�1

(p

i

+ h

1

)); f(p

�1

(p

i

+ h

2

)); : : : ; f(p

�1

(p

i

+ h

k

))) ; if p

i

� s,

'(p

i

) ; otherwise,

for i > 0. As H is nonempty and 0 =2 H , we have p

0

6� s. Because p

i

+ h

j

�

+

H

p

i

it follows that

p

�1

(p

i

+ h

j

) < i so that f(i) is de�ned in terms of values of f at smaller arguments when p

i

� s. We

conclude that f is well de�ned. Obviously a

n

= f(p

�1

(n)) satis�es (1) and (2). Uniqueness of this solution

follows easily by induction on the well-founded set (IN

d

;�

+

H

). 2

This theorem generalizes the result of [10].

2 Partial recurrences with constant coe�cients

In the rest of the paper, we limit our attention to recurrences of the form

a

n

=

X

h2H

c

h

a

n+h

; for n � s ; (4)

where the set of values A is a �eld of characteristic zero, and c

h

are given nonzero constants from A.

Theorem 3 Take A =

j

C, and let H � ZZ

d

be a �nite set such that fx 2 IR

d

; x � 0g \ convH = ;. Let a

be the unique solution of (2), (4). If there are constants m > 0 and u 2 IR

d

such that j'(n)j � m

u�n

for all

n 6� s, then the generating function of a

F (x

1

; x

2

; : : : ; x

d

) =

X

n2IN

d

a

n

x

n

1

1

x

n

2

2

� � �x

n

d

d

is analytic in a neighborhood of the origin.

Proof: Existence and uniqueness of a follow from Theorem 2. By Theorem 1(iv), there is v 2 IR

d

such that

v > 0, and v �h < 0 for all h 2 H . Since H is �nite there exists an " > 0 such that v �h � �" for all h 2 H .

Let

M = max

8

<

:

1;

 

X

h2H

jc

h

j

!

1

"

; max

1�i�d

m

u

i

v

i

9

=

;

:

We now prove that ja

n

j �M

v�n

for all n 2 IN

d

, using induction on the well-founded set (IN

d

;�

+

H

).
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If n 6� s then

ja

n

j = j'(n)j � m

u�n

= m

u

1

n

1

m

u

2

n

2

� � �m

u

d

n

d

=

�

m

u

1

v

1

�

v

1

n

1

�

m

u

2

v

2

�

v

2

n

2

� � �

�

m

u

d

v

d

�

v

d

n

d

�M

v�n

:

Otherwise we assume inductively that ja

n+h

j �M

v�(n+h)

for all h 2 H . Then

�

�

�

�

�

X

h2H

c

h

a

n+h

�

�

�

�

�

�

X

h2H

jc

h

jM

v�(n+h)

�

X

h2H

jc

h

jM

v�n�"

= M

v�n�"

X

h2H

jc

h

j < M

v�n

;

proving the claim. It follows that F (x

1

; x

2

; : : : ; x

d

) converges when jx

i

j < 1=M

v

i

. 2

In the case of constant coe�cients any term a

n+h

with a non-zero coe�cient c

h

can be expressed explicitly

from (4). As it turns out, there is always at least one \good" term.

Theorem 4 Let G � ZZ

d

be a nonempty �nite set. Then there exists a point g

0

2 G such that the set

H = fg � g

0

; g 2 G; g 6= g

0

g satis�es the equivalent conditions of Theorem 1.

Proof: Let g

0

be the last point in G with respect to the lexicographic ordering of ZZ

d

. Then it can be shown

that �

+

H

is asymmetric and has no in�nite descending chains. 2

3 Recurrences with algebraic generating functions

De�nition 2 Let H � IN

d

be a �nite set. The apex of H is the point p = (p

1

; p

2

; : : : ; p

d

) 2 IN

d

de�ned by

p

i

= maxfh

i

; h 2 H [ f0gg (i = 1; 2; : : : ; d):

In dimension d = 2, the apex of H is the upper right corner of the smallest rectangle (with its sides parallel

to the axes) enclosing the set H [ f0g.

Theorem 5 Let H � ZZ

d

be a �nite set such that fx 2 IR

d

; x � 0g \ convH = ;. Let a be the unique

solution of (2), (4), and F (x) =

P

n2IN

d

a

n

x

n

its generating function.

