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Abstract

A \-vertex triangulation of an oriented compact surface S of genus 5 is an embedded graph T C S having
only one vertex such that all connected components ofS' \ T are adjacent to exactly 3 edges of T (i. e. are
triangles).
The aim of this paper is to give formulas for the number of such triangulations (up to equivalence) on an
oriented surface of given genus).
Une triangulation a un sommet d'une surface orientable compacte de genre g est un graphe Tc5 qui a un
seal sommet et dont toutes les faces sont incidentes a trois arretes de T (ce sent des triangles).
Le but de cette article est de donne des formules explicite pour Ie nombre de cettes triangulations.

0. Introduction

Definition 0. 1. A 1-vertex triangulation ofdn oriented compact surface 5' of genus 5 is an embedded
graph T C S having only one vertex such that all connected components of S\T are adjacent to exactly 3
edges of T (i. e. are triangles).

Two such triangulations T c S and T' c 5" are isomorphic (or equivalent) if there exists an orientation-
preserving homeomorphism y;: S - > S' such that <p(T} = T'.

The aim of this paper is to give fonnulas for the number of such triangulations (up to equivalence) on
an oriented surface of given genus (such triangulations exist in every genus ff ̂  1).

In section 2 we introduce relevant tools (so-called oriented Wicks forms which are cellular decompositions
with only one face of oriented surfaces) for our method.

Section 3 is devoted to the proof of our main results using the combinatorial tools introduced in the
previous section.

We note, that J-Brenner and R.Lyndon considered such triangulations from a combinatorial point of
view for studying non-parabolic subgroups of the modular group [BL].

1. Main results

Let Tc5' be a 1-vertex triangulation (1-VT for short) of an oriented surface of genus g. Denote by e
the number of edges and by v the number of triangles in T. The Euler characteristic formula

X(S) =2-2g=l-e+v

and the obvious identity 2e = 3v show that we have

e=3(25-l) ,
v=2(2g-l)

and all 1-vertex triangulations of genus g consist, hence of exactly 2(2g - 1) triangles.
Triangles of a 1-VT T are of two types. Indeed, let A be a triangle of T and let a, 6, c be the three edges

of A. The triangle A is a positive triangle if the cyclic word defined by the labels of edges around the unique
vertex of T is of the form

ab... bc... ca... or ac... cb.. . ba...
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and A is negative if this word is of the form

ab... ca... bc... or ac. -. ba. -. cb...

It is shown in [M], that a 1-VT of genus 5 has 2^- 2 positive and 2g negative triangles. (But^we will
formulate and prove this fact in combinatorial terminology in Propositin 2.6. ) Also, part (i) of the Theorem
1. 1 was already proved in a more general form in [BC], but we will prove it by another method.

The automorphism group Aut(T) of a 1-VT T is the group of all permutations of oriented edges in T
which are restrictions to the edge set of orientation-preserving homeomorphisms which leave T invariant.
Aut(T) is always isomorphic to a subgroup of the cyclic group of order 2e = 6(25 - 1) what can be seen by
considering an appropriate small neighbourhood U C S of the unique vertex in T (the graph TnU CUhas
the form of a star with 2e edges).

Let us introduce the sets
rf: all 1-VT's of genus g (up to equivalence),
T-i(r) c rf: all 1-VT's having an automorphism of order 2 leaving r edges of T invariant by reversing

their orientation. (This automorphism is the half-turn with respect to the "midpoints" of these edges and
exchanges the two adjacent triangles of an invariant edge.)

r^{s, t) C rf: all 1-VT's having an automorphism of order 3 leaving exactly s positive and * negative
triangles invariant (this automorphism permutes cyclically the edges incident to the invariant triangles).

T-I(3r;2s, 2f) = r^(3r) n T§(2s, 2f): aU 1-VT's having an automorphism 7 of order 6 with -y3 leaving 3r

edges invariant and 72 leaving 2s positive and 2t negative triangles invariant (it is useless to consider the set
T|(r';s', t') defined analogously since 3 divides r' and 2 divides s', t' if T^T';s', t') ̂ - 0).

