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Abstract

Proving a conjecture of Wilf and Stanley in hitherto the most general case, we show that for
any layered pattern q there is a constant c so that q is avoided by less than c" permutations of
length n. This implies the solution of this conjecture for at least 2k patterns of length k, for any k.

Resume

En prouvant la spedalisation la plus genereile d une conjecture de Wilf et Stanley a ce jour, nous
demontrons que Ie nombre des permutations de [n] evitant un motif de type etagere est plus petit de c",
pour une constante c, qui depend uniquement du motif. Cela prouve la conjectiire pour 2 motifs de
longueur k.

1 Background and Definitions

Let q = (gi, 92) . . -i 9A:)   5;: be a permutation, and let k < n. We say that the permutation p =
(piip2 i . . .,Pn)   5n contains a subsequence (or pattern) of type q if there is a set of indices 1 < tg, <
iqz < ... <iqk <:n such that p(zi) < p(i2) < .. . < p(^fc)- Otherwise we say that p is g-avoiding.

For example, a permutation is 132-avoiding if it doesn't contain three (not necessarily consecutive)
elements among which the leftmost is the smallest and the middle one is the largest.

It is a long-studied and very hard problem to determine the number Sn{q) of permutations in Sn
(or in what follows, n-permutations) which avoid a certain pattern q. The general conjecture [11]
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claims that only very few of them, namely less than c", where c is some constant depending on g. It
is also conjectured that the limit (5'n(g))1/" always exists. However, efforts to prove this have been
unsuccesful for most patterns. The conjecture has been proven for patterns of length 3 [8] and 4 [2],
[3], [4], and for monotonic patterns of any length [7]. Given that this conference is taking place in
Barcelona, we point out that if q is of length 3, then 5n(g) is equal to the nth Catalan number.

Apart from this, there are some other scattered results giving the answer for some particular
permutations by bijectively proving that the number of n-permutations avoiding them equals the
number of those which avoid the monotonic pattern. For this kind of results, see [10], [9]. It is
possible [5] to explain by the means of complexity theory why this problem is so difficult; in short,
there are is no efficient algorithm to decide whether a permutation contains another one as a pattern.

In this paper we prove the Sn{q) < cn conjecture for the most general class so far, the layered
patterns. A pattern is called layered if it consists of the disjoint union of substrings (the layers) so
that the entries decrease within each layer, and increase between the layers. For example, 321654879
is a layered pattern with layers 321, 54, 876, and 9. Layered patterns are thoroughly examined from
a different aspect in [6]. The diagram of a generic layered pattern is shown on Figure 1.

Fig 1: a layered permutation

Clearly, there is a natural bijection between layered patterns of length k and vectors with positive
integer coordinates whose sum is k, by taking the length of the tth layer to be the ith coordinate of
the corresponding vector. Therefore, the number of layered patterns of length k is just the number of
compositions of k, that is, 2 . So our result will yield the proof of the Wilf-Stanley conjecture for at
least 2k patterns as it is obvious that Sn(q) = 5n(g'), where q' is the reverse of q. In most cases, the
complement q" of q, obtained by subtracting each entry of q from fe+1 is yet a different pattern, and
clearly Sn(q} = Sn{q")- Previous results proved the conjecture for only a constant number patterns of
length k.
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After the completion of present paper, [I], the conjecture has been proved for another family of
patterns of size 2 l, as we will discuss it in Theorem 2. That theorem, our result, and Lemma 3
together will make it possible for us to prove the conjecture for some patterns which start as a layered
pattern and as a unimodal pattern.

Denote P(Ai, A;2, . . -, A() the unique layered pattern of length k = S^i A:, whose zth layer is of
length ki. Thus P(3, 2, 3, 1) denotes our previous example, the pattern 321548769.

If the 5n(g) < c" conjecture is true for some pattern g, then we will say that g is a good pattern.
Our proof will proceed as follows.

