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Resume

Le but de cet article est de denombrer diverses classes de cactus plans m-gonaux cycli-
quement colores, appeles cactus m-aires. Ce probleme combinatoire est motive par la clas-
sification topologique des polynomes complexes ayant au plus m valeurs critiques, etudiee
par Zvonkin et autres. Nous obtenons des formules explicites pour les cactus m-aires en-
racines et non enracines, selon i) Ie nombre de polygones, ii) la distribution des sommets
de chaque couleur, iii) la distribution des degres des sommets de chaque couleur. Nous
d^nombrons egalement les cactus m-aires selon 1'ordre du groupe d'automorphismes. Par
une generalisation de la formule d'Otter, nous exprimons 1'espece des cactus m-aires non
enracin^s en termes de cactus enracines et de cactus pointes en un sommet. Une variante
de 1'inversion de Lagrange m-dimensionnelle est alors utilisee pour Ie denombrement de ces
structures.

Abstract

The purpose of this paper is to enumerate various classes of cyclically colored m-gonal
plane cacti, called m-ary cacti. This combinatorial problem is motivated by the topological
classification of complex polynomials having at most m critical values, studied by Zvonkin
and others. We obtain explicit formulae for both rooted and unrooted m-ary cacti, according
to i) the number of polygons, ii) the vertex-color distribution, iii) the vertex degree distri-
bution of each color, and also for m-ary cacti according to the order of their automorphism
group. Using a generalization of Otter's formula, we express the species of (unrooted) m-ary
cacti in terms of rooted and of pointed cacti. A variant of the m-dimensional Lagrange
inversion is used to enumerate these structures.

1 Introduction

A cac(us is a connected simple graph in which each edge lies in exactly one elementary cycle. It
is equivalent to say that all blocks (2-connected components) of a cactus are elementary cycles,
i.e., polygons. An m-cactus is a cactus all of whose polygons are m-gons, for some fixed m > 2.
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By convention, a 2-cactus is simply a tree. These graphs are also called "Husimi trees", and
their definition was given by Harary and Uhlenbeck [12] following a paper by Husimi [13] on the
cluster integrals in the theory of condensation in statistical mechanics. See also Uhlenbeck and
Ford [20], and Riddell [17].

A plane m-cactus is an embedding of an m-cactus into the plane so that every edge is incident
with the unbounded region. An m-ary cactus is a plane m-cactus whose vertices are cyclically m-
colored 1, 2,. .., m counterclockwise within each m-gon. For technical reasons, we also consider
a single vertex colored in any one of the m colors to be an m-ary cactus. A quaternary cactus
is shown on Figure 1.

Figure 1: A quaternary cactus.

Our goal is to enumerate m-ary cacti according to the number of polygons, the vertex
distribution of each color, and the degree distributions ofvertices of each color, and also according
to the order of their automorphism group. See [2] for a more complete version of this paper.
This extends previous results [14] of two of the authors on the enumeration of bicolored plane
trees according to their degree distributions, to general m ^ 2.

This study is motivated by the topological classification of complex polynomials having at
most m critical values. Indeed, the preimage, under such a polynomial, of an m-gon joining the
m "critical values" 21, 22,.. -, -Sm yields an m-ary cactus whose degree distributions correspond
to the multiplicities of the critical points. See [7] for more details.

Let n= (ni, n2,..., n^) be a vector of nonnegative integers and set n = ^; n.. We say that
a m-ary cactus C has vertex-color distribution n if C has n, vertices of color i, for z = 1,..., m.
The integer n is then the total number of vertices in C. We define the degree of & vertex in a
cactus to be the number of m-gons adjacent to that vertex. Note that it is half the number of
edges adjacent to the given vertex. Let kij be the number of vertices of color i and degree j, of
C. This vertex degree distribution is then represented by am x oo matrix J<, whose ijth entry
is kij. The vector fc, = (fe, o, ^i, ̂ -2,... ), which is the zth row of the matrix A- and represents
the vertex degree distribution the vertices of color i. Hence, the number of vertices of degree i
is given by n, == Ej kij Finally, let p be the number of polygons in C.
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For example, in Figure 1, the vertex-degree distributions are

k, = (0, 7, 1, 0, 1, 0,...)= 172141, ^2 = (0, 7, 3, 0, 0, 0,... )= 1723,
A-3 = (0, 8, 1, 1, 0, 0,...)= 182131, &4 = (0, 9, 2, 0, 0, 0,...)= 1922,

p = 13, ni =9, n2 = 10, R3 = 10, n4 = 11, and n = 40.