(i) If the apex of H is 0 and all the initial sections

f

(i

1

;:::;i

m

)

j

1

;:::;j

m

(x) =

X

n2IN

d

n

i

1

=j

1

;:::;n

i

m

=j

m

a

n

x

n

(1 � m < d; 1 � i

1

< � � � < i

m

� d; 0 � j

r

< s

i

r

for 1 � r � m) (5)

are rational power series, then the generating function F (x) is rational.

(ii) If the apex of H has one positive coordinate and all the initial sections (5) are algebraic power series,

then the generating function F (x) is algebraic.

Proof: From (4) we obtain

X

n�s

a

n

x

n

=

X

h2H

c

h

X

n�s

a

n+h

x

n

which can be rewritten as

 

1�

X

h2H

c

h

x

�h

!

F (x) =

X

n 6�s

a

n

x

n

�

X

h2H

c

h

x

�h

X

n 6�s+h

a

n

x

n

: (6)

4



(i) If the apex of H is 0 then h � 0 for all h 2 H . Therefore the terms

P

n 6�s

a

n

x

n

and

P

n 6�s+h

a

n

x

n

are �nite sums of initial sections and hence rational by assumption. Then

F (x) =

P

n 6�s

a

n

x

n

�

P

h2H

c

h

x

�h

P

n 6�s+h

a

n

x

n

1�

P

h2H

c

h

x

�h

(7)

is rational, too.

(ii) Let p be the apex of H . Wlg. assume that p

1

> 0 while the remaining coordinates of p are zero. Then

h

i

� 0 for all i � 2 and h 2 H , so the right side of (6) is an a�ne combination, with coe�cients which are

algebraic power series in x

1

; x

2

; : : : ; x

d

, of the p

1

sections f

(1)

s

1

; f

(1)

s

1

+1

; : : : ; f

(1)

s

1

+p

1

�1

. Note that these sections

are not given by the initial conditions (2). From the de�nition of sections it follows that we can write

f

(1)

t

(x

1

; x

2

; : : : ; x

d

) = x

t

1

g

t�s

1

+1

(x

2

; : : : ; x

d

) (s

1

� t � s

1

+ p

1

� 1)

where g

1

; g

2

; : : : ; g

p

1

are unknown power series. Denote

P (x

1

; x

2

; : : : ; x

d

) =

 

1�

X

h2H

c

h

x

�h

!

x

p

:

From the de�nition of apex it follows that p � 0 and p � h for all h 2 H , hence P (x

1

; x

2

; : : : ; x

d

) is a

polynomial. Now (6) can be rewritten as

P (x

1

; x

2

; : : : ; x

d

)F (x) = r

0

(x

1

; x

2

; : : : ; x

d

) +

p

1

X

i=1

r

i

(x

1

; x

2

; : : : ; x

d

)g

i

(x

2

; : : : ; x

d

) (8)

where r

i

are algebraic series. By setting x

2

; : : : ; x

d

to zero, we �nd that

P (x

1

; 0; : : : ; 0) =

0

B

@

x

p

1

1

�

X

h2H

h

2

=���=h

d

=0

c

h

x

p

1

�h

1

1

1

C

A

:

Because fx 2 IR

d

; x � 0g \ convH = ;, we have h

1

< 0 for all h 2 H which have h

2

= � � � = h

d

= 0.

Therefore p

1

�h

1

> p

1

for all such h, which means that x

1

= 0 is a root of P (x

1

; 0; : : : ; 0) of multiplicity p

1

.

Hence there exist p

1

Puiseux series �

1

(x

2

; : : : ; x

d

); : : : ; �

p

1

(x

2

; : : : ; x

d

) which satisfy

P (�

j

(x

2

; : : : ; x

d

); x

2

; : : : ; x

d

) = 0 (1 � j � p

1

)

and which pass through the origin (i.e., �

j

(0; : : : ; 0) = 0 for 1 � j � p

1

). If all �

j

are di�erent, substituting

�

1

; �

2

; : : : ; �

p

1

for x

1

in (8) gives a linear system of p

1

linear equations with algebraic coe�cients

p

1

X

i=1

r

i

(�

j

(x

2

; : : : ; x

d

); x

2

; : : : ; x

d

)g

i

(x

2

; : : : ; x

d

) + r

0

(�

j

(x

2

; : : : ; x

d

); x

2

; : : : ; x

d

) = 0 (1 � j � p

1

)

