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Resume

Nous prdsentons une 6tude des cartes point6es inddpendamment de leur genre. Nous prouvons tout d'abord
1'existence d'un nouveau type d'6quation (diff6rentielle de Riccati) pour la sdrie g6n6ratrice des canes point6es
orientables ind6pendamment du genre, 6num6r6es en fonction des nombres de sommets et d'aretes. La resolution
de cette equation conduit ̂  une fraction continue trfes simple, qui se traduit par une nouvelle relation g6n6ralisant
l'6quation trfes connue de Dyck pour les arbres planaires pointds. Nous effectuons dgalement un travail similaire
pour les arbres, pour les cartes sur les surfaces localement orientables, et enfm pour les hypercartes.
Abstract

We present a study of rooted maps without regard to genus. First we prove the existence of a new kind of
equation for the generating series of orientable rooted maps regardless to genus enumerated with respect to edges
and vertices. This is Riccati's equation. Solving this equation leads to a very simple continued fraction, and then
to a new equation generalizing the well known Dyck equation for rooted planar trees. Then we give similar
results for trees, maps on locally orientable surfaces, and finally for hypermaps.
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1. Introduction

The recent history of maps began with W. Tutte in 1962. Since this date, maps have almost always been
studied for a fixed genus associated surface. Three principal approaches characterize this combinatorial domain:
1. The bijective approach was the first used (see [18]). Its principle is to construct a one-to-one correspondence

between the family of the studied maps and another family of objects for which are known efficient
enumeration methods. This approach was developed by R. Cori, B. Vauquelin and D. Arqu&s [6, 7, 15].

2. The algebraic approach is more recent and was developed by D. Jackson and T. Visentin in [17]. A rooted
map can be seen as a pair of permutarions acting transit! vely on the set of half-edges. This approach applies
algebraic combinatorics methods of the symmetric group to these permutations to derive an expression of the
series of rooted maps with characters.

3. The topological approach consists in applying to rooted maps a topological operation interpreted in terms of a
functional equation for the generating series of the studied maps. Many articles based on this kind of approach
can be found in the literature [1-5, 8-12, 19, 21].

We know only three papers that quickly deal with maps without regard to genus. The older one [21] simply
gives a recurrence relation for the number of an equivalent of orientable rooted maps regardless to genus, with
respect to the number of edges. The second paper [17] used the algebraic approach to give a closed form for the
generating function of maps regardless to genus Me(y, z) with respect to vertices (y) and edges (z)

Me(y, z)=2z^ln]
n̂>0

y(y+l)... (y+2n-l)
2°n!

In the newest paper [13], the authors describe a bijection between orientable rooted maps regardless to genus and
a family of description trees.

The aim of this paper is to give a "complete" topological study of rooted maps regardless to genus. In the
second section of this paper we quickly recall the basic notions of map theory. In Section 3 we derive a new
differential functional equation for the generating series of orientable rooted maps without regard to genus, with
respect to the numbers of edges and vertices. This equation is obtained by a new interpretation of the classical
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operation consisting in removing the root edge of the map. In Section 4 we first express the series of orientable
maps as a continued fraction, leading to a new relation that generalizes the well known Dyck equation for rooted
planar trees. Thus we study orientable rooted trees with respect to edges, and we enumerate orientable rooted
maps and trees. Then we obtain similar results for locally orientable rooted maps and trees. In Section 5 we give
similar results for rooted hypemiaps. Finally in Section 6 we give some enumerating tables.

Remark 1. Continued fractions never appeared in the literature to express the generating series of maps.
However, in [6, 7], using the bijective approach, D. Arqufcs introduced multi-continued fractions to express the
generating series of rooted planar maps and hypermaps.

2. Definitions

For the convenience of the reader we recall quickly some definitions used in the following (for more details
about combinatorial maps refer for example to [14]).