2 Coherence conditions

We now state necessary and sufficient conditions for the existence of an m-ary cactus having a
given vertex-color distribution and vertex degree distribution of each color.

Lemma 1 There exists an m-ary cactus having vertex-color distribution n = {ni, n^,.. ., Km)
if and only if

1. p= (n- l)/(m - 1) is an integer, where n = ^^ n;,
2. p^. 1 =^ ni ̂ p, for i= 1,..., m.

a

Lemma 2 There exists an m-ary cactus having n vertices, p polygons and whose vertex degree
distribution is given by the matrix K = (k^, with n = ^;. ̂ -, if'and only if

L J^jJ^ij = P, for all i,

2. n= {m- l)p+l,

3. p>l=^ kio=0 for all i.

a

3 Main results

The main results in this paper are the three following theorems on the enumeration of unlabelled
(and unrooted) m-ary cacti:

Theorem 3 The number |/Cm, p| of m-ary cacti having p m-gons is given by

\K-m, p\ = -: (nip
p \(m-l)p+l\^p + E ̂ (?/ri)

d|?
d<p

where <j> is the Euler function.

(1)

a

Theorem 4 Let n = (ra^na, ..., "m) 6e a uec(or satisfying the coherence conditions 1 and 2 of
Lemma 1. The number \K. ^^\ of m-ary cacti having vertex-color distribution n is given by

i^i=^|n(j, )+E E m(p-^+iY\
, i=l \'lt/ , =1 d|(p~^e-,)

d>l

P/d \^ ( p/d
sni - l)/d] ̂ . ^. /^ (2)

where p = (ra-l)/(m-l) is the number of polygons, e, is the vector having 1 as its ?th component
and 0 elsewhere, and the notation d\(p, n-e,) means that d divides p and all components of
n-e,. Q
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Theorem 5 Let K = (fey) 6e a mx co ma*n.c o/ nonnegative integers and set n = ^^- A;, j and
p ^ (n - l)/(m - 1). Suppose that K, n and p satisfy the coherence conditions 1, 2, and 3 of
Lemma 2. Then the number \ICm, K\ of m-ary cacti having kij vertices of color i and of degree
j, is given by

|^m, A-| =P.
m-2 + £

(t, j)esupp(A')

^ <f>(d) ((ni-l)/d\^(ne/d'
^ ^^^\{b-S, }/d)^\kt/d,

deDiv(j, ft--B, j)

(3)

where k, denotes the tth row in the matrix K, n, = Ej kij, Eij is the matrix whose ijth entry

is 1, all others being 0, supp(A') denotes the support ofK, that is, supp(J<) = {(z, j) | k^ / 0},
d C Div(j, A' - Eij} means that d divides j and all entries in the matrix K - Eij. 1-1

Moreover, the numbers |^,p|, l^m, n|, and \1Cm, K\ of asym metric cacti in the corresponding
classes are obtained by replacing the Euler <^> function in formulas (1), (2), and (3) by the Mobius
function /J..

4 Functional equations for m-ary cacti

We consider the class fC of m-ary cacti as a species on m sorts ofvertices, one for each color. Note
that the plane embedding of an m-ary cactus C is completely characterized by the specification,
for each vertex v of C, of a circular permutation on the polygons adjacent to v. We now introduce
the following subsidiary m-sort species:

. K, <> : species of rooted (that is, pointed at a polygon) m-ary cacti (see Figure 2),

. IC't : species of m-ary cacti, pointed at a vertex of color i (see Figure 3),

. A, : species of m-ary cacti, planted at a vertex of color i (see Figure 4).
A planted cactus is similar to a pointed cactus except that a pair of half-edges is attached

to the pointed vertex, thus contributing 1 more to the degree of this vertex, and preventing the
adjacent polygons to fully rotate around it. We have the following isomorphisms of species, for
i=l,..., m:

Proposition 6
A, =X, L{A,},

/C'°=X, (1+C'(A)),
IC°=AlA2---Am,

(4)
(5)
(6)

where Xi denotes the species of singletons of sort (or color) i, Ai := Hjy, Aj denotes the product

of all Aj except Ai, C denotes the species of (non-empty) circular permutations and L denotes
that of (possibly empty) permutations, or, more precisely, of linear orders (or lists), a

Remark that equations (4) and (6) are essentially due to Goulden and Jackson [9]. The
following result is used to express unrooted m-ary cacti in terms of pointed and rooted ones. It
is closely related to Otter's dissimilarity characteristic formula for trees [16].
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Figure 2: A rooted ternary cactus.

