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Abstract

Generating trees describe conveniently certain families of combinatorial objects: each
node of the tree corresponds to an object, and the branch leading to the node encodes the
choices made in the construction of the object. Generating trees lead to a fast computation of
enumeration sequences (sometimes, to explicit formulae as well) while providing efficient ran-
dom generation algorithms. In this paper, we investigate the relationship between structural
properties of the rules defining such trees and the rationality, algebraicity, or transcendence
of the corresponding generating functions.

Resume

Certaines methodes d'enumeration d'objets combinatoires utilisent des arbres infinis, ou
arbres de generation, qui resument dans leurs branches et leurs noeuds les choix faits lors de
la generation des objets. Les arbres de generation conduisent a des algorithmes de calcul des
suites de denombrement ainsi que de generation aleatoire qui sont rapides. Nous etudions
les liens entre les proprietes structurelles de tels arbres, ou plutot des systemes de regles
associes, et la nature (rationnelle, algebrique ou transcendante) de la serie generatrice qui
leur correspond ; cette serie enumere les noeuds de niveau donne de 1'arbre, z'. e., les objets
de taille donnee.

1 Introduction

Only the simplest combinatorial structures - like binary strings, permutations, or pure involu-
tions (i. e., involutions with no fixed point) - admit product decompositions. In that case, the
set On of objects of size n is isomorphic to a product set: ^n ^ [l>ei] X [1, 62] X ... X [l, Cn].
Two properties result from such a strong decomposability property: (z) enumeration is easy,
since the cardinality of Qn is e-ie^ . . -en-, (ii) random generation is efficient since it reduces to
a sequence of random independent draws from intervals. In that case, a simple infinite tree,
called the uniform generating tree is determined by the ej: the root has degree ei, each of its
ei descendents has degree 63, and so on. This tree describes the sequence of all possible choices
and the objects of size n are then in natural correspondence with the branches of length n,
or equivalently with the nodes of generation n in the tree. The generating tree is thus fully
described by its root degree (ei) and by rewriting rules, here of the special form,

(ej) ̂  (ej+l) (ej+l) . . . (ej+l)= (ej+l)£''
where the power notation is used to express repetitions. For instance binary strings, permuta-
tions, or pure involutions are determined by

S : [(2), (2) ̂  (2) (2)]
-p : [(i), {0-)-0+i)J}^i]_
T: [(1), {(2j-l)-(2j+l)^-l}^i].
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A powerful generalization of this idea consists in considering unconstrained generating trees
where any set of rules

S=[(si), {W-(ei,, )(e2, fc)---(e^)}] (1)
is allowed. Here, the axiom (§1) specifies the degree of the root, while the productions list the
degrees of the k descendents of a node labelled k. Obviously, much more leeway is available and
there is hope to describe a much wider class of structures than those corresponding to product
forms and uniform generating trees.

The idea of generating trees that we have just described has surfaced occasionally in the
literature. West introduced it in the context of enumeration of permutations with forbidden
subsequences [18, 19]; this idea has been further exploited in closely related problems [3, 4, 9, 10].
A major contribution in this area is due to Barcucci, Del Lungo, Pergola, and Pinzani [2, 5]
who systematized the method under the name of ECO-systems (ECO stands for "Enumerating
Combinatorial Objects"), while showing that a fairly large number of classical combinatorial
structures are amenable to such descriptions by generating trees.

A form equivalent to generating trees is well worth noting at this stage. Consider the
set of walks on the integer half-line that start at point (si) and such that the only allowable
transitions are those specified by S. Then, clearly, the set of such walks of length n is in bijective
correspondence with branches of the tree. Thus, the model of generating trees is equivalent to
walks of the form (1). The walks are only constrained by the consistency requirement of trees,
namely, that the number of outgoing edges from point k on the half-line has to be exactly k.
Such an alternative presentation in terms of walks implies that objects that admit generating
trees can be enumerated in cubic time, given the rules in tabular form, and provided the e; ̂  are
bounded linearly in k. (See below for details.)

EXAMPLE 1. 123-avoiding permutations. The method of "local expansion" sometimes gives good
results in the enumeration of permutations avoiding specified patterns. Consider for example the set
©n (123) of permutations of length n that avoid the pattern 123: there exist no integers i< j < k
such that a(i) < a-(j) < a(k). For instance, o- = 4213 belongs to ©4(123) but o- = 1324 does not, as
(7(1) < (T(3) < (T(4).

Observe that if r £ ©n+i(123), then the permutation cr obtained by erasing the entry n+ I from r
belongs to ©n(123). Conversely, for every a- e ©n(123), insert the value n+1 in each possible place (this
is the local expansion). For example, the permutation o- = 213 gives 4213, 2413 and 2143, by insertion of
4 in first, second and third place respectively. The permutation 2134, resulting of the insertion of 4 in the
last place, does not belong to ©4(123). This process can be described by a generating tree whose nodes
are the permutations avoiding 123: the root is 1, and the children of any node o- are the permutations
derived as above. Figure l(a) presents the first four levels of this tree.