2. 1 Topological map

A topological orientable map C on an orientable surface £ of R is a partition of E in three finite sets of cells:
i. The set of the vertices of C, that is a finite set of points ;
ii. The set of the edges of C, that is a finite set of simple opened Jordan arcs, disjoint in pairs, whose

extremities are vertices;

iii. The set of the faces of C. Each face is homeomorphic to an open disc, and its border is a union of vertices
and edges.

The genus of the map C is the genus of the surface E.
A cell is called incident to another cell if one of them is in the border of the other. An isthmus is an edge incident
on both sides to the same face.

2.2 Combinatorial map

We call half-edge an oriented edge of the map. We denote by B the set of all half-edges of the map. To each
half-edge, are associated in an evident way its initial vertex, its final yertex, and the underlying edge.

a (respectively a) is the permutation on B associating each half-edge h with its opposite half-edge (resp. the
first half-edge met by turning around the initial venex of h in the positive way chosen on the orientable surface).
a is a fixed point free involution. The cycles of a (resp. (?) represent the edges (resp. vertices) of the map.

o is the permutation ooa on B. The cycles of a represent the oriented borders of the faces of the map.
In the following, a vertex (resp. edge, face) will be, depending on the context, either the topological object

defined at 2. 1, or the cycle ofcy(resp. a, a) according to the previous definitions.

The triplet CB, o, a) is called the combinatorial definition of the associated topological orientable map C.

2.3 Rooted map

A map is called a rooted map if a half-edge h is chosen. The half-edge h is called the root half-edge of the
map, and its initial vertex is called the root venex of the map.

We call external face (or root face), the face o*(h) generated by the root half-edge h . The planar map with
only a vertex and no edge is also regarded as rooted, even though it contains no half-edge.

Two orientable rooted maps with the same genus are isomorphic if there exists an homeomorphism of the
associated surface, preserving its orientation, mapping the vertices, edges, faces and the root half-edge of the first
map respectively on those of the second one.

An isomoq)hic class of orientable rooted maps of genus g will simply be called an orienlable rooted map. Our
goal is to enumerate these equivalence classes oforientable rooted maps independently of their genus.
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3. A differential equation for the series of orieatable rooted maps

-we_prcsent here. the flrst t°POIogical equation for the generating series of orientable rooted maps regardless to
!!."u^-w.i^.re.spect_!° VC?TS and. edses:we denote by M(y, z) the generating series of orientable'rooted maps of

^genuL(we^mpIy call, them orientable rooted maps in the following), where the exponent of y (resp. z) refers
to the number of vertices (resp. edges) in the map.

Theorem 1. The generating series M(y, z) oforientable rooted maps is the solution of the Riccati equation:
M(y, z) = y + zM(y, z)2 + zM(y, z) + 2z2 ̂-[M(y, z)]3z" (D

Proof. Let C denote an orientable rooted map with root half-edge h . The proof will be based on the topological
operat!onof deletmg. the root half-edse h .as '"troduced by W. Tutte [19] in the study of planar maps. Four cases
are-possible:_The firl"wo temls (in the ri.8htPan of the equation) look like the first two terms of Tutte'~s equation
(see foracample [19]), and are obtained in the same way "(but generalized to maps enumerated wkhout're^dto
genus). The last two terms are of a new type.

First case. If C is the rooted planar map reduced to a vertex, the contribution in eq. (1) is y'z°=y.

Second case. If the edge supporting h is an isthmus whose deletion disconnects the map into two maps C, and
C,, tfien we choose o( h) to be the root half-edge on the first map C, and o(h) on the second one C, in order to
be able to reconstruct the initial rooted map C (Fig. 1). The contribution of this case in eq. (1) is zM(y, z)2.

Jheconfribution ofthe first map c- is M(y"z')- The cont"bution of C, is M(y,, z,). During the reconstruction
map C, all the edges add up (z=z,=z), and we do not forget the added root isthmus (multiolic'atic

The vertices add up too (y =y =y).