First, we prove the conjecture for all patterns of the form Qk = P(l, k - 2, 1), for any k > 3.
This is the heart of our proof. We are going to achieve this by showing that the growth rate g^ =
Sn(,Qk)/Sn-i{Qk) is bounded. Then we use a lemma first proved in [2] to "replace" the last element
of a pattern P(l, Ai, 1) by the pattern P(l, A;i, A;2, 1) and still get a good pattern. Then we will iterate
this procedure to reach the good pattern P(l, Ai, Az, . . ., A(, 1). As subsequences of good patterns are
certainly good patterns, too, this will imply that P(ki, ky, . . -, kt), completing the proof.

2 The pattern lk-lk-2--- 32k

As we mentioned in the Introduction, the case of monotonic patterns has been solved by Regev. He
has proved the following strong result.

Lemma 1 [7] For all n, 5n(1234 . . -A) asymptotically equals

{k-l)2nAA n(^-2A)/2-

Here

Afc =7!,. / ... / [D{x,, X2, ---, Xk)-e-W2^]2dx, dx2---dxk,
X:a:l > -/a;2> . />^fc

where D{xi, xy, ..., Xk}= !li<j(xi - xj), and -yk = (l/V27T>)k~1 . kk I'1.

The following theorem is an important tool in our efforts to prove that all layered patterns are
good.

Theorem 1 For all A; ̂  3, the pattern Qk = P(l, fc - 2, 1) z's 500^.

Proof: Note that ^3 = -P(l, l, l) = 123, so Sn(Q3) = Cn = (2^)/(n+ 1) < 4n [8]. Also note that
Q^ = P(^-, 2, 1) == 1324 < 32n, as proved in [2]. The proof of the general case is somewhat tedious,
though conceptionally not very difficult. If the reader does not want to break the course of the proof
of our main result, he may want to take this theorem for granted, and continue with the next section.
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We are going to prove our theorem by induction on k. If k < 4, then the statement is true. Now
suppose we know the statement for all positive integers t < k, and prove it for k.

We first need to show that Q^ = (fc - 2)(fc - 3) . .. 21(k - 1), that is, the pattern obtained from
Qk by deleting its -first element, is a good pattern. Fortunately, this is a direct consequence of the
following general theorem. For readers who do not want to rely on this yet unpublished theorem, we
will indicate in the Remark after the proof of Theorem 1 how to prove the much weaker statement
that Q'k is a good pattern. We also note that it is widely conjectured that Sn{Q'k) = 5n(12 .. -A - 1),
which would certainly imply that Q'^ is a good pattern.

A pattern q = 9192 ... 9fc is called unimodal if its entries first increase steadily, then decrease
steadily. In other words, there exists an i so that qi <q2 < ... < 9i> 9i+i > ... > 1k- Then the

following Theorem is the most recent addition to the theory of pattern avoidance.

Theorein 2 [lj Every unimodal pattern is a good pattern.

In other words, if the pattern q starts with the increasing string of its smallest r elements, than
this string can be reversed without changing the value of 5n(g). In particular, ifr= fc- 1, we get the
pattern which will be useful for us.

Corollary 1 For any k ^ 3, we have 5^(12 ... k)= Sn[(k - l){k - 2). . -21k). So Sn{{k - l){k -
2)... 21&)< (fc-1)2".

Recall that elements in a permutation which are smaller than any elements they are preceded by
are called left-to-right minima. Similarly, we will say that an element is a right-to-left maximum if it is
larger than any element it precedes. Note that the right-to-left maxima form a decreasing subsequence
and so do the left-to-right minima, too. Entries of permutations which are neither left-to-right minima
nor right-to-left maxima will be called remaining entries.

Example 1 In the permutation 351264, the entries 3 and 1 are the left-to-right minima, the entries
6 and 4 are the right-to-left maxima, and the entries 5 and 2 are the remaining entries.

We will use the left-to-right minima to classify all n-permutations in a very useful way.

Definition 1 Two n-permutations x and y are said to be in the same weak class if the left-to-right
minima of x are the same as those of y, and they are in the same positions.

For example, 34125 and 35 124 are in the same weak class. The number of weak classes is easy to
determine:

Lemma 2 The number of nonempty weak classes is Cn = (^)/(n + 1) < 4".
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Proof: Each weak class contains exactly one 123-avoiding permutation which is obtained by writing
all the entries which are not left-to-right minima in decreasing order. The number of 123-avoiding
permutations is known to be Cn = (^)/("+ 1) and the proof is complete. 0

Therefore, it suffices to show that no weak class W can contain more than W^- Qfc-avoiding
permutations; this would imply Sn(Qk} < Cn . W]^ < (41^)'
that Sn{Qk-i) < (4Wk-i)n.