We define now the masses of these sets as

m^

m^(r)

mj(s, f)

mj(3r;2s, 2t)

^\^w
E

TeT,fl(r)

E
T6T3s(8, t)

E
Tere°(3r;2s,2t)

|Aut(T)|
1

^ut(T)|
1

|Aut(T)|

Theorem 1. 1. (i) Aut(T) is cyclic of order 1, 2, 3 or 6 for every 1-vertex trianguiation T.
,,,. ^., 2^lY'(6ff-5)!(ii)m9^ ~i^)~ ̂ ^y. .
(iii) m9^ (r) > 0 (with r   N; if and only if f = 23^~r   {0, 1, 2,... } and we have then
,^_2^2^1 (6/+2r-5)!m^r)=2[^) ^/!(3/+r-3)i .
(iv) mgs(s, t) > 0 ifaad only if f = 3±1^=1 e {0, 1, 2,.. .}, s=2g+l (mod 3)andt= 2g (mod 3)

(which follows from the two previous conditions). We have then
.
9^ ̂  _ 2f32Y 1 (6/+2s+2f-5)!

rl3ls'T;=3^12^ ^W. 'fW'-m9s( f!(3/+s+f-l)! \
(v) m^(3r; 2s, 2t) > 0 if and oaiy if / = 2ff+5-3^-4»-4t ^ ^^ ̂  3^ ̂ ^ ^ 2s = 2g+ 1 (mod 3) and

2t=2g (mod 3) (follows in fact from tiie previous conditions^. We have then.
^^. o« ̂  - 2/6^, 1 [6f+2r+2s+2t-5)\

mg(3r; 2s, 2t) = g ̂ J ^^, ^, ̂ ,^ ̂ ^ ̂ ^ _ 3), .
Set

m^
mi
a -= ErgN, (2g+l-r)/46Nm2(r)

= £s, teN, (g+l-s-t)/3 N, s=2g+l (mod 3) m3 (s' *)
mg = ^-IT, S,, s, t£N, (23+5-3r-4s-4t)/126N, 2s=2g+l (mod 3) me(3r;2S':
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(all sums are finite) and denote by M^ the number of equivalence classes of 1-VT's on an oriented genus g
surface having an automorphism of order d (i.e. an automorphism group with order divisible by d).

Theorem 1.2. We have
Mf = mf +mj + 2mj + 2m^ ,
M^ = 2mj + 4mj ,
M^=3m93+3m9e ,
Mi = 6mJ

and Af| = 0 if d is aot a divisor of 6.
The number Mf of this Theorem is of course the number of inequivalent 1-vertex triangulations on an

oriented compact connected surface of genus g. See Table at the end of this paper for the first 15 values of
Mf.

The following is an immediate consequence ofTheorem 1. 2.
Corollary 1.3. There are exactly
Mgs inequivalent 1-VT's with 6 automorpbisms,
Mi - M^ inequivalent 1-VT's with 3 automorpbisms,
M^ - M^ inequivalent 1-VT's with 2 automorpbisms and
Mf - A/i - Aff + Mf inequivalent 1-VT's without non-trivial automorpbisms.
Let us note that the formula (u) can be obtained from the paper [WL], by formula (9) on page 207 and

formula on the top of page 211, or from the Theorem 2. 1 of [G Sch] with A = 26"-3 and'/z'= 343-2. We will
give our own proof of this fact. Let us note also, that Xg (6g - 3) = (12g - 6)mf, where \g (n) is the number
of ways to obtain an orientable genus g surface from 2n-gon, which was defined in [HZ].

2. Oriented Wicks forins

The objects considered in this section are dual to 1-vertex triangulations. They are slightly easier to
handle since they carry some combinatorial structures more immediately.