Let us now label the nodes by their number of children: we obtain the tree of figure l(b). It can be
proved that the k children of any node labelled k are labelled respectively k + 1, 2, 3, ..., k. Thus the
generating tree can be defined by giving only the value of the label of the root and the succession rule
just defined. This can be written (after re-ordering the labels) as

[(2), {(fc)-(2)(3)... (fc-l)(fc)(fc+l)}^2]. (2)
The equivalence with paths then implies that 123-ayoiding permutations are equinumerous with "walks
with returns" on the Ralf-line, themselves isomorphic to I.u.kasiewicz codes of general trees. Thus, 123-
avoiding permutations are counted by Catalan numbers. D

The main question addressed in this paper is the relationship between structural properties
of the rules defining generating trees on the one hand, and properties of generating functions on
the other hand. Since generating trees are associated with fast random generation algorithms
and with enumeration sequences of relatively low computational complexity, there is an obvious
interest in delineating as precisely as possible which combinatorial classes admit a generating tree
specification. Generating functions that condense structural information in a simple analytic
entity are prime candidates to be examined.

In the course of their investigations, Pinzani and his coauthors made a number of observations
that were presented to us as conjectures in March 1998. This paper is devoted to bringing
complete proofs of several of Pinzani's conjectures. Our main results are as follows.
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4321 3241 4231 4213 2143 4312 3142 4132
3421 3214 2431 2413 3412 1432

5234 3 2 423 423 3 2

(a) (b)

Figure 1: The generating tree of 123-avoiding permutations. (a) nodes labelled by the permu-
tations. (b) nodes labelled by the numbers of children.

- Rational systems. Systems satisfying strong regularity conditions lead to rational gen-
crating functions (Section 2). This covers systems that have a finite number of allowed
degrees, as well as systems like (a), (6), (c), and (c?) in Example 2 below where the labels
are constant except for a fixed number of labels that depend linearly and "uniformly" on
k.

- Algebraic systems. Systems of a "factorial" form, i. e., where a finite modification of the
set {1, ..., /!. } is reachable from k, lead to algebraic generating functions (Section 3). This
includes in particular cases (/) and {g) in Example 2.

- Transcendental systems. One possible reason for a system to give a transcendental series is
the fact that its coefficients grow too fast, so that its radius of convergence is zero. Tran-
scendental generating functions are also associated with systems that are too "irregular"
(Section 4). Instances are cdses (e) and [h) of Example 2.

EXAMPLE 2. Particular generating tree systems. Here is a list of examples recurring throughout this
paper.

(a): [(3), {(fc)^(3)fc-_3(fc+l)(&+2)(fc+9)}]^
(c): [(2), {(k) - (2)A-2(2 + (fc mod 2))(fc + 1)}]

W: [(3), {(fc)-
(d): [(2), {(fc).

(e): [{3), {(k)^(2)k-2(3-[3p:k=y])(k+l)}] (/): [(2), {(fc)
(g): [(l), {(k}^(l)(2)... (k-l)(k+l)}} W: [(2), {(fc).

(3)fc-l(3&+6)}]
. (2)A-2(3-(fcmod2))(A-+l)}]
. (2)(3)... (A-l)(fc)(A+l)}]
. (2)(3)(fc+2)fc-2}]

(In (e), we make use of Iverson's brackets: [P] equals 1 if P is true, 0 otherwise.) a

Notations. From now on, we adopt functional notations for rewriting rules: systems will be
of the form

[(^i), {W-(ei(fc))(e2(A))... (e, (fc))}]
where Si is a constant and each e, is a function of k. Moreover, we assume that all the values
appearing in the generating tree are positive.

In the generating tree, let /n be the number of nodes at level n and Sn the sum of the labels
of these nodes. (By convention, the root is at level 0, so that /o = 1. ) In terms of walks, fn is

the number of walks of length n. The generating function associated to the system is

F(z)=^/^n.
n>0

Remark. that Sn = /n+i, and the /n's are nondecreasing.
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Now let fn, k be the number of nodes at level n having label k (or the number of walks of

length n ending at position k). The following generating functions will be also of interest:
F(^, u)= ^ /^"^ and F, (^) = ^/., ^n.

n, k>0
E/»,*/.
n>0

We have F(z) = F(z, 1) and F(z) = E^i Fk{z). Furthermore, the F^'s satisfy the relation

Fk{z)=[k=s, ]+z^^F, (z), (3)
i>l

where 7r,. fc = \{j < i :  j[i) == k}\ denotes the number of one-step transitions from i to k. This
is equivalent to the following recurrence for the quantities fn, k,

/0, si = 1 and /n+l, fc = ^_, ni, kfn, i,
«>1

that results from tracing all the paths that lead to fc in n+1 steps.