Fig. 1: The root half-edge h is an isthmus whose removal disconnects the orientable map C into
two orientable rooted maps C, and C,.

Third case. If h is a planar loop and is Ae oriented border of the root face, we remove the loop and root the
resulting map C, with <r(h ) (Fig. 2). C, is a general orientable rooted map to which we add a loop during the
inverse step of reconstruction. So the contribution of this case in (1) is zM(y^z).
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root face

-< ->

Fig. 2: The root half-edge h is a planar loop, and the root face is "inside" the loop.

Fourth case. Here we group together all the cases which have not been studied above. Two subcases may be
encountered:

Subcase 1. The root half-edge h is not an isthmus and is not a planar loop border of the root face (Fig. 3
and 4);

Subcase 2. The root half-edge h is an isthmus whose removal does not disconnect the map C (Fig. 5).

a) Removal of the root half-edge h.
We remove the root half-edge h . It gives the map C,. We root C; with both root half-edges h, = c?c, (h) (where

CTc, (h) is the first half-edge in C; among a(h) and a (h)) and h; = o(h) to be able to reconstruct C from C,.
We obtain a map C, with two root half-edges, possibly equal.

b) Addition of a root half-edge in a double rooted map: the inverse operation.
Let C be a map with two root half-edges h, and h; (with initial vertices v, and v; respectively). We reconstruct the
rooted map C from C, by adding an edge from v, to v;, in the angular sectors a, and a; defined by h, and h; (more
precisely for k=l,2 we consider the sector between c~l(\) and h) and we root the half-edge oriented from v, to
v;. If the angular sectors a, and a, are in the same face of G|, the root half-edge h of C is embedded in this face,
splitting it in two new faces of C: h is not an isthmus (Fig. 3). It could be a planar loop, if a,=a^, but in this case
the root face is "outside" the loop (Fig. 4). If a, and a; are not in the same face of Cp the root half-edge h of C is
embedded on an added handle that collects both faces generated by h, and h; into one face: h is an isthmus of C
whose removal does not disconnect the map (Fig. 5).

To summarize we must choose a half-edge anywhere (eventually equal to the first root hdf-edge) in any map. To
convey this operation on the generating series, we first choose an edge by applying the operator z.3/3z to the
series M(y, z). There are two possible half-edges associated to the chosen underlying edge, so we multiply by 2,

and the contribution of the added edge is z. Thus the contribution of this case in (1) is 2z2 -[M(y, z)].3zl
This concludes the proof of Theorem 1.
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hz = a(h)

Yhi=a^(h)

Fig. 3^(Subcase 1) The second root half-edge h, of C, is in the face generated by h, : the root half-
edge h of the map C is not an isthmus.

root face

hi=h2

Fig. 4: (Particular situation of subcase 1 and Fig. 3) The same half-edge of C, is rooted twice
(h, =h,): the root half-edge h of the map C is a planar loop, and the root face is "outside" the loop.

Fig. 5: (Subcase 2) The second root half-edge h, of C, is not in the face generated by h, : the root
half-edge h of the map C is an isthmus whose removal does not disconnect the map.

4. Eaiuneratioa of orientable rooted maps and trees

^ In this section we solve eq. (1) to obtain a continued fraction form of the generating series of orientable rooted
maps. Then we study orientable rooted trees, and finally we give explicit formulae "for the enumeraton oTth^

maps and trees with n edges.
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4. 1 A continued fraction for orientable rooted maps
Equation (1) is a Riccati differential equation. We present in Theorem 2 an iterative solution of (1), which

leads to a very nice continued fraction fonn of the generating series oforientable rooted maps.

Theorem 2. The generating series M(y, z) oforientable rooted maps with respect to the number of vertices and
edges is:

.

y .. (2)M(y, z)=-
1-- (y+l)z

1- 7y+2)z
1-^y+3)z

1-...