Definition 2. 1. An oriented Wicks form is a cyclic word w = w^w-i.. .wy (where cyclic means that
we consider equivalence classes of words under cyclic permutations) in some alphabet afl , a^1,... of letters
ai, a2,... and their inverses a]' , a^1,... such that

(i) if aei appears in w (for e   {±1}) then afe appears exactly once in w also,
(ii) the word w contains no cyclic factor (subword of cyclically consecutive letters in w) of the form

a, a,-l or a,-la, (no cancellation),

alas,
(iii) if a , aj is a cyclic factor of w then aj'5a^~e is not a cyclic factor of w (no substitution of the form

x, a^6aTe i-> x-l is possible).

An oriented Wicks form w = wiW2 ... in an alphabet A is isomorphic to w' = w'iU;2 in an alphabet A'
if there exists a bijection y?: A -> A' such that w' and y>(w) = ^(wi)<,9(w2). .. define the same cyclic word.

An oriented Wicks form w is an element of the commutator subgroup when considered as an element
in the free group G with free generators 01, 02,.... We define the algebraic genus ga(w) of w as the least
positive integer ga such that w is a product of ga conjugates of commutators in G.

The topological genus gi(w) of an oriented Wicks form w = Wi ... u;2e is defined as the topological genus
of the oriented compact connected surface obtained by labelling and orienting the edges of a 2e-gone (which
we consider as a subset of the oriented plane) according to w and by identifying the edges in the obvious
way.

Proposition 2.2. The algebralc and the topological genus of an oriented Wicks form comdde. [C] ,[CE]
We define thus the genus g(w) of an oriented Wicks form w by g(w) = ga{w) = gt(w).
Consider the oriented compact surface S associated to an oriented Wicks form w = Wi... w-ie- This

surface carries an immerged graph F C S such that 5\ F is an open polygon with 2e sides (and hence
connected and simply connected). Moreover, condition (ii) and (iii) on Wicks form imply that F contains no
vertices of degre 1 or 2 (or equivalently that the dual graph ofF CS contains no faces which are 1-gones or
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2-gones). Also, this construction works in the opposite direction: Given a graph F C S with e edges on an
oriented compact connected surface S of genus g such that 5 \ F is connected and simpl^connected, we get
an oriented Wicks form of genus g and length 2e by labelling and orienting the edges of T and by cutting 5
open along the graph F. The associated oriented Wicks form is defined as the word which appears in this
way on the contour of the resulting polygon with 2e sides. We identify henceforth oriented Wicks forms and
the associated immerged graphs F C S', speaking of vertices and edges of oriented Wicks form.

The Euler characteristic formula

^S)=2-2g=v-e+l

(where v denotes the number ofvertices and e the number of edges of F C 5) shows that an oriented Wicks
form of genus g has at least length 4g (the associated graph has a unique vertex of degre 45 and 2g edges)
and at most length 6(2^ -1) (the associated graph has 2(2g -1) vertices of degree three and 3(2g -1) edges).

We call an oriented Wicks form of genus g maximal if it has length 6(2^ - 1). Oriented maximal Wicks
forms are dual to 1-vertex triangulations. This can be seen by cutting the oriented surface S along F, hence
obtaining a polygon P with 2e "sides. We draw a star T on P which joins an interior point of P with the
midpoints of all its sides. Regluing P we get back S which carries now a 1-vertex triangulation given by T
and each 1-vertex triangulation is of this form for some oriented maximal Wicks form (the immerged graphs
TC 5andr C 5 are dual to each other: ie. faces of T correspond to vertices of T and vice-versa. Two faces
of T share a common edge if and only if the corresponding vertices of F are adjacent). This construction
shows that we can work indifferently with 1-vertex triangulations or oriented maximal Wicks forms.

Similarly, cellular decompositions of oriented surfaces with one vertex and one face are the same as
oriented minimal Wicks forms. Their number was found in [CM]. In this case there are two constructions
which yield a bijection between these two sets. Indeed, the dual of an oriented minimal Wicks form is again
an oriented minimal Wicks form (generally not equivalent to the former).