(4)

Counting and random generation. The recurrence (4) gives rise to an algorithm that
determines the successive values of the array /n, fc by "forward propagation": For each ra, i, prop-
agate the contribution /",<. to fn+i, k whenever e, (i) = ^. Consider for this^discussion "linearly

bounded systems" where the states reachable in m steps have an index (a label) dominated by
a linear function of m. (Systems where forward jumps are bounded by an absolute constant
are for instance of this type. ) Clearly, the forward propagation algorithm provides a counting
algorithm of arithmetic complexity that is at most cubic. In that case, random generation can
also be achieved in polynomial time, as we now show.

Let gk, n be the number of walks of length n that start from state fc taken as axiom. The gkn
are then determined by a "backward" recurrence, gk, n = ^j9e, (k). n, that traces all the possible
continuations of a path given its initial step. Obviously, /" = ff^, n, with Si the axiom. The
gk, n form an array'that'is dual to the fn,k and, for a linearly bounded system they can be

determined in time 0(n3), like before. Random generation is then achieved as follows: In order
to generate an object of size n starting from state fc pick up a transition j with probability
g (k), n-i/9k, n, and generate recursively an object of size n - 1 starting from state ej(k) The
recursive procedure needs to set up the array fffc,n, which represents a preprocessmgcost ofO(n^)
time and 0(n2) storage. The cost of a single random generation is then 0(7Z2) if a sequential
search is used over the'O(n) possibilities of each of the n random drawings; the time complexity
goes down to O(nlogn) if binary search is used, but at the expense of an increase in storage
complexity of 0(n3) (arising from 0(n2) arrays of size 0(n) that binary search requires).

2 The rational case

We give in this section four criteria implying that the generating function of a given ECO-system
is rational. All the systems studied here have the following property: A bounded number ofe, 's
grow at most linearly in A-, and the others are bounded by a constant.

Among these systems, the simplest ones are those in which all the e, 's are bounded.
Proposition 1 If finitely many labels appear in the tree, then F(z} is rational.
Sketch of Proof. Only a finite number of F/c's are nonzero, and they are defined by linear
equations like Equation (3) above.

EXAMPLE 3. Fzbonacci sequence. The system [(1), {(k) - (k)k-1 ((k mod 2) + 1}}]^ which can be also
written ^ f(l)/{'('l)"-'(2), T2) - (l)(2)}j, leads to F(. ) = ^^ = l+. +2z2+3z3 +5.4 + .. , th^e
well-known Fibonacci generating function.
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None of the systems of Example 2 satisfy directly the assumptions of Proposition 1. However,
the proposition that follows can be applied to systems (a) and (6).

Proposition^ Let a(k) = ei(fc) + e^k) + ... + ek(k). If a is an affine function of k, say
o-(fc) = aA- + /?, <Aen (/ae senes F{z) is rational. More precisely:

(z) = l+(sl-a)z[z) = l-az-f3z^
Proof. Let TO ^ 1 and let fci, A;2,... kf^ denote the labels of the /" nodes at level n. Then

/n+2 = Sn+i = (aki+f3)+{Qk2+l3)+---+(ak^+/3)
aSn+f3fn = afn+l+ftfn.

We know that /o = 1. The result follows. Q

EXAMPLE 4 Bisectwn of Fibonacci sequence The system [(2), {(k) -» (2)k-l(k + 1)}] gives ̂ (2) =
l-3ztz2 

= 1+ 2Z+ 3Z2 + ' "' the genera'ting function for every odd entry in the Fibonacci sequence.
^?^a^^^he axiom to. (3) !eads to the other half of the Fibonacci sequence. ) Systems [(2), {(k) -^
(l)fc-l(2Z;)}]^as well as [(2), ^{^) - (2)fc-2(3 - (k mod 2))(A + (k mod 2))'}] and/[(27, "{(7)"-J.^2')^2(3 -
[k is pnme])(k + [k is prime])}] lead to the_same function F(z) since a-(k) = 3k-]. and Si = 2 in all
cases. However, the generating trees are different, as are the bivariate functions F(z, u). D

Proposition 2 can be slightly generalised. For example, let us consider a system having the
following properties: (z) the system can be decomposed into two productions, one for even k
and one for odd k, such that the corresponding functions o-o and CTI are affine and have the same
leading coeflficient a, say ao{k) = ak + f3o and ai(k) = ak +/3^ (ii) there exists a constant c
such that exactly c odd labels occur in the right-hand side of each rule. An argument similar to
the proof of Proposition 2 leads to the following result:
Proposition 3 J/ a system satisfies properties (i) and (ii) above, then

1 + (si - a)z + (s2 - ccsi - /3o)z2F(z)=
l-a^-/?o22-c(/?i-/3o)z3

For example system (c) in Example 2 can be rewritten [(2), {{2k) ̂  (2)2A:-2(2)(2A;+1), (2A+
1) ̂  (2)2/C-1(3)(2A; + 2)}]. It satisfies properties (i) and (u) above with a'= 3, /?o = -l7/?i~= 0
and c = 1. Consequently, its generating function is F(z) = ^_^^_^ .