Proof. The proof is by recurrence.
Let us first define the sequence (M, (y, z))t>, of series by the set of equations:

1) Mo(y, z) is the desired generating function M(y, z) of rooted maps ;
2) For any integer k in IN, M^i(y, z) is obtained from Mi, (y, z) by the relation

Mk(y'z)'l-zM, ;(y, z) (a,)

(p.)
Then for every k, M,(y,z) is a solution of the equation

M, (y, z)=(y+k)+zM, (y, z)2+zM, (y, z)+2z2-^-[M, (y, z)]
This result is proved by recurrence:

. For k=0, this is Theorcm 1 and Equation (1).

. Let k be a positive integer and let us suppose that M,(y, z) is a solution of (p, ):
M, (y, z) = (y+k) + zM, (y, z)2 + zM, (y, z) + 2z2 -^-[M, (y, z)]

Now we substitute M/y, z) by its expression with respect to M,,, (y, z) from (a, ). After little algebra one
obtains the equation (|3^i)-

The result is then proved by recurrence and the interpretation of this set of equations (cQ^ gives the continued
fraction form ofM(y,z). In fact,

y _ yM(y, z)=Mo(y, z)= l-zMi(y, z) i ^ y+1
l-zM^(y, z)

When iterating the process, one obtains:
M(y, z)=.

1-- (y+l)z
1- -(y+2)z

7y+3)z
1--T~

This concludes the proof of Theorem 2.

In Theorem 2 a new relation on maps appears:
CoroUary 1. The generating series M(y, z) oforientable rooted maps is the solution of the following generalized
Dyck equation:

M(y, z)=y+2M(y, z)M(y+l, z) (3)

Proof. Straightforward if we remark that the continued fraction can be rewritten as
M(y, z)= l-zM(y+l, z)

23



Remark 2. As reminded in the introduction, the generating function for rooted orientable maps can be written
M(y, z)=y+2zAiny/(y+l^. (y+2n-l)^

'9z'"^ 2"n!
(we add the vertex map) with an algebraic combinatorics point of view (see [17]). It can be verified that this
formula is the solution ofEq. (1) and (2).

4.2 Orientdble rooted trees

Let us recall that a tree (of any genus) is a map with only one face. We denote by T(z) the generating series of
orientable rooted trees, where the exponent of z refers to the number of edges in the tree.

By duality it exists a one-to-one correspondence between rooted trees and rooted monopoles (rooted maps
with only one vertex). Thus the series of trees is the coefficient of y' in the series of maps and:

T(z)=[M^1
y Ji^o

(4)

Then we can write the following results:
Corollary 2.
1) The generating series T(z) oforientable rooted trees is the solution of the following differential equation:

3

3z'
2) The generating series T(z) oforientable rooted trees is:

1

T(z)=l+zT(z)+2z2-^-[T(z)]
'ntable rooted trees

T(z)=-

(5)

(6)
1--

1-- 2z

1-. 3z

1- 4z
1-...

3) Both generating series oforientable rooted trees and orientable rooted maps are linked by the relation:
T(z)=--^-

l-zM(l, z)

Proof. 1) and 2) are direct consequences of eq. (1), (2) and (4). 3) is a direct consequence of (3) and (4).

4. 3 Explicit enumeration formulae

From previous expressions, we deduce explicit formulae enumerating orientable rooted maps and trees with a
given number of edges.

CoroUary 3.
1) The number oforientable rooted trees with n edges is:

(2n)!
2°n!

2) The number oforientable rooted maps with n edges is:
I Y-- -. : 1- TT-(2k, )!^TL(-I)' L n^

i=0
t

ki+_+k,,,=n+l j=l °'j .
ki, -. k;^>0

(8)

(9)

Proof.

1) Assume that T is the series ^t,, zk. By searching the coefficient of z" in (5), we obtain the recun-ence
k>0

relation !" = (2n - l)t^_i. This enumeration has been previously obtained through a very different way by T.
Walsh and A. Lehman in [21].