The following definitions are merely restatements in terms of oriented maximal Wicks forms of the
corresponding definitions for 1-vertex triangulations given in section 1.

A vertex V (with oriented edges a, 6, c pointing toward V) is positive if

u) = a6-l. .. bc~i ... ca.
-1 or w == ac-l... cb ... ba-1

and V is negative if

w = ab-1 .. co
-1 ... be-1 or w = ac

-1 ... ba~l... ab-1

The duality between oriented maximal Wicks forms and 1-vertex triangulations sets up a bijection
between vertices of given sign in forms and triangles of the same sign in triangulations.

For any oriented Wicks form w = wiu;2 .. .W2e of genus g and length 2e its automorphism group Aut(w)
is the group of cyclic permutations ̂  of the linear word u;iW2 ... W2e such that w and /u(w) are isomorphic
as linear words (ie. /x(w) is obtained from w by permuting the letters of the alphabet). The group Aut(w)
is clearly a subgroup of the group Z/2eZ of all cyclic permutations of words of length 2e.

The automorphism group Aut(w) of an oriented Wicks form can of course also be described in terms
of permutations on the oriented edge set induced by orientation-preserving homeomorphisms of S leaving
r invariant. In particular an oriented maximal Wicks form and the associated dual 1-vertex triangulation
have isomorphic automorphism groups.

Given a finite set W of isomorphism classes of oriented Wicks forms with genus g we define its mass
m(W)as

"'(Iy)=.EiA»®T .
w£W

We define the sets TVf, Wf(r)> Ty39(s' *) and lye(r; s'f) m the obvious way: W|(*) is the set of equiva-
lence classes with an automorphism of order d having perhaps parameters * defined as in section 1 (replacing
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_b^.

the word "triangle" by "vertex". ) The masses of the sets Tyj(*) are given by the numbers m^(*) introduced
in section 1.

Let V be a negative vertex of an oriented maximal Wicks fonn of genus g > 1. There are three
possibilities for the local configuration around V. We call these configurations type a, /3 and 7 (see Figure

b c|

Figure 1.

Type a. The vertex V has only two neighbours which are adjacent to each other. This implies that w
is of the form

w = Xiabcdb~lec~ld~le~la~lX2UiX^lx^lU2
(where u-i, u-2 are subfactors of w) and is w obtained from the maximal oriented Wicks form

W' = XUlX U<2

of genus g-1 by the substitution a; ̂ -r Xiabcdb~lec~ld~le-la~lX2 and x-1 with a;2'12;. i-1 (this construction
is called the a construction in [V]).

Type /?. The vertex V has two non-adjacent neighbours. The word w is then of the form

w = a;ia6ca -1 x-iUiyidb~lc~ld~ly2 U2

(where perhaps a;2 = yi or a;i = y-z see [V] for all the details). The word w is then obtained by a
,3-construction from the word w' = xu^yu-i which is an oriented maxima! Wicks form of genus g -1.

Type 7. The vertex V has three distinct neighbours. We have then

w = 2;ia6-ly2Ui^ica-la;2U2yi&c-12-2U3

(some identifications among xi, y, and Zk may occur, see [V] for all the detaUs) and the word w is obtained
by a so-called 7-construction from the word w' = xu^yuizus.

Definition 2.3. We call the application which associates to an oriented maximal Wicks form w of
genus g with a choosen negative vertex V the oriented maximal Wicks form w' of genus g-1 defined as
above the reduction of w with respect to the negative vertex V.

An mspection of figure 1 shows that reductions with respect to vertices of a or /3 are always paired since
two doubly adjacent vertices are negative, of the same type (which is a or f3) and yield the same reduction.

The above constructions of type a, /3 and 7 can be used to construct the list of all maximal orientable
Wicks forms of genus g> 1 recursively.