System (c?), although very close to (c), does not satisfy property (n) above, so that Propo-
sition 3 does not apply. We then consider systems of the form

[(si), {(A) ̂  (ci(A-))(c2(A)) . . . (cfc-A-W)(A- + ffl)AI(A- + G2)A2 ... (k+ a^)Am}] (5)
where 0<ai <ffl2 < ... < dm and the c, (^) are uniformly bounded by a constant C< > Si.

Proposition 4 Consider the system (5), and let TT^ = \{j ^ i : Cj(i) = k}\. If all the series

E^^'
^1

for k <, C are rational, then so is the series F(z).

Sketch of Proof. We form an infinite system of equations defining the series Fk{z) by writing
(3) for all k ^1. The bottom part of the system (k > C) is diagonal, and the solution of the
corresponding equations yields, for fc > 1:

Fk{^=^P^)F, {z-)
2=1

(6)
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where the P,, fc are polynomials in z defined by the following recurrence: for all i ^ C,

[k=i] if fc ̂  C,
Pz, k{z} =

with the convention Pi.k = 0 iffc < 1.

Using (7), we find

Z^\tPi, k-aAZ) i^>^
e=i

(7)

F^)=^F, (Z)=SF, (^)
k>l i=l

E^(-
fc>l

According to (7), Efc>i Pi, k{z)tk is a rational function in z and t, of denominator 1 - ^ E^ A^a<.
At t = 1, it is rational in z. Hence, to prove the rationality of F(z), it suffices to prove the
rationality of the F, (z), for i ^ C.

Let us go back to the C first equations of our system; using again (7), we find, for k^C:

Fk=[k=si]+z^Fi{2)
t=l

E^'(^)^
b'^i

Again, we can prove that Ej >i Pz, j(z)7rj, k is a rational function of z (the Hadamard product of

two rational series is rationalV Thus the series F^-z), for k ^C, satisfy a linear system with
rational coefficients: they are rational themselves, as well as F(z). D

Examples (a), (c), (d) and (e) of Example 2 have the form (5). The proposition above implies
that the first three have a rational generating function. System (e) will be discussed in Section 4.

3 The algebraic case

In this section, we consider systems that are of a "factorial" form. By this, we mean mfoi-
mally that the rules giving the successors of (A) are a finite modification of the integer interval
{l, 2,..., fc}. As was detailed in the introduction, generating tree rules can be rephrased in
terms of walks over the integer half-line. We thus consider the marginally more general problem
of enumerating walks over the integer half-line such that the allowed moves from point fc is a
finite modification of the integer interval [0, k]. Precisely, afactorial walk is defined by its moves
from point A ^ 0 that are of the form

(k)^{0)(l)---{k-c-l){k+d^(k+d^---(k+d^), (8)

with c>0and-c< di ^ d2 ̂  ... ^ c^m > 0. In other words, a finite number of forward
jumps are allowed and all backward jumps of length at least c + 1 are possible when moving
from point k.

The collection of factorial generating trees is then defined as those systems that, up to a
possible shift of indices, correspond to factorial walks. The rules are then

(fc + ro) ̂  (ro)(ro+ 1) ... (k + ro - c - l)(k+ro+ di)(k +ro+d^) . . -(k+ro+d.'-m)i

that is,

{k)'^(ro){ro+l)---(k-c-l)(k+di)(k+d^---{k+dm), forfc > ro ̂  1.
Such systems must also obey the consistency principle of generating trees, viz., a node labelled
k has exactly k successors; here this implies the further restriction ro+ c = m. For instance,
Systems (/) and (ff) of Example 2 are factorial.
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We prove here that any system of walks of type (8) has an algebraic generating function. The
result thu^ applies to^enerating trees given by factorial rules. We consider again'the generating
function F(z, u) =^n^ofn, kznuk, where /^ is the number of walks of length n ending at
point k. We also let fn [u) be the coefficient of zn in this series. The first idea is based on

introducing a linear operator M such that

fn+l{u}=Mfn (u).