Our induction hypothesis thus says

If W has only one left-to-right minimum, that is, permutations in W start with their entry 1,
then the rest of any such permutation must be Q^-avoiding. There are less than {k - 2)2n < C^ such
permutations by corollary 1, so our claim is true.

Suppose for now (for clarity) that W has only two left-to-right minima, a, which is the leftmost
element, and 6=1. Letp £ TVbe a Qjfc-avoiding n-permutation. Entries of p larger than a will be
called large entries and entries larger than 1 but smaller than a will be called small entries. Clearly,
all small entries are located on the right of 6 = 1, otherwise a third left-to-right minimum would exist.

The string of small entries ps must be a Q^-avoiding permutation as any Q^-pattern on them
would form a Qfc-pattern completed with the entry 1. The same goes for the string of large entries,
PL, the entry a replacing the entry 1. So if we have ni small entries and 713 large entries, then we have
less than (A - 2)2nl choices for the string of small entries and (k - 2)2n2 choices for that of large entries.
As ni +"2 = n-2, this yields altogether less than (A - 2)2n-4 choices for these two substrings.

What is left to do is to find a strong enough upper bound for the number of ways these two
substrings (together with the left-to-right minima) can be merged together, without creating any Qk-
pattern. The number of all mergings could be as high as (".1^"2), but we will see that most mergings
actually do create Qfc-patterns (It would be a pitfall to say that ("1^"2) < 2", so we are done, because
this argument does not work when W has more than a constant number of left-to-right minima). What
we need is a method which works for any number of left-to-right minima.

We will see that as k grows, it is not getting much easier to find good mergings. In fact, we are
going to see that when passing from Qfe-i-avoidance to Qjfe-avoidance, the ratio of good mergings vs.
all mergings grows only by an exponential factor. Because of our induction hypothesis, this ratio was
so small it resulted in an exponential number of good mergings only, this implies that for Q^-avoiding
permutations, there is only an exponential number of good mergings as well. Indeed, the number of
all mergings of several strings is independent of the conditions imposed on each string, it suffices to
examine how the ratio of good mergings can grow if k grows.

Intuitively, the fact that this ratio does not grow fast (in reality, it seems to grow even much slower
than we could establish it), is not surprising. For if k grows by one, both the substring of small and
large entries is allowed to contain Q,+i instead of (?,, but the pattern we have to avoid after their
merging grows only by one, not by two. In the reality, it seems that ^/S^Qk) is close to {k - I)2.
It is known that in general ^/Sn{Qk) cannot converge to a smaller number than (A - I)2 because
Sn(Q4) > 5^(1234) for all n > 7 [3].

66



Let Lfc = { all possible strings of large entries in W which completed with a form a Qfc-avoiding
permutation }, and let Sk = {a-11 possible strings of small entries in W which, completed with b form
a Qfe-avoiding permutation }. Define 4 = 1-^fcl and Sfe = \Sk\. Suppose that there are t positions
between a and b, so only n-^ - t large entries have a chance to be preceded by a small entry. Then
the number of all permutations in W in which the string of large entries is from Lk and that of small
entries is from Sk is clearly

Ck=lk- Sk
n-i+n-2 -t

"1
=lk-Sk

On the other hand, the number of Qfc-avoiding permutations in W is clearly less than Cfc, as some
(in fact, most) of these mergings create a Qfc-pattern. Let gk be the number of permutations in W
which avoid Qk- This implies that their small entries form a string in 5fc, and their large entries form
a string in Lk.

We will show that
9k. < 9k-l in; (A-2) 2n;

Ck Cfc-1

for all k> 5. This clearly implies our claim by proving the number of good mergings for Qk is only an
exponential factor larger than that for Qk-i, and we know that this latter is small by the induction
hypothesis on k.

Let p eW, and we want p to be Qfc-avoiding. As we said above, this implies that the string ps of
small entries as well as the string pj, of large entries avoids Q'^. However, both of them may contain

copies of Qfc-i; and copies of any shorter Q^.