Definition 2. 4. Consider an oriented maxima! Wicks forms w =Wi... Wi2g-6 of genus g. To any edge
a; of w we associate a transformation of w called the IH transformation on the edge x.

We start by considering the two subfactors axb and cx~'id of the (cyclic) word w. Geometric consider-
ations and Definition 2. 1 show that 6 ^ a-l, c^ 6-l, d^ a-l, d^ c-1 and (c, d) ̂  (a-l, 6-1).

According to the remaining possibilities we consider now the following transformation:
Type 1. c 9^ a-l and d^b~1. This implies that d-la-1 and b

word w. The IH transformation on the edge x is then defined by the substitutions
-lc-l appear as subfactors in the cyclic

axb
cx-ld
d-la-1

-lc-b-lc-1

ab
cd

d-lya-1
6-ly-lc-1
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in the cyclic word w.
Type 2a. Suppose c-1 = a. This implies that 6-laa:6 and d~la~lx~ld are subfactors of the cyclic

word w. Define the IH transformation on the edge x by

b-laxb
d~la~lxd

b~lyab
d-ly-la-1

Type 2b. Suppose d~l = b. Then aa;&a-1 and dx~lb~ld~1 are subfactors of the cyclic word w and we
define the IH transformation on the edge x by

axba-l
dx-lb-ld-1

abya-l
db-ly-ld-1

Lemma 2. 5. (i) IH traiisformations preserve oneated maximal Wicks forms of genus g.
(ii) Two oriented maxima! Wicks forms related by a IH traiisformation of type 2 are equivalent.
Proof. This results easily by considering the associated graph T C S.
Indeed, the IH transformation on the edge x amounts to the following: Contract first the edge x. This

produces a vertex of degree 4 which can be "opened" in a unique different way preserving the cyclic order
of the 4 incident edges.

Graphically this amoimts to the replacement of a (deformed) letter I by a (not less deformed) letter H.
Assertions (i) and (ii) follow easily. QED

Proposition 2. 6. An oriented maximal Wicks form of genus g has exactly 2{g - 1) positive and 2g
negative vertices.

Lemma 2. 7. Ana or a 0 construction mcreases the number of positive and negative vertices by 2.
The proof is easy.

Lemma 2. 8. Tiie number of positive or negative vertices is constant under IH transformations.
Proof of Lemma 2.8. The Lemma holds for IH transformations of type 2 by Lemma 2. 5 (ii). Let hence

w, w' be two oriented maximal Wicks forms related by an IH transformation of type 1 with respect to the
edge a; of w respectively yofw'. This implies that w contains the four subfactors

and w' contains the subfactors

axb

ab

cx-ld d-1a-1

cd '-l..»-ld'1 y a

6-lc-1

-1», -1^-1b-ly

in the same cyclic order and they agree everywhere else. It is hence enough to check the lemma for the six
possible cyclic orders of the above subfactors.

One case is

w = axbu
w' = abu

cx-ld
cd

d-la-1
-lya-d-lya-'i

6-lc-1
rl y-lc-1

In this case the two vertices of w incident in x and the two vertices of w' incident in y have opposite signs.
All other vertices are not involved in the IH transformation and keep their sign and the Lemma holds hence
in this case.

The five remaining cases are similar and left to the reader. QED
Proof of Proposition 2.6. The result is true in genus 1 by inspection (the cyclic word aia2a3ai-la2'la3'

is the unique oriented maximal Wicks form of genus 1 and has two negative vertices.)
Consider now an oriented maxima! Wicks form of genus g+1. Choose an oriented embedded loop A of

minimal (combinatorial) length in F.
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First case. If A is of length 2 there are two vertices related by a double edge in F. This implies that
they are negative and of type a or /3. The assertion of Proposition 2.6 holds hence for w by Lemma 2.7 and
by induction on g.