This operator is constructed in stages by means of an operator L that records symbolically all
possible moves, and then, by modifying L in order to take into account the boundary conditions
that forces the walk to be always nonnegative. Let {&i, 62, ... } = {^ : ^ ^ 0} be the set of
allowed forward jumps. Similarly, let {ai, 03,... } = [1, c] \ {-d, : d, <"0} be the set of irregular
backward jumps.

- The set of moves from k to all the positions 0, 1,. .., A - 1 is described by an operator LQ
that maps uk iou°+U1 + ... + uk-1 = (1 - uk)/(l - u). Consequently, let

ww^'-w^M.
- The fact that transitions near k are modified, with those of type k + bj (with bj > 0)

allowed and those of type k - a, (with 0 «z, ^ c) disallowed is expressed by a Laurent
polynomial,

P(u) = B(u) - A(u) with B(u) = ^ u^ , A(u) = ^ u-^ . (9)
J j

Then, the operator
L[f](u):=Lo[f](u)+P(u)f(u)

plays the role of a generating operator for a single step of the walk.
- The modified operator M. is given by

M[f]{u)=L[f](u)-{u<°}L[f](u),

where {u<°}f is the sum of all the monomials in / that involve negative exponents. This
is nothing but L stripped of negative exponent monomials that correspond to noncombi-
natorial situations.

Assume for^simplicity that the initial point of the walk is 0; other cases follow by the same
argument. The linear relation fn+i{u) = M[fn](u), together with /o(u) = 1 yields

F[z, u}=^f^u)zn=\+zz^
n>0

(^)-^+P(» , «)-{«<°}E^MW).
n>0

One has {u<°}Lfn (u) = ^j;; c, (u)^/^ (0), where c, (u) is a Laurent polynomial with monomiais
whose degrees belong to [/- c,..., -!]. Thus, equation (10) implies' our main equation,

F^ u)(l+^- zP^ = l + ^F(z, 1) - ^ c, (u)9iF(z, 0). (11)
J=0

Therefore, the bivariate generating function F(z, u) s&tisiies & functional differential equation.
The quantities that appear in the functional equation are all explicit. For instance, the

moves

(k) - (0)(1) ... (k-5)(k- 3)(A - l)(k)(k+7){k + 9),
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lead to A(u) = u-4 + -u-2 and B{u) =u°+u7+ u9, with P(u) = B(u) - A(u). In general, the
degree of P is d := dm, the size of the largest forward jump; the smallest degree occurring in P
is c, the size of the largest disallowed backward jump.

The second ingredient is sometimes known as the kernel method1. This consists in forcing
the left hand-side of the fundamental functional equation (11) to be zero by coupling z and
u so that the coeffident of the (unknown) quantity F(z, -u) is zero. This constraint defines u
as one of the branches of an algebraic function of z. If enough branches can be substituted
analytically, then enough relations will be generated so that one can solve for the (unknown)
quantities appearing on the right, namely, F{z, 1) and the ̂ F(z, 0) that are then obtained as
algebraic functions. From there, an expression for F{z, u) also results in the form of a bivariate
algebraic function.

One defines here the kernel K as

(12)K{u, z) :=-uc(l-u) (l+7--2P(u)

which is nothing but the numerator of the coefRcient of F(z, u) in (11). There are c+ c?+ 1
solutions in u of this equation, which are algebraic functions of z. The classical theory of
algebraic functions and the Newton polygon construction enable us to expand the solutions near
any point as Puiseux series (that is, series involving fractional exponents). The c+d+1 solutions
around 0 can be classified as follows:

- the "unit" branch, denoted by UQ, which tends to 1 as2->- 0;

- c "small" branches, denoted ui,..., Uc, which grow like zllc at z = 0;

- d "large" branches, denoted by vi,.. ., Ud, which grow like z~}-ld at ̂  = 0;
In particular, there are exactly c+1 finite branches: the unit branch UQ and the c small branches
ui,.. ., Uc. An elementary argument shows that F{z, 1) is an analytic function of z at the origin,
so that there are in total c+ 1 branches that can be substituted. Luckily, c + 1 is the number
of unkown quantities, F{z, 1) and 9^F(z, 0) on the right hand-side of (11).