Figure 3: A ternary cactus pointed at vertex v.

Theorem 7 DISSYMMETRY THEOREM FOR m-ARY CACTI. There is an isomorphism of species
^+/C'2+... +/C*-=/c+(m-l)A;0. (7)

D

Corollary 8 The species K. of m-ary cacti can be written as

m

^=E/:*'-(m-l)^=E^(l+C>)(A')-(m-l)]7A.
2=1 2=1 . 2̂=1

(8)

D
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Figure 4: A planted ternary cactus.

The combinatorial equations presented in Proposition 6, Theorem 7 and in Corollary 8 lead
to functional equations involving multivariable generating series. In order to solve them, we use
a special form of multidimensional Lagrange inversion, which can be directly applied to m-ary
cacti. It is based on the standard form of Lagrange in version, due to Good; see Theorem 1.2. 9,
1, of [8] or the equivalent formula (28b) of [1]. There is a particularly simple two-dimensional
case of this formula, the alternating case, which we call the Chottin formula. In the papers [5]
[6], Chottin worked extensively on the two-dimensional Lagrange inversion and its combinatorial
proof. We extend this result into m dimensions.

Theorem 9 GENERALIZED CHOTTIN FORMULA. Let Ai, A^,.. ., Am be formal power series
in the variables Xi, x^,.. -, Xm such that for i = l,..., m, the relations A; = a;, $, (A, ) are
satisfied, where the $, are given formal power series of one variable, and A; = Y[jya Aj. Also
let n = ("i,..., "m) ^'^ "2 >. 1 o"ri /e( o'i,.. ., Q'm be nonnegative integers. Set n = Y^,^ ra,
and a = Y^i o'i. Suppose that the following coherence conditions are satisfied:

ni ̂  o;i,
n- a

m - 1
= f3 is an integer.

Then

where

fll[^l... ^m]A^... A^=D. [^l---^m]^l(5l)---<m(Sm),

m rt. J7L /^i. _ fl.c=n(i+^-E^ +^.
i^i' ni' ^[ n3 ̂ 3 ni

(9)

(10)

and /3i= f3 - ni+ 0:1.

Remark. The case where 0:1= 0-2 = ... = o:m = 1 was derived by Goulden and Jackson [9].
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5 Enumeration of m-ary cacti

5. 1 Rooted m-ary cacti

The first result in this section is proved in [3]. It makes use of a bijection between m-ary cacti
and unlabelled bicolored plane trees whose black vertices all have degree m.

Proposition 10 The number \K, ^ \ of rooted m-ary cacti having p m-gons is given by

l^, pl - mp

{m-l)p+l{ p (11)

D

For the enumeration of rooted m-ary cacti with a prescribed vertex-color distribution, we
consider the combinatorial equations A, = XiL(Ai) and !C<> = A^ . . -Am, given in Proposition
6. These combinatorial equations lead to the following functional equations:

A(x) = x,
l-A-(x) (12)

and

/C°(x)=^i(x)... ^(x), (13)
where x = (^i, a;2,.. ., a;m). It can easily be shown that the species Ai is asymmetric, which
implies that Ai{x) = A(x), that is, the generating series of labelled and unlabelled ^4,-structures
are equal. The same observation applies for the species /C°, so that /C°(x) == ̂ o(x). The number
\lc'm, a\ °^ (unlabelled) rooted m-ary cacti having n as vertex-color distribution is given by

-o , 1 _ r^"i'm, nl = [xl . ^w (14)
The next result follows from Theorem 9.

Proposition ll^Let n = (ni, n^,..., Tim) be a vector satisfying conditions 1 and 2 of Lemma
1. The number \K^^\ of rooted m-ary cacti having n as vertex-color distribution is given by

^=,n(:), (15)

where p = (^;, n, - l)/(m - 1) denotes the number of polygons in such a cactus.