Second case. We suppose now that A is of length > 3. The oriented loop A turns either left or right
at each encountered vertex. If it turns on the same side at two consecutive vertices Vi and Vi+i the IH
transformation with respect to the edge joining V; and Vi+i relates w to a form w' of the same genus
but containing a shorter loop. If A does not contain two consecutive vertices V, and y,+i with the above
property (ie. if A turns first left, then right, then left etc. ) choose any edge {Vi,Vi+i} in A and make an
IH transformation with respect to this edge. This produces a form w' which contains a loop A' of the same
length as A but turning on the same side at the two consecutive vertices V;-i , V, or y,+i, Vf+z. By induction
on the length of A we can hence relate w by a sequence of IH transformation to an oriented maxima! Wicks
form of genus g+1 containing a loop of length 2. Hence, we are reduced to the first case. QED

3. Proof of Theorem 1.1

Proof of Theorem 1. 1. We proof the corresponding assertions for oriented maximal Wicks forms. The
translation in terms of 1-vertex triangulations is immediate.

Let w be an oriented maximal Wicks form with an automorphism p, of order d. Let p be a prime dividing
d. The automorphism p! = p, dfP is hence of order p. If p ^ 3 then ̂ ' acts without fixed vertices on w and
proposition 2.6 shows that p divides the integers 2(g - 1) and 2g which implies p = 2. The order d of ;u is
hence of the form d = 2a3b. Repeating the above argument with the prime power p = 4 shows that a < 1.

All orbits of p2 on the set of positive (respectively negative) vertices have either 3i> or 36"1 elements

and this leads to a contradiction if 6 ^ 2. This shows that d divides 6 and proves (i).
Proof of (ii). An element of W^+ (which designes the set of equivalence classes of oriented minimal

Wicks forms with genus g + 1) can be obtained by applying an a, /? or 7 construction to an element in Wf.
There are respectively 2(6^-3), 4(%-3) + 4(6ff,-3) and 8(6ff3-3) +8(65 - 3)(6g - 4) + 8(6sf3 ) different

possibilities for these constructions starting with a given element in W^. On the other hand, Proposition 2.6
shows that we can construct 2(^+1) oriented maximal Wicks forms in Wf by applying reduction with respect
to a negative vertex to a given element in Wf+ . The numbers of such "augmentations" and "reductions"
coincide after weighting with the correct coefRdents. These weights have to take care of automorphisms and
the fact that type a and ft constructions give rise to 2 negative vertices with the same "inverse". A carefull
analysis shows that

«69:3) ̂(6%-3) -(^-3) -(69;3) -<6',-3) .s(6^-3)). f-(, -r-
which proofs (ii) by induction since the fanction

,, ;, (65-5)!
'12Sg\(3g-3)\

satisfies the same equation and we have equality for 5 = 1 (since mf == j = 2 ^^ip, ).
Proof of (iii). First case: r < 2^+1 and hence / = 23+^-r ̂  ^ Let w be an oriented maximal Wicks

form of genus g with an automorphism p, of order 2 reversing the orientation of exactly r edges. There are
6?-23-r orbits of (unoriented) edges not invariant under fjt. Consider the graph obtained by removing all

/x-invariant edges from the quotient graph F//x. After removing leaves and vertices of degree 2 we get an
oriented maxunal Wicks form w with 6a-=j^l. - r = 3(2s^7-1,)
(recall that an oriented maximal Wicks form of genus / has 3(2, - 1) edges).

More precisely, let w be represented by the word wiws ... wi2g-6. The subword wiu;2 ... wgg-s con-
tains exactly one representant of each orbit for the action of /x on oriented edges. Remove from the word
wi. .. weg-s all letters Wk with Wt+eg-s = w^ ( they correspond to edges reversed by fi). The resulting
word w' has length 65 -3 - r and has the property that if Wk appears in

edges and hence of genus / = ?+^l-r

w then either w^ or w,
-1
k+6g-3

appears exactly once in w' also. Replacing uj^gg_3 by w^ we get a word which satisfies (i) of Definition
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2. 1. Removing from this word (and of the resulting ones) all cyclic subfactors of the form w^w^1 we get a
word w" satisfying also condition (ii). Cancel w, and its inverse (or wj and its inverse) if w, Wj and wj w^'1
both occur as cyclic subfactors. This produces ultimately an oriented maximal Wicks form w. A counting
argument shows that it has genus /. (A good way to understand what happens is to write the word w along
two concentric circles related by radial segments indexed by invariant edges).