Define the entire form of the right hand-side of (11),

Q(u, z):=-uc{l l+^F(z, l)-^c, (u)%F(., 0)
The quantities K and Q are by construction polynomials in u. The roots uo, ui> . . -i Uc of K are
also roots of Q which is manic with u-degree equal to c+ 1, so that Q admits the factorization:

c

Q(u, z)= ]^{u-Uz).
i=0

Let la := [ud]P(u) be the the multiplicity of the largest forward jump. One has similarly:
c+d

K(u, z)=-zld]]^(u-ui).
i=0

Finally, the equation defining F{z, u~) is K . F{z, u) = Q and so that the factorizations above
give

^Q(u, z)^ m=o(^-^) _
. ' u; - T<-t,, -, \ ~ ^TTT-TC-l-d^, _ ,,. -\ ~ (13)

K{u, z) ~ -zl^ n^(^ - y, )- -zi^ n^, (u - v,}'
This specializes to give F(z, 1) which is the generating function of all walks taken irrespective
of the value of their end point.

lThe kernel method belongs to mathematical folklore since the 1970's; e. g., it has been used by combinatori-
alists [8, 14] and probabilists [11]. There is also some recent work which makes a deep use of it [6, 7, 15].

47



Proposition 5 A factorial walk, hence also a factorial system of generating trees, has an alge-
braic generating function. In particular, the generating function for all walks is

F(2'l)=-TlI(l-u<)'
2=0

where the product is over all branches UQ,. . ., Uc finite at z =0 of the algebraic function given
by the equation K{u, 2) = 0, the kernel K being defined by (12).

The kernel method can also be applied (with some subtleties) to slightly more general sys-
tems, where backward steps leading to a fixed finite subset C of points near the origin are
forbidden. The system is then (k) ̂  {0,.. ., k - l}\[CUk - B] U fc+ A and the generating
function is still algebraic. An example is the system (k) ̂  (0) (2) (4) (5) (6) ... {k - l)(k)(k+ 2).

Classically, one defines excursions by the constraint that their end point is 0. The excursion
generating function is then found directly from (13). With 1c = [uc]P(u), one has:

}c+l ^
F(., o)=^-n^,lc2 t=0

Proposition 5 was first obtained in March 1998 (see [1]), independently of [7, 15] to which
the present treatment is closely related.

EXAMPLE 5. Catalan numbers. This is the simplest factorial walk, (fc) ̂  (0)(1)... (k)(k + 1), which
corresponds to System (/) of Example 2. The characteristic operator is:

^/](. )=M^+(!+. )/(. ).
The kernel is K(u, z) = -(1 -u)- z + z(l- u)(l +u) =u- 1 - u2z, hence uo(2-) = 1-^"42 , so that

F(z, 1) = ^-^ = 1 +2z+5z2 + 14z3 + 42z4 + 132z5 + 0(z6),
the generating function of the Catalan numbers (sequence M14592). This result could be expected,
given the well-known relation between these walks and Lukasiewicz codes. D

EXAMPLE 6. Motzkm numbers^ This example due to Pinzani et a/., is derived from the previous one by
forbidding "forward" steps of size zero. The rule is then

The characteristic operator is

W-(o)-. -(^-i)(fc+i).

L[f]W=f^-^+.f(n);
The kernel is K(u, z) = -(1 -u) - z+z(l - u)u, leading to

F[z, l) = l-z~ vl~, 2Z-3"2 = l+ ,+ 2z2 + 4z3 + 9z4 + 21z5 + 0(z6),
the generating function for Motzkin numbers (sequence M1184). D

EXAMPLE 7. Schroder numbers. This example, presented by Pinzani et al., corresponds combinatorially
to (fc) -^ (Q)... (k- l)(k)(k + I)2. One finds from Proposition 5 that

F(z, l)= l-Sz-Vl-Qz+z2
4z2 = 1 +32 + llz2 + 45z3 + l97z4+....

The coefEcients are the Schroder numbers (M2898: Schroder's second problem). A higher order gener-
alization that appears to be new is presented in the table of at the end of this paper (Fig 2). D

The numbers Mxxxx are identifiers of the sequences in The Encyclopedia of Integer Sequences [16].
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The examples obtained so far are all quadratic. It is however clear from our treatment that
algebraic functions of arbitrary degree can be obtained: it suffices that the set of "exceptions"
around k have a span greater than 1. We list here a few more examples. Verification is easy
given a computer algebra system that handles algebraic functions and elimination.

EXAMPLE 8. Ternary trees, dissections of a polygon, and t-ary trees. The system with axiom (si) = (2)
and rules

(fc)-(3)(4)... (fe)(fc+!)(&+2)
is equivalent to the walk

(fe)-(0)(l)... W(fc+1)^+2),
and leads to

F(z, 1) = 1+ 2z+7z2 + 30z3 + 143z4 + 728z8 +...,
that is, ternary plane rooted trees where the root has exceptional degree 2. This corresponds to sequence
M1782. If the axiom is taken to be ($1) = (3), we get the "tricatalan" numbers (3")/(2n + 1), that is,
sequence M2926, that counts ternary trees.

The "tetracatalan" numbers (n)/(3n + 1) are obtained by the rule
(k)^(4)---(k)(k+l)(k+2)(k+3),

and axiom (4). This is sequence M3587 that starts as 1, 4, 22, 140, 969 and is described as "dissections
of a polygon".