satis�ed by the p

1

unknown series g

1

; : : : ; g

p

1

. If P (x

1

; x

2

; : : : ; x

x

) considered as a polynomial of x

1

has

multiple roots, the number of equations will be less than p

1

, but the missing equations can be obtained

by di�erentiating (8) wrt. x

1

an appropriate number of times before substitution. The resulting system is

in both cases equivalent to the original recurrence relation (4) and initial conditions (2) satis�ed by the

coe�cients of F (x) and is therefore uniquely solvable. It follows that g

1

; : : : ; g

p

1

are algebraic, and hence so

is

F (x) =

r

0

(x

1

; x

2

; : : : ; x

d

) +

P

p

1

i=1

r

i

(x

1

; x

2

; : : : ; x

d

)g

i

(x

2

; : : : ; x

d

)

P (x

1

; x

2

; : : : ; x

d

)

;

as claimed. 2
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Example 1 In the problem of generalized Dyck paths [3, 4] we are given a �nite set of steps S =

f(r

1

; s

1

); : : : ; (r

m

; s

m

)g where r

i

; s

i

2 ZZ and r

i

> 0. We are interested in the number d

n

of paths from

(0; 0) to (n; 0) using only steps from S and staying within the �rst quadrant.

Denote by d

i;k

the number of such paths ending at (i; k) (rather than at (n; 0)), and let r = max

1�i�m

r

i

,

s = max

1�i�m

s

i

. Attach r � 1 columns of zeros to the left of the array d, and s rows of zeros below the

array d. Call the resulting array a. Then d

i;k

= a

i+r�1;k+s

for i; k � 0, and a satis�es

a

i;k

= a

i�r

1

;k�s

1

+ � � �+ a

i�r

m

;k�s

m

(i � r; k � s); (9)

a

i;k

= �

i;r�1

�

k;s

(i < r or k < s): (10)

This is a problem of the type (2), (4) where s = (r; s), H = f(�r

1

;�s

1

); : : : ; (�r

m

;�s

m

)g, and c

h

= 1 for

all h 2 H . As all r

i

are positive, fx 2 IR

d

; x � 0g \ convH = ;, hence there exists a unique solution of

(9), (10). Let t = �minfs

1

; : : : ; s

m

g. We distinguish two cases.

a) If t � 0 then the apex of H is (0; 0), so we can use formula (7) to obtain the rational generating

functions

F (x; y) =

1

X

i;k=0

a

i;k

x

i

y

k

=

x

r�1

y

s

1� x

r

1

y

s

1

� � � � � x

r

m

y

s

m

;

G(x; y) =

1

X

i;k=0

d

i;k

x

i

y

k

=

F (x; y)

x

r�1

y

s

=

1

1� x

r

1

y

s

1

� � � � � x

r

m

y

s

m

;

g(x) =

1

X

n=0

d

n

x

n

= G(x; 0) =

0

B

@

1�

X

1�i�m

s

i

=0

x

r

i

1

C

A

�1

:

b) If t > 0 then the apex of H is (0; t) and the corresponding generating functions are algebraic. Here

P (x; y) = y

t

� x

r

1

y

s

1

+t

� � � � � x

r

m

y

s

m

+t

and Eqn. (6) multiplied by y

t�s

yields

P (x; y)

y

s

F (x; y) = x

r�1

y

t

�

X

1�i�m

s

i

<0

x

r

i

y

s

i

+t

s�1�s

i

X

k=s

y

k�s

f

k

(x) (11)

where f

k

(x) =

P

1

i=0

a

i;k

x

i

. Let y = �

1

(x); : : : ; �

t

(x) be those Puiseux series solutions of P (x; y) = 0

which pass through the origin. According to the procedure described in the proof of Theorem 5 (ii), we

should now substitute �

1

(x); : : : ; �

t

(x) for y in (11) and solve the resulting linear system for the unknown

f

s

(x); : : : ; f

s+t�1

(x). However, in this particular case we can immediately see what F (x; y) is. This is because

the right-hand side of (11) is a polynomial in y of degree t with leading coe�cient x

r�1

, and we know all its

zeros: they are �

1

(x); : : : ; �

t

(x) (counted with their respective multiplicities), because they are zeros of the

left-hand side. Therefore the right-hand side of (11) is x

r�1

(y � �

1

(x)) � � � (y � �

t

(x)) and we have �nally

F (x; y) =

1

X

i;k=0

a

i;k

x

i

y

k

=

x

r�1

y

s

(y � �

1

(x)) � � � (y � �

t

(x))