The problem of enumerating rooted m-ary cacti according to the vertex degree distribution
has been solved by Goulden and Jackson:

Proposition 12 [9] Let K = (kij) be a mx oo matrix of nonnegative integers, n = ^;;, kij
and p = {n - l)/(m - 1). Suppose that K, n and p satisfy the coherence conditions 1, 2 and 3
of Lemma S. Then the number \IC^^-\ of rooted m-ary cacti having kij vertices of color i and
degree j is given by

\K'm, K\ = p,m-l

\m ^ ^^ 11 \ ^.
lt=l "-t , ^1 \ft'2

n (:-. ). (16)

where k{ denotes the ith row of K and n, = ]^. kij.
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5. 2 Unrooted m-ary cacti

In order to enumerate unrooted m-ary cacti, two methods can be applied. One is adapted from
Liskovets [15] for the enumeration of unrooted planar maps. It uses the concept of quotient
maps. Proofs of Theorems 3-5 using Liskovet's method can be found in [3] and [4].

The other approach uses the Dissymmetry Theorem (Theorem 7). By Corollary 8, we have
m

^(x)=^/C«. (x)-(m-l)/C°(x),
2=1

where

^(X)=3:, (l+^
d>l

w
log

1

i-A(xd)
),

(17)

(18)

and xd := (a-f, a-^,..., a;^). Theorem 4, which enumerates unrooted m-ary cacti having a pres-
cribed vertex-color distribution n follows by applying Theorem 9.

In order to enumerate m-ary cacti according to their degree distributions, we use weights in
the form of monomials w{C) = fl, j rkj3 with z =1,..., m and j ^ 0, for a cactus C having degree
distribution K = (fcy). In other words, the variable r^' acts as a counter for (or marks) vertices
of color i and degree j. We also use the notation r, to denote the sequence (r,o, r, i,...). We
denote by /Ciy, K,^, and /C^' the corresponding species of m-ary cacti, weighted in this manner.
We denote by Ai.r the species of planted (at a vertex of color i} m-ary cacti similarly weighted
by degree. The functional equations (4)-(8) can then be extended as follows:

Ai,r = Xi{ri, i + r,, 2-4?, r + r,, 3^3, r +... )>
where A, r = nj ^, A', r,

^ = X, (r,, o + r,, iC'i(A, r) + r,, 2C'2(A, r) + .

where Ck denotes the species of circular permutations of length A,

. ),

/c: = HA.
i=l

and

^w=E/c^-(m-l)/c^

(19)

(20)

(21)

(22)
i=l

The important point here is that the weights behave multiplicatively, with respect to the
operations of product and partitional composition. The consequences for the labelled and unla-
belled generating functions are as follows:

^4,, r(x) = a;, (r,, i + r,, 2A, r(x) + r,, 3-4?, r(x) +
A,r(x)=A, r(x),

^(x)-^, (n,o+^?^^(x)),

(23)
(24)
(25)

h>l
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^?(x) = ^^, o+ i: TE<^(d)A^(xd))- (26)
h^l . " d\h

where rd denotes the set of variables {r,dj}, for 2= l,..., m, j ^ 0. We also have
m

and finally,

/C;(x)=^(x)=]~[A, r(x),

/C, (x) = ^/C;-(x) - (m - l)/C:(x).

(27;

(28)
t=l

Theorem 5, which enumerates m-ary cacti according to the vertex degree distribution of each
color, then follows from applying Theorem 9 to the previous equation.

5. 3 Unrooted m-ary cacti according to their automorphisms
Since automorphisms ofm-ary cacti are required to preserve colors, the only possible symmetries
of an m-ary cacti are rotations around a central vertex. See Figure 5. Let s ^ 2 bean integer.
Let fCw,>s and K"uj,=s denote the species of m-ary cacti whose automorphism group (necessarily
cyclic) is of order a multiple of s, and exactly s, respectively. Then, following the notation of
[14], section 3, we have

m

\-^K-w, >s = ^ ^tC'r,, >s(A, r),
2=1

m

K-w,=s = Y , XiCr^=s(-^i, r)-

(29)

(30)
2=1

We can determine the unlabeled generating series /Cu/, >s(x) and / ",,=, (x) by formulas (3. 2)
and (3. 3) of [14], essentially due to Stockmeyer. See [I], Exercise 4. 4. 16, and [19]. We find the
following.