More generally, the system with axiom (t) and production rules
(k) ̂ (t)---{k)(k+l)(k+2)---(k+t-l)

yields the ^-Catalan numbers, (")/((< - 1)" + 1) that count f-ary trees. The basic generating function
derived from the kernel method is defined by the familiar equation y =ljf zyt. D

4 The transcendental case

One possible reason for a system to give a transcendental series is the fact that its coefficients
grow too fast, so that its radius of convergence is zero. This is the CELSC for the last system of
Example 2.

Proposition 6 Consider a system such that:

1. only a finite number of the functions e; 's are bounded;

2. for all k, there exists a forward jump from k (i. e., e;(A') > k for some i).

Then the (ordinary) generating function F(z) has radius of convergence zero.

Sketch of Proof. It is easy to prove that the coefficients of F{z) grow like a factorial. D

EXAMPLE 9. Arrangements. The system (k) -^ (k){k + 1) 1 with axiom (si) = (2) generates the
sequence that starts with 1, 2, 5, 16, 65, 326 (M1497). It is not hard to see that the triangular array }n,k
is given by the arrangement numbers k\(^), so that the exponential generating function of the sequence
is e2 /(l - 2:). This system satisfies the conditions of Proposition 6; accordingly, one has }n ~ e n!, so that

the ordinary generating function has radius of convergence 0 and cannot be algebraic. a

Algebraic generating functions are strongly constrained in their algebraic structure (by a
polynomial equation) as well as in their analytic structure (in terms of singularities and asymp-
totic behaviour). In particular, algebraic functions have a finite number of isolated singularities
that are algebraic numbers with local asymptotic expansions that may involve only rational ex-
ponents. A contrario, a generating function that has infinitely many singularities [e. g., a natural
boundary) or that involves a transcendental element (e. g., a logarithm) in a local asymptotic
expansion is by necessity transcendental; see [12] for a discussion of such transcendence criteria.
In the case of generating trees, this means that the presence of a condition involving a transcen-
dental element is expected to lead to a transcendental generating function. An instance that we
examine now is system (e) of Example 2 where the rules are modified at powers of 2.
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EXAMPLE 10. The Fredholm case. Case (e) of Example (2) involves the "Fredholm series" h(z) :==
i^m>i .z2 ' which is well-known to admit the unit circle as a natural boundary. (This can be seen by way
of the functional equation h(z) = z2 + h(z2), from which there results that h(z) is infinite at all iterated
square-roots of unity. ) Then, the Fk's satisfy the following equations:

^+^>-i)w=o,
for fc > 4.

z+(z-l)F^z)+

F, [z)=zk-3Fs(z)
Solving for F-z and Fz, then summing [F =. F^+ Fs/(l - z)), we get

_z(l-z)2h(z)

zF,(z) + h(z]
1-z ^3(2) = 0,

F(^)= (l-2^)(l-^)2/^(^)-24.
Now, the functions h(z) and F(z) are rationally related, so that F(z) is itself transcendental. Its radius
of convergence is determined by the cancellation of the denominator: it is finite and nonzero; its value is
easily determined numerically and found to be about 0.360102. a

In the transcendental case, one can also discuss the holonomic character of the generating
function F{z). (A series is said to be holonomic, or D-finite [17], if it satisfies a linear differential
equation with polynomial coefficients in 2. ) Holonomic functions include algebraic functions,
and have a finite number of singularities. Example 9 is holonomic, while Example 10 is not, as
it has infinitely many singularities.

Amongst the simplest systems are those that involve moves from k of the form k±l and k.
Such systems are naturally associated to continued fractions. Many of them lead to holonomic
functions (of the Hermite, Laguerre, or arrangement type; see also Figure 2). However, despite
their simplicity, the following two systems lead to nonholonomic generating functions.

EXAMPLE 11. Stirling polynomials. The system [2, (fc) ^- (k)k~l(k 4- 1)] gives rise to the Stirling
numbers of the second kind {^} (the number of way one can group n objects into k nonempty subsets).
The recursion {"^} = {^^} + k{n^} entails that

F(z, «)=E (E^^' j ̂  = exp(. (exp(z) -
n>0 \fc=l ^" . ' / ""

1)).