An oriented maxima! Wicks form w obtained as above has an extra structure defined as follows. Given
an oriented edge a of ui, choose a preimage a in w (recall that we constructed w starting from w by deleting
letters and replacing other letters by elements in the same orbit under a). We have then w = auia-lU2.
Since /x(a) 7^ a-l, the two subfactors ui and us cannot have the same length. Denote by u the shorter one.
Set ip(a] = y(a-l) = I (mod 2) if u contains I letters representing edges reversed under p,. We get thus a
function y with values in Z/2Z. This function satisfies

y(a) + ip(b') + y?(c) = 0 (mod 2)

whenever a, 6, c are 3 edges incident in a common vertex of w. Such function is called a Z/2Z-/?ow on the
graph F.

Conversely, for given an oriented maximal Wicks form w of genus / = and a Z/2Z-flow y; on
its graph F, we can construct

(12, - 6) (12, - 2)... (12, - 10 + 4r)
r!

oriented maxima! Wicks forms of genus g having an automorphism /x of order 2 reversing r edges associated
to the pair (w, y). Indeed, we have (12, - 6) possibilities to attach the first edge reversed by p,, (12, - 2)
choices for the second edge and so on. Since there are r! possible orderings of the ̂ -invariant edges we have
to divide by r!. Finally, the Z/2Z flow shows how to glue together preimages of orbits under p,.

The set of Z/2Z-flows is a vector space over Z/2Z of dimension 2/. This implies that we have

^(12/-6)(12/-2^... (12/-10+4r)^ ̂  ^ ^^
(the factor 2 on the right hand side comes from the fact that the Wicks forms contributing to mf are
essentially weighted with weight 1 while they have weight j in mj). This equation is also satisfied by
replacing m{ with 12^^^sy and m^(r) with 3/%t32/r+r^3)' (reca11 that 9 = 4ziT=l) and this Proofs (ui)
in the first case.

Second case: / = 0 (the construction of w as above shows that we cannot have / < 0). The idea is the
same as in the first case. Here we have to glue a first invariant edge on an empty word (1 possibility) for the
second and the third invariant edge we have 2 possibilities, for the forth there are 6 possibilities etc. Since
there are no flows on an empty graph we get

2mi(23+l)=22. 6... (4r - 10)
r!

which is readily checked.
Proof of (iv). First case: t > 0. Let u; be an oriented maximal Wicks form having an automorphism

of order 3 fixing s positive and t > 0 negative vertices. The t fixed negative vertices give rise to t possible
reductions producing oriented Wicks forms w of genus g -\ invariant under an automorphism of order 3.
The parameters of w' are then (f - 1, s). On the other hand, for given an oriented Wicks form w of genus
5-1 with an automorphism of order 3 and parameters (t -1, s) there are 2(2g - 3) 7-constructions yielding
a Wicks form of genus g with an automorphism of order 3 and parameters (s, t) (choose the midpoint of any
of the 6(2^ - 3) oriented edges in w' and make the 7-construction with respect to its orbit). We have hence

2(25 - 3)mj-l (f - 1, s) = tm^s, t)

which is also satisfied by the righthand side of formula (iii) in Theorem 1. 1.
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Let us now consider the case t = 0 (no invariant vertices of negative type). The proof of this case is
very similar to the proof of (iii) .