Take p^. Choose any right-to-left maximum M on it, and consider all large entries which are
smaller than M and which are on the left of M. Among these entries, take all left-to-right maxima,
and color them blue. Do this for all right-to-left maxima. The significance of these points is that, as the
reader can easily check, they are the starting points of the maximal (ie. not extendable) Q^-patterns,
for any r <k.

Dually, take ps, and choose any right-to-left maximum M, and consider all small entries which are
smaller than M and which are on the left of M. Among these entries, take all right-to-left minima,
and color them red. Do this for all right-to-left maxima. The significance of these points in turn is,
that they play the role of 1 in any maximal (ie. not extendable) Q^-patterns.

Example 2 Let A; = 4, then Q'^ = 213, and Qk = 1324. Let p = 341258967. Then p has two left-to-
right minima, the entries 3 and 1, one small entry, 2, and six large entries, 4, 5, 6, 7, 8, 9. So PL is the
substring 458967. If M is chosen to be the right-to-left maximum 7, then the entries on the left of M.
and smaller than M are 4, 5, and 6. All of these three are right-to-left minima, so they all get colored
red.

Now we are in a position to find an upper bound for the number of good mergings of ps and PL.
We decompose our merging procedure into two parts.
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1. First try to merge pi, and the string of uncolored small entries, p1g, to get the permutation p'.
Recall that the merging of two substrings contains the left-to-right minima of p in addition to
these two substrings. Note that p^ is <3^_^-avoiding. Clearly the permutation we obtain will be
Qk-a.voidmg if and only if we merged p^, and the string of uncolored large entries p^ together
without creating a Qfc-i-pattern on them. (For we could find, by the definition of our coloring,
a blue large entry to complete any such Qfc-i-pattern to a Qfc-pattem). But this is nothing else
but the merging of two <3^_i-avoiding strings, ie. p^ and p^. Recall that 713 denotes the number
of large entries. Now observe that we have less than (4 - (A; - 2)2)"2 choices for the set, position
and permutation of the colored large entries. Indeed, we have less than 2"2 choices for their
set, we have less than 2"2 choices for the positions in which they are, finally, they must form a
Q^-avoiding permutation, (which means less than (/c-2)2"2 choices, by proposition 1) otherwise
together with a, they would form a Qfc-pattern.

To summarize, if, instead of merging only p^ and p'tg so we get a Qjfe-i-avoiding permutation, we
want to merge PL and p^ so we avoid Qfc, the ratio of "good mergings vs. all mergings" can go
up by no more than an exponential factor.

2. When we want to insert the red small entries as well, we face additional constraints because we
risk creating Qfc-patterns, but we cannot loosen our rules as we did before, ie. when we passed
from Qfe-i-avoidance to Qfc-avoidance. Therefore, as inserting new elements can only create new
Qfc-patterns and cannot eliminate existing ones, the ratio of good mergings decreases.

By these two operations we used to extend the mergings of two Q^-avoiding permutations into
that of two Qfc-avoiding permutations, the ratio gk/Ck became at most (4(A; - 2)2)"2 bigger, which is
an exponential factor. Indeed, the first operation increased the ratio by at most this much, and the
second one decreased it.

If W has m > 2 left-to-right minima, then the same argument holds except that the large entries
must be deiined as those larger than the left-to-right minima, and the small entries as all the rest.
This way the large entries will still form a Q^-avoiding permutation as needed, and the small entries,
together with their m- 1 left-to-right minima, form a Q^-avoiding permutation, which can be decom-
posed by this same procedure. During this procedure, the exponents of (A; - 2)2, that is, those coming
from the current set of large entries will add up to an integer less than n. (In an alternative way of
speaking, we could say we do an inductive proof on m, the number of left-to-right minima). The above
argument shows that the number of good mergings remains exponential. This completes the proof of
our claim that any weak class contains less than W^- = {k - 2)2n . 4n . W^ = (4(A; - 2)2 . Wk-i)n
Qjk-avoiding permutations, yielding Sn(Qk} < {4Wk}n. 0

Reinark: To see that Q'^ is a good pattern without using Theorem 2, we can again use this same
inductive procedure, the initial condition Sn{Q\~) = 5n(213) = Cn < 4" being true. Taking reverse
and complement, we see that Sn{Q'^) = Sn{l {k - 1)(A;- 2) . . -32), and we can copy the above proof.
In fact, this case is even simpler, as the substrings p^ and p^ need to avoid the decreasing pattern of
length A - 2, and that is easier to deal with than Q'^.
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3 The General Case

In this section we use the result of the previous section as well as recursive methods from [2] to prove
that all layered patterns are good.