At u = 1, the exponential generating function J^fnZn/n\ specializes to

F(z, 1) == exp(exp(2) -!))=!+ 2.- + 5^ + 15^ + 52^ + 203^ + ...
the exponential generating function of the Bell numbers. This function is an entire function that is
nonholonomic since its growth (a tower of two exponentials) is too large to be compatible with that at
aji irregular singular point of the solution to a differential equation with polynomiafcoefBcients. Hence,
F(z, 1) as well as F(z, 1) are nonholonomic. D

EXAMPLE 12. Bessel histories. This is given by the system with axiom (2) and productions [k) ~»
(k - l)(k)k~2(k + 1), with the first rule (1) -^ (2) adjusted for consistency of degrees in ecosystems.
Consider the corresponding paths [(0), (k) ^ (k - l)(k)k(k + 1), with bivariate generating function
F(z, u). This generating function satisfies the functional difTerential equation

F(z, u){l-z- z(u + u-1)) - ^-^F(z, u)=l+z(l- u-l)F(z, 0),
whose processing is not obvious. Instead, the classical combinatorial theory of continued fractions provides
for a direct representation,

F(z, 0)= 1
= 1 +z+ 2z2 +4z3+9z4+ . . .,

1-z-
1-z-

l-2z-
l-3z
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Generating FunctionSystem Name
Rational GF's

TdT

(1), (fc)~»(fc)fc-l((fcmod2)+l)
(2), (fc)-(2)fc-l(fc+l)
(3), (fc)-(2)fc-l(fc+l)

Fibonacci

odd Fibonacci

even Fibonacci

M0692
M1439
M2741

TogfT

1-2

(1), (k)^(l)---(k-l)(k+l)
(2), (fc)-(2)... (fc)(fc+l)
(3), (fc)-(3)... (fc)(fc+l)2
(4), (A-)-(4)... (fc)(fc+l)3

(t+l), (k)^(t+l)---(k)(k+l)t
(3), (fc)-(3)... (fc+2)
(4), (fc)-(4).. ^. (fe+3)^

(t), W^(t}---(k+t-l)

Algebraic GF's
Motzkin numbers

Catalan numbers
Schroder numbers

Ternary trees
Dissection of a polygon

t-a.iy trees

M1184

M1459
M2898
M3556

M2926
M3587

1-2-V1-2Z-322
22

l_2z-v/l-42
2z

4z
l-7z+z3-Vl-8z+472

~6z^.
l-2tz-z+z'-^/(l+z-tz)2-4z

2t2

equation: F = 1 + zF3
equation: F =: 1 + zF4
equation: F = 1 + zFt

(2), (k)^{k-l)k-l(k+l)
(2), (k)^(k-l)k-\k)(k+l)

(2), (A. )-(fc)(fc+l)fc-1
(2), (fe)-(fc-l)fc-2(fc+l)2

(2), (k)^(k+l)k
(2), (k)^(k+l)k-l(k+2)

Transcendental GF's
Involutions

Switchboard problem
Arrangements

Bicolored involutions
Factorial numbers

Increasing subsequences

M1221
M1461
M1497
M1648
M1675
M1795

TegfJ:

e2 /(l-z)
e2z+z2

.

l/(l-z)
e2 /(l-2)/(l-z)

(2), (k)^(k)k-l(k+l)^
(2), (fc)-(^-2(fc+l)2

(2), (k)^(k-l}(k)k-\k+r

Nonholonomic GF's
Bell numbers

Values of Bell poly.
Bessel numbers

M1484
M1662
M1462

ees-1
»2(es-l)

Figure 2: A catalog of some ecosystems of combinatorial interest.

in which only the first level is anomalous. Comparison with [13] shows that

F(^ Q) = -, - \^, ^ where B(z) = 1+z+2z2+5z3 + 14z4 + 4325 +143z6 +...
- Z - Z D \Z

is the generating function of "Bessel numbers", that is, sequence M1462. From [13], we know that
yi /. -i(2)

l^z-^B(-z)~z- 7iA(2) '

with ^ the Bessel J-function of order v. It remains to check that F(z, u) is nonholonomic. The fast
increase of [zn]B(z} entails

[. "]F(z, 0)~[z"-2]B(z),
and the known asymptotic form [13] of [zn]B(z) that is recognizably of nonholonomic type (see [20] for
admissible types) entails in turn that F(z, 0) is nonholonomic. D

Conclusion. To conclude, we present in Fig. 2 a small catalog of rules defining generation
trees that lead to sequences of combinatorial interest. Several examples are detailed in^ the
paper; others are due to West [18, 19] or Barcucci, Del Lungo, Pergola, Pinzani [2 3, 4, 5], or
are folklore. Each of them is an instance of application of our criteria; the generating function
entries correspond to ordinary generating functions (ogf's) in the rational and algebraic cases,
to exponential generating functions (egf's) in the "transcendentaF case. (Note, however, that
our terminology catalogs as "transcendental" the sequence n!, though its exponential generating
function is rational. ) The last three examples of the table are nonholonomic.
Acknowledgements. We thank Elisa Pergola and Renzo Pinzani who presented us the problem we deal
with in this paper. We are also very grateful for helpful discussions with Jean-Paul Allouche.
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