P (x; y)

;

G(x; y) =

1

X

i;k=0

d

i;k

x

i

y

k

=

F (x; y)

x

r�1

y

s

=

(y � �

1

(x)) � � � (y � �

t

(x))

P (x; y)

;

g(x) =

1

X

n=0

d

n

x

n

= G(x; 0) =

(�1)

t+1

�

1

(x) � � � �

t

(x)

P (x; 0)

= (�1)

t+1

�

1

(x) � � � �

t

(x)

0

B

@

X

1�i�m

s

i

=�t

x

r

i

1

C

A

�1

:

6



In the special case S = f(s; r); (r; s); (s;�r); (r;�s)g where r > s > 0 we have

g(x) =

(�1)

r+1

�

1

(x) � � � �

r

(x)

x

s

where y = �

1

(x); : : : ; �

r

(x) are those solutions of y

r

� x

s

y

2r

� x

r

y

r+s

� x

s

� x

r

y

r�s

= 0 which pass through

the origin.

In the same way we could count generalized Dyck paths with coloured steps { then the corresponding

coe�cient c

h

would equal the number of colours allowed for this step.

This approach generalizes without signi�cant change to higher-dimensional paths, provided that the steps

have positive coordinates in all but perhaps one (�xed) dimension. In all these cases, the generating functions

are algebraic.

Example 2 Consider the problem of counting lattice paths with steps (1; 0) and (0; 1) which start at the

origin and stay on or below the line y = (m� 1)x. Using the linear transformation (i; k) 7! ((m� 1)i� k; k)

we obtain the equivalent problem of counting lattice paths with steps (m� 1; 0) and (�1; 1) which start at

the origin and stay within the �rst quadrant. Let d

i;k

denote the number of such paths which end at (i; k).

Attaching m � 1 columns of zeros to the left of the array d and one row of zeros below the array d, and

changing the element at (0; 1) to 1, we obtain a new array a which satis�es a

i;k

= d

i�m+1;k�1

and

a

i;k

= a

i�m+1;k

+ a

i+1;k�1

(i � m� 1; k � 1) ; (12)

a

i;k

= �

i;0

�

k;1

(i < m� 1 or k < 1): (13)

Here s = (m� 1; 1), H = f(�(m� 1); 0); (1;�1)g, the apex is at (1; 0), and P (x; y) = x� x

m

� y. From (6)

we obtain

P (x; y)F (x; y) = xy � y

2

� yx

m�1

f(y) (14)

where f(y) =

P

1

k=0

a

m�1;k

is unknown. Let x = �(y) be that solution of P (x; y) = 0 which passes through

the origin. Then, by substituting �(y) for x in (14), we �nd

f(y) =

�(y)� y

�(y)

m�1

= �(y)

and

F (x; y) =

1

X

i;k=0

a

i;k

x

i

y

k

= y

x� y � x

m�1

�(y)

x� y � x

m

;

G(x; y) =

1

X

i;k=0

d

i;k

x

i

y

k

=

F (x; y)� y

x

m�1

y

=

x� �(y)

x� y � x

m

;

g(y) =

1

X

k=0

d

0;k

y

k

= G(0; y) =

�(y)

y

:

The algebraic equation satis�ed by g(y) is easily obtained from P (�(y); y) = 0, and is g � y

m�1

g � 1 = 0.

Only every (m� 1)-st coe�cient of g is nonzero. Omitting the zero coe�cients we have

h(y) =

1

X

k=0

d

0;(m�1)k

y

k

= g(y

1=(m�1)

)

which satis�es h� yh

m

� 1 = 0.

In a similar way, we could count the paths which start at the origin and stay below the line y = (m� 1)x

(cf. [1]). Instead of the steps (1; 0) and (0; 1) we could take any set of steps with nonnegative components,

and still obtain algebraic generating functions. Generalization to higher dimensions is also possible.