2) From (7), we express the generating series M(l, z) with respect to T(z), and we obtain (9) with little algebra.
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Remark 3. The number of rooted trees with n edges is equivalent to the number of permutations a with one
cycle over 2n elements (with two chosen ones for the root edge) divided by 2" (n-1)!. We can also note that this is
the very classical enumeration formula for fixed-point-free involutions, namely the odd factorial.

5. LocaUy orientable maps

Locally orientable maps can be obtained from oriented ones by reversing a subset of edges outside a given
spanning tree (see [16 p. 111]). In particular the series X of an orientable family of maps and the series X of the
associated locally orientable family are linked by

(10)X(y, z)=2X^, 2zj.
This allows us to obtained easily some fomiulae on locally orientable rooted maps and trees. Let M(y, z)

(resp. T(z)) denote the generating series of locally orientable rooted maps (resp. trees).

Theorem 3.
1) The generating series M(y, z) of locally orientable rooted maps is the solution of the following Riccati

differential equation:
3 T.~.M(y, z) == y + zM(y, z)2 + 2zM(y, z) + 4z2-^-[M(y, z)]3z'

2) The generating series M(y, z) of locally orientable rooted maps is:
_y_M(y, z)=.

1- (y+2)z

(11)

(12)

1-- (y+4)z
(y+6)z1-

1-...

3) The generating series M(y, z) of locally orientable rooted maps is the solution of the following generalized
Dyckequation:

M(y, z) = y + zM(y, z)M(y + 2, z)

Corollary 4.
1) Both generating series of locally orientable rooted trees and maps are linked by the relation:

T(z)=l-zM(2, z)
2) The generating series T(z) of locally orientable rooted trees is:

T(z)=-
1

1-
2z

(13)

(14)

(15)

1-- 4z

1- 6z
1-...

Remark 4. These formulae (1 1-15) can also be obtained directly with the topological method used to obtain eq.
(1-7).

6. Rooted hypermaps

We call a map two-colorable if its vertices can be colored with exactly two colors, any edge being incident to
two vertices with different colors.

The two-colorable property is compatible with the equivalence relation whose classes are rooted maps. Then
we can call a two-colorable rooted map, a rooted hypermap. Usually the smallest hypermap considered is the
edge with two vertices. Here, to simplify our purpose we assume that the smallest hypermap is the vertex.
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This definition is equivalent [see 20] to the combinatorial definition of a hypermap [14]. Our goal is to
enumerate these equivalence classes of rooted hypermaps independently of their associated surface.

We denote by H(y,z) (resp. H(y, z)) the generating series of orientable (resp. locally orientable) rooted
hypermaps without respect to genus.

We can prove the following results in a similar way as for rooted maps:

Theorem 4.

1) The generating series H(y,z) of orientable rooted hypermaps is the solution of the following Riccati
differential equation:

H(y, z) - y + zH(y, z)2 + z2 -^[H(y, z)] (16)

2) The generating series H(y, z) of locally orientable rooted hypermaps is the solution of the following Riccati
differential equation:

^[H(:
3zlH(y, z) = y + zH(y, z)2 + 2z2 ̂[H(y, z)] (17)

Theorem 5.
1) The generating series H(y, z) of orientable rooted hypermaps is:

H(y, z)=-
1-- yz (18)

1- (y+l)z
1-

1-

(y+i)z
Iy+2)z

1-...

2) The generating series H(y, z) of locally orientable rooted hypermaps is:

H(y, z)=.
1-- yz

(19)

1-- (y+2)z
1-- (y+2)z

1- (y+4)z
1-...