We can suppose g> 1 since there are only two vertices of negative type in genus 1 . We consider hence
an oriented maximal Wicks form w of genus g with an automorphism fi of order 3 fixing s positive and no
negative vertices. Since p, leaves no edge invariant, there are 6a^3- =2g-l orbits of invariant edges. In genus
5 > 1, invariant vertices under an automorphisme p, of order 3 are nether adjacent. There are hence s orbits
of edges of w incident in a vertex fixed under /z. Removing their orbits from the orbits of edges leaves us with
a graph on the orbit space which has s vertices of degree 2. Removing these vertices of degree 2 yields an
oriented maximal Wicks form w of genus / = 3±j=s- (all vertices are of degree 3, there is one face and there
are 2g- 1- 2s = 6/-3 edges). The construction of this form is completely analogous to the construction
in the proof of (ii). As in the proof of (ii) this fomi has an extra structure. This extra structure is here
a Z/3Z-flow, ie. an application (p of the set of oriented edges of w into Z/3Z such that y»(e) = -y>(-e)
(mod 3) and y(a) + y(6) + y(c) = 0 (mod 3) for three oriented edges a, 6, c pointing toward a common
vertex of w.

Conversely, given an oriented maximal Wicks form w of genus / together with the above extra structure
(a Z/3Z-flow on its graph F) there are

(12, - 6)(12/ - 2)... (12, - 10 + 4s)
s!

possibilities to "extend" it into an oriented maxima! Wicks form w of genus g which has an automorphism
p, of order 3 fixing exactly s positive and no negative vertices.

Since the set of Z/3Z-flows on F is a Z/3Z-vector space of dimension 2/ we get

^(12/-6)(12/-2)^.. (12/-10+4. )^^^^^^^J/-1(.. 0) .
A routine calculation shows that this equation is also satisfied with m{ replaced by Zj^^jy^yy and
m|/+s-l(s, 0) replaced by l(t)/^%^71 and this proofs (iv) in the case f>l- The ProoffOT / = 0 is

similar to the analogous proof of (iii).

Proof of (v). We apply again the idea used in the proof of (iii). Let w be an oriented maxima! Wicks
form with an automorphism p, of order 6. Considering the automorphism ju3 of order 2 and applying the
reduction used in the proof of (iii) we get an oriented maximal Wicks form w of genus h = 23+^-3r together
with a Z/2Z-flow tp on t. This form w is however an element of W^{s, t) and has hence an automorphism fi,
of order 3 which leaves y invariant. Analogously to the proof of (iii) we use this data to produce elements in
TV^(3r; 2s, 2t) by making all constructions /i-invariant. We must understand the vector space of /(-invariant
Z/2Z-flows:

Lemma 3.1. Let w 6 W^{s, t) be an oriented maximal Widas form with an automorpbism jj, of order
3 (having parameters s, t). The space of fi-mvarisait Z/2Z-flows on F is tbea of dimension h+ ~^s .

The lemma and a counting argument show then that

3(.. x-,-<)/3 ̂  - 6)(4ft - 2) .̂ .. (4/. - 10 4- ̂  ̂ ^ ̂  2mJ(3r;2., 2f)
r;

and a routine calculation implies assertion (v).

Proof of Lemma 3. 1. Let y be a ju-invariant Z/2Z-flow on t. We remark that ̂ (a) = ^(6) = ^(c) = 0
(mod 2) if a, b, c are three edges incident in a /(-fixed vertex. This shows that all reductions used in the proof
of (iv) can also be applied to the flow f and these constructions are injective on /i-invariant Z/2Z-flows.

Theorem 1. 1 is proved. QED
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Table. Number of 1-vertex triangulations or of oriented maxima! Wicks forms in genus 1 - 15:

1 1
2 9
3 1726
4 1349005
5 2169056374
6 5849686966988
7 23808202021448662
8 136415042681045401661
9 1047212810636411989605202
10 10378926166167927379808819918
11 129040245485216017874985276329588
12 1966895941808403901421322270340417352
13 36072568973390464496963227953956789552404
14 783676560946907841153290887110277871996495020
15 19903817294929565349602352185144632327980494486370
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