Additional examples of this kind can be found in [2, Exer. 2.2.1.{4, 11] (the ballot numbers) and in [6]

(the number of elements of the free modular lattice generated by the poset 1 + 1 + n).
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i n k 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 5 6 8 12 18

3 1 1 2 2 4 5 7 11 17 23 40

4 1 1 3 4 6 10 16 22 39 62 91

5 1 1 3 5 10 14 27 44 67 123 208

6 1 1 5 7 16 27 44 83 145 225 432

7 1 1 6 11 22 44 83 134 268 476 767

8 1 1 8 17 39 67 145 268 450 908 1656

9 1 1 12 23 62 123 225 476 908 1534 3161

10 1 1 18 40 91 208 432 767 1656 3161 5422

Figure 1: Solution of (15), (16) for i; k � 10.

4 The problem of the knight

When the apex of the set of shifts H has more than one positive coordinate, we suspect that the generating

function of the solution of (2), (4) need not be algebraic even though all the initial sections (5) are. In this

section we present an example of this type and prove that the generating function is not rational.

Example 3 On an otherwise empty chessboard which is in�nite upwards and to the right there is a knight

occupying the square (i; k). If the knight is only allowed to move either 2 left and 1 up, or 2 down and 1

right, in how many di�erent ways could it reach the border of the chessboard? The border consists of the

�rst two rows and the �rst two columns, and once the knight reaches it, it is not allowed to move anymore.

Let a

i;k

be the answer to this lattice-path problem. Then, obviously,

a

i;k

= a

i�2;k+1

+ a

i+1;k�2

(i; k � 2); (15)

a

i;0

= a

i;1

= a

0;k

= a

1;k

= 1 (i; k � 0): (16)

Here H = f(�2; 1); (1;�2)g and fx 2 IR

d

; x � 0g \ convH = ;, so there exists a unique solution a of

(15), (16), part of which is shown in Fig. 1. The apex of H is (1; 1), so Theorem 5 does not apply. In fact,

this is the simplest example in which the apex of H has two positive coordinates and H is symmetric w.r.t.

the line i = k. By induction on i+ k one can show that a

i;k

= a

k;i

and hence F (x; y) = F (y; x). One can

also show that 1 � a

ik

� 2

i+k

, therefore the power series

F (x; y) =

1

X

i;k=0

a

i;k

x

i

y

k

converges at least for jxj; jyj < 1=2. Let f

k

(x) =

P

1

i=0

a

i;k

x

i

denote the generating function for the k

th

row

of a. Then from (15) it follows that F (x; y) satis�es

(x

3

+ y

3

� xy)F (x; y) = xy(a

0;0

+ a

1;0

x+ a

0;1

y + a

1;1

xy) + x(x

2

� y) (f

0

(x) + yf

1

(x))

+ y(y

2

� x) (f

0

(y) + xf

1

(y)) + x

2

y

2

(xf

2

(x) + yf

2

(y)) ; (17)

while (16) implies that f

0

(x) = f

1

(x) = 1=(1� x). Writing f(x) for xf

2

(x), equation (17) thus turns into

(x

3

+ y

3

� xy)F (x; y) =

x

3

+ y

3

� xy + x

2

y

2

(xy � x� y)

(1� x)(1� y)

+ x

2

y

2

(f(x) + f(y)): (18)

By restricting (17) to the cubic curve

x

3

+ y

3

� xy = 0 (19)
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Figure 2: The leaf of Descartes (x

3

+ y

3

= xy):

shown in Fig. 2, an additional functional equation satis�ed by f is obtained:

f(x) + f(y) =

1

(1� x)(1� y)

� 1 (when x

3

+ y

3

= xy): (20)

This equation uniquely determines f(x) = x

P

1

k=0

a

2;k

x

k

.

Theorem 6 The formal power series f de�ned by (20) is not rational.

Proof: Assume that f(x) is a rational function of x. Let x(t) = t=(1+ t

3

), y(t) = t

2

=(1+ t

3

) be a rational

parameterization of (19). Then

f(x(t)) + f(y(t)) =

1

(1� x(t))(1 � y(t))

� 1 (21)

as an equality of rational functions of t.