Corollary 5.
1) The generating series H(y, z) oforientable rooted hypermaps is the solution of the following generalized Dyck

equation:

H(y, z)=y+zH(y, z)H(y+l, z)+yz{H(y, z)-H(y+l, z)} (20)
2) The generating series H(y, z.) of locally orientable rooted hypermaps is the solution of the following

generalized Dyck equation:

H(y, z)=y+zH(y, z)H(y+2, z)+yz(H(y, z)-H(y+2, z)} (21)

7. Tables

Here we present enumerating tables for the first terms of M(y, z) (table 1), M(y, z) (table 2), H(y, z) (table 3),
H(y, z) (table 4), and finally T(z) and T(z) (table 5).
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z\y
0
1

2

3
4

5

6

7

8

0

1

2

3

4

5

6

7

_z\^_

1

1

1

3

15
105
945

10395
135135

1

5

32
260

2589
30669

422232

2

22
234

2750
36500

546476

5

93
1450

22950
388136

14
386

8178
166110

42
1586

43400
2027025 6633360 9163236 7123780 3463634 1092560

132
6476

220708
429

26333 1430
Table 1: The number of orientable rooted maps regardless to genus, with respect to edges (z) and
vertices (y).

z\y 1 2 J_4_5_6_7 8
1

2

12
120

1680
30240

665280
17297280

1

10
128

2080
41424

981408
27022848

2

44
936

22000
584000

17487232

5

186
5800

183600
6210176

14
772

32712
1328880

42
3172

173600
132

12952 429
8 518918400 849070080 586447104 227960960 55418144, 8740480 882832 52666 1430

Table 2: The number of locally orientable rooted maps regardless to genus, with respect to edges
(z) and vertices (y).

2 10
1

2

3

4

5

6

7

8

9

z\y

1

1

2

6

24
120
720

5040
40320

2

6

22
100
548

3528
26136

219168

5

29
165

1041
7406

59210
527764

14
130

1044
8638

76830
742644

42
562

5992
62472

675454

132
2380

32276
411624

429
9949 1430

166263 41226 4862
Table 3: The number of orientable rooted hypermaps regardless to genus, with respect to edges (z)
and vertices (y).

2 3 8 10
1

2

3

4

5

6

7

8

9

1

2

8

48
384

3840
46080

645120

2

12
88

800
8768

112896
1672704

5

58
660

8328
118496

1894720

14
260

4176
69104

1229280

42
1124

23968
499776

132
4760

129104
429

19898 1430
10321920 28053504 33776896 23764608_ 10807264 3292992 665052 82452 4862

Table 4: The number of locally orientable rooted hypennaps regardless to genus, with respect to
edges (z) and vertices (y).
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0

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15

T(z)
1

1

3

15
105
945

10395
135135

2027025
34459425

654729075
13749310575

316234143225
7905853580625

213458046676875
6190283353629375

T(z)
1

2

12
120

1680
30240

665280
17297280

518918400
17643225600

670442572800
28158588057600

1295295050649600
64764752532480000

3497296636753920000
202843204931727360000

Table 5: The number of orientable rooted trees T(z) and locally orientable ones T(z), regardless to
genus, with respect to edges.

8. Conclusion

We first studied orientable rooted maps regardless to genus with regard to vertices and edges. We obtained a
new differential functional equation (1) for the corresponding series. It is the first time such a differential
equation is used in map enumeration. Then we expressed this series with a simple continued fraction (2), leading
to a generalization (3) ofDyck's equation for rooted planar trees. The importance ofDyck's equation in the study
of rooted planar trees induces us to look at its generalization (3) with a great interest.

Then we studied orientable rooted trees. We gave a differential equation (5), a continued fraction (6), and a
astonishing relation between maps and trees (7). Then we presented explicit enumerations formulae (8) and (9).
Finally we gave similar results for locally orientable maps and trees (Theorem 3, Corollary 4), and for rooted
hypermaps (Theorems 4 and 5, Corollary 5).

These results open some new problems. We are now working on the topological interpretations of the
generalized Dyck equations (3, 13, 20-21), and the relations between trees and maps (7) and (14). Moreover, the
continued fractions found here appear in other papers (see for example [22]). The links to maps area are to study.
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