Proposition 13 Let s ^ 2 and p ^ I be integers, and K = (A;y), a matrix of nonnegative
integers satisfying conditions 1, 2 and 3 of Lemma S with n, = ^. >o kij and n = ^, n,. Then
the numbers !C^s(K) and IC=s(K) of unrooted m-ary cacti with vertex degree distribution K,
and automorphism group of order a multiple of s, and exactly s, respectively, are given by

/C^(A-) = ^, (A-) + ^>, (<7A-) + ... + ^>, (c7m-lA-), (31)
where a acts on K by putting the first row of K in the last position so that the new first row is
now the previous second row, and

/C^(Z<) = ^(/<) + ^(<77<) + . . . + ^((7m-17<-),
where

and

^, (A-)= pm -^s

n^in̂
-Ew.)f^~-l)/<i, 'lnf^in^'w^ -w^jy^/^

A.(A-) =^-^,w,)(^ -wd~} n f"^/r=s^) =Tl^yw s)[^ - e,)/d] ̂  [k,/
.

n, /d\
^'

(32)

(33)

(34)
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Figure 5: A ternary cactus with a symmetry of order 3.

where ki is the i row in K, the sum being taken over all pairs of integers /i, c? ̂  1 such that
h e Supp(A-i), s\d, and d   Div{h, K - E^)- D.

Similar but simpler computations yield the following for the vertex color distribution.

Proposition 14 Let s ~^2 be an integer, and letn .== (rai,..., rim) 6e a vector of positive integers
satisfying conditions 1 and 2 of Lemma 1. Then the numbers IC>s(n) and IC=s{n) of unrooted
m-ary cacti with vertex-color distribution n and automorphism group of order a multiple of s,
and exactly s, respectively, are given by

m

E
2=1

^. (»-)=ES(?-:, +l)Ew')(,.. p_/d,
^ Sni - l)/^ n

3^

P/d\
n, /d)'

^w=ES<p^±^^w')(^
^ P" T \^2 -

pld \^{vld'
. ^/d) ^ \n, /d)

(35)

(36)

the second summation being taken over all integers d such that s\d and d   Div(p, n - e,). D

n

(7, 7)
"(576)

1676, 77
(4, 4, 5)
(5, 6, 8)

_(5, 5, 5)
(4, 6, 7)
(5,A6)_

(3, 4, 4, 5)
(6, 6, ^7)

Al
226512

5292
28224

225
10584
1323
1960
5488

50
21952

^
17424

536
3138
39

1176
189
248
692
10

2752

^n
17424
523

3135
36

1176
189
242
680
10

2736

n

(1, 3, 3)
_(2, 2, 3)_:
(1, 4, 4)
(2, 3, 4)
(3, 3, 3)
(3, 3, 5)

(1, 3, 3, 3)
(2, 2, 3, 3)
(2, 3, 4, 4)
(474, 4, 47

^1

16
20

125

>Cn

25

^n

25

Table 1: The number of unlabelled m-ary cacti
(rooted, plain, asymmetric) according to their vertex-color distribution.
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m

2

2

N

(1532727)
-(P2241, 1224)

(1323, 1323, 1631)
(1221, 1221, 1221)

(4, 14, 14)
(22, i22, i4y

(1131, 122, 14)
(1222, 1222, -1421)

-(1321417P237I7^1T
(1322, 1322, 132"-i)
(1232, 1422, 1621)

(24, 1422, 1621)
(1441, 1422, -1422)
(1223, 1422, 1422)

(1422, 1422, 1422, 1621)

/C^, ?=l, ---,m
TsTrT
(76, 90)

(600, 600, 702)
(12, 12, 12)

(1^, 1)
(1, 2, 2)
(2, 3, 4)

(54, 54, 69)
(600, 720, 960)
(280, 280, 280)
(120, 180, 212)

(20, 30, 36)
(252, 300, 300)
(504, 600, 600)

(6000, 6000, 6000, 7008)

^1
14

150
900
16

81
1080
392
240
40

400
800

8000

K.N

16
102

15
120
56
32

52
104
1008

K-N

14
99

12
120
56
28

48
96

992

Table 2: The number of unlablelled m-ary cacti
(rooted, plain, asymmetric) according to their vertex-degree distributions.
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