Proposition 1 If q is a good pattern and q' is a pattern obtained from q by deletion of some elements,
then q' is a good pattern as well.

Proof: Every g'-avoiding permutation is g-avoiding, -too. C>

Definition 2 Let q be a pattern, and let y be an entry of q. Then to replace y by the pattern w is to
add y - 1 to all entries of w, and to all entries of q larger than y, then to delete y and to succesively
insert the entries of w at its position.

Example 3 Replacing the entry 1 in 1423 by 1324 results in the pattern 1324756.

The following lemma is our main tool in proving that all layered patterns are good.

Lemma 3 ("replacing an element by a pattern") Let q be a pattern and let y be an entry ofq so that
for any entry x preceding y we have x <y and for any entry z preceded by y we have y < z. Suppose
that Sn(q) < Kn for some constant K and for all n.

Let w be a pattern of length k starting with 1 and ending with k so that Sn{w} < Cn holds for all
n, for some constant C. Let q' be the pattern obtained by replacing the entry y by the pattern w in q.
Then Sn(q') < [2CK}n, thus q' is a good pattern.

Figure 2 is intended to help the reader visualize the definition of replacing an element by a pattern in
the special case of lemma 3.
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Fig. 2: Replacing an element by a pattern

Proof: Take an n-permutation p which avoids q'. Suppose it contains q. Then consider all copies
of q in our permutation and consider their entries y. Clearly, these entries must form a permutation
which does not contain w. For suppose they do, and denote yi and yk the first and last elements of
that purported copy of-u;. Then the initial segment of the copy of q which contains yi followed by the
y2 through yk-i and the ending segment of the copy of q which contains yk would form a copy of q'.

Therefore, if p avoids q', then it either avoids q, or the substring of its entries which can play the
role of y in a copy of g avoids w. This shows that less than (2C')n~1 . Kn + Kn < {2CK)n permutations
of length n can avoid q'. 0

Now we are in a position to prove our main theorem.

Theoreni 3 Every layered pattern is a good pattern.

Proof: Let P = P(A;i, k^..., kt) be any layered pattern. Then Pi = P(l, A;i, 1) is a good pattern by
Theorem 1. Now apply Lemma 3 to replace the last element of Pi by the pattern P(l, A;2, 1), which is
in turn a good pattern by Theorem 1, to get the good pattern P(l, ki, 1, k-s, 1), then delete the middle
layer of length 1 to get the good pattern Pz = P(l, A;i, A:z, 1). Then continue this way, that is, at the
?th step, replace the last element of P, = P(l, fci, A;z, . . -A;,, 1) by the good pattern P(l, k,+i, 1), to get
the good pattern P,+i = P(l, k^, Ag, . . ., A,+i, 1). After t steps, we get that Pr, = P(l, Ai, k^, . . ., &(, 1)
is a good pattern. As P itself is contained in Pn, this implies that P is a good pattern. 0

Lemma 3 now implies the following Corollary as layered and unimodal patterns are good by
Theorems 2 and 3.
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Corollary 2 Let qi be a layered pattern ending with its largest entry and let 92 be a unimodal pattern
starting with the entry 1. Let q be a pattern obtained by replacing the last entry of qi by q-z. Then q
is a good pattern.

Finally, note that half of all layered patterns of length h, that is, 2kl-2 of them, end with their
largest entry, whereas 2fc2 -2 unimodal patterns of length A:2 start with their smallest entry- If A;i runjthrough 1, 2, ... fe, where ki+k2-l= k, and k is fixed, then this way we obtain roughly k . 2k-3
patterns of length k which are now proved to be good patterns.
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