Let t

0

= 1=

3

p

2, x

0

= x(t

0

) =

3

p

4=3, y

0

= y(t

0

) =

3

p

2=3. We claim that f(x) is singular at x = x

0

.

Di�erentiating both sides of (21) w.r.t. t we �nd

f

0

(x) =

1

(1� x)

2

(1� y)

+

_y(t)

_x(t)

�

1

(1� x)(1� y)

2

� f

0

(y)

�

(x = x(t); y = y(t)): (22)

The derivative f

0

(y) is regular at y = y

0

, because the series f(y) converges for jyj < 1=2 and y

0

< 1=2. By

using the rough upper bound a

2;k

� 2

k+2

for k � n, we can estimate

f

0

(y

0

) =

1

X

k=0

(k + 1)a

2;k

y

k

0

9



�

n�1

X

k=0

(k + 1)a

2;k

y

k

0

+

1

X

k=n

(k + 1)2

k+2

y

k

0

=

n�1

X

k=0

(k + 1)a

2;k

y

k

0

+ 8(n(1� 2y

0

) + 1)

(2y

0

)

n

(1� 2y

0

)

2

which, using a computer algebra system and taking n = 99, gives f

0

(y

0

) < 4:726. On the other hand,

1=((1� x

0

)(1 � y

0

)

2

) > 6:312, proving that 1=((1� x

0

)(1� y

0

)

2

) � f

0

(y

0

) 6= 0. Likewise _y(t

0

) =

3

p

4=3 6= 0

and (1 � x

0

)

2

(1 � y

0

) 6= 0, while _x(t

0

) = 0. From (22) it follows that the rational function f

0

(x(t)) is the

sum of two terms, one of which is regular and the other singular at t = t

0

. Therefore f

0

(x), and hence f(x),

is singular at x = x

0

as claimed.

On the other hand, from (21) it follows that f(x(t)) = 1=((1� x(t))(1 � y(t))) � f(y(t)) � 1. All three

terms on the right are regular at t = t

0

, hence so is f(x(t)). Therefore f(x) should be regular at x = x

0

.

This contradiction shows that f(x) is not a rational power series. 2

We conjecture that f(x) (and therefore F (x; y)) is not algebraic, and, moreover, not even D-�nite [9, 5].

Note that by replacing the initial conditions (16) by

a

i;0

= 2

i

; a

i;1

= 2

i+1

(i � 0);

a

0;k

= 2

k

; a

1;k

= 2

k+1

(k � 0);

the solution of (15) changes to a

i;k

= 2

i+k

with rational generating function F (x; y) =

1

(1�2x)(1�2y)

.

Acknowledgement. The author wishes to express his thanks to Philippe Flajolet, Bruno Salvy and

Ivan Vidav for helpful discussions of the problem of the knight. He is also indebted very much to an

anonymous referee who pointed out applications to lattice path problems and provided further candidates

for nonalgebraic generating function.

References

[1] I. Gessel, A factorization for formal Laurent series and lattice path enumeration, J. Comb. Th. A 28

(1980) 321{337.

[2] D. E. Knuth, Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley, Reading

Mass., 1968.

[3] J. Labelle, Y.-N. Yeh, Dyck paths of knight moves, Discr. Appl. Math. 24 (1989) 213{221.

[4] J. Labelle, Y.-N. Yeh, Generalized Dyck paths, Discr. Math. 82 (1990) 1{6.

[5] L. Lipshitz, D-�nite power series, J. Algebra 122 (1989) 353 { 373.

[6] P. Luksch, M. Petkov�sek, An explicit formula for jFM(1 + 1 + n)j, Order 6 (1990) 319 { 324.

[7] M. Petkov�sek, Finding Closed-Form Solutions of Di�erence Equations by Symbolic Methods, Ph.D.

Thesis, Carnegie Mellon University, Pittsburgh PA, 1991 (CMU-CS-91-103).

[8] J. Riordan, Combinatorial Identities, John Wiley & Sons, New York, 1968.

[9] R. P. Stanley, Di�erentiably �nite power series, European J. Combin. 1 (1980) 175{188.

[10] R. Suarez, Di�erence equations and a principle of double induction, Math. Magazine 62 (1989) 334 {

339.

10


