
Connected heaps are nice animals

Mireille Bousquet-Melou* and Andrew Rechnitzer+

Abstract

The general quest of this paper (and a few others... ) is the exact enumeration of large classes of square
lattice animals. More than 10 years ago, it was understood that directed animals can be conveniently
described in terms of certain types of heaps of dimers. The number of n-celled directed animals grows
like 3". We define in this paper a set of heaps - called connected heaps - that are in one-to-one
correspondence with a large class of animals. We obtain a functional equation for theu- generating
fanction. An analysis of this equation shows that their number grows like (3. 58... )". We find exact
solutions for several subclasses, containing directed animals. One of them has an aigebraic generating
fuuction and growth constant 3. 5: tliis is the largest class of animals ever counted exactly. We obtain
similar results for triangular lattice animals.

Resume

L'objet g6n6ral de cet article (et de quelques autres... ) est l'6iium6ration exacte de grandes classes
d animaux sur r6seau carr6. II y a plus de 10 ans, 1'introduction des empUements de dominos est venu
Sclairer consid6rablement les r6sultats connus auparavant sur les animaux dirig6s. Rappelons que Ie
nombre d'animaux dirig6s & n cellules croit comme 3". Nous d6finissons ici une famille d'empilements -
dits connexes - qui sont en bijection avec une "grande" famille d'animaux : leur nombre croit comme
(3. 58... )". Nous obtenons une equation fonctiormelle qui r6git leur s6rie g6n6ratrice. Nous 6num6roas
exactement plusieurs sous-classes, contenaat toutes les animaux dirig6s. L'une d'elles doane une s6rie
g6n6ratrice alg6brique. Les nombres correspondants croissent comme 3.5": c'est la plus vaste classe
d'animauxjamais 6num6r6e exactement. Nous obtenons des r6sultats analogues sur Ie r6seau triangulaire.

1 Introduction

Many mathematical models of physical phenomena have a combinatorial nature. Perhaps two of the most
famous of these are the self-avoiding walk and polygon models of polymers. A related problem - which
also has a physical interpretation of its own [9] - is that of counting polyominoes. A polyomino is a finite
connected union of cells on a lattice. In this paper we consider polyominoes with hexagonal and square cells.
If we replace each cell of a polyomino by a vertex at its centre, we obtain the corresponding animal, which
lives on the dual lattice (Fig. 1).
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Figure 1: Polyominoes with square and hexagonal cells, and the corresponding animals.
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Although polyominoes have been intensively studied for more than 40 years [10, 11, 13], exact results on
general polyominoes have remained elusive. However, some asymptotic results are known. Let Cn denote
the number of polyominoes of n cells on the square lattice. A concatenation argument [14] shows that there
exists a constant ju, called the connective constant, such that

Urn (c»)1/" =/..
n-K30

The exact value of p, is unknown, though numerical studies [6] have shown that ^ ^ 4. 06. The best published1
bounds on p, [16] are

3.72 <fi< 4.65.

It is a measure of the complexity of the problem that not even the first digit of ̂  is known rigorously.
Given the difficulty in solving this problem, what rigorous work can be done towards better understanding

polyominoes? Perhaps the most fruitful work has been in the investigation and solution of large subclasses
of polyominoes.

All the subclasses of polyominoes that have been solved so far have had at least one of the following
two properties: convexity or directedness. Convexity is now well understood (e. g. [2]), and the largest
subclass of polyominoes having a convexity property {wlumn-convex polyominoes) has been enumerated;
it is understood that convexity will limit the connective constant to a maxima! value of 3.20... (on the
square lattice). The largest class of directed polyominoes has also been solved and it is understood that this
property limits the connective constant to be at most 3 (see Table 1 for details).

Model
Rectangles
Ferrers Diagrams (Partitions)
Stacks
Staircase (Parallelogram)
Directed Convex
Convex
Bargraph (Compositions)
Directed Column Convex
Column Convex
Directed

p-
1

1

1

2.30.
2. 30.
2. 30.

2

2. 62.
3.20.

3

Nature of the series
g-senes
g-series
g-senes
g-senes
q-senes
g-senes
rational
rational
rational
algebraic

Who solved it (first...)
obvious...
Euler [8]
Auluck [1]
Klarner & Rivest [17]
Bousquet & Viennot [4]
Bousquet & Fedou [3]
obvious...
Moser, Klarner [13]
Temperley [19]
"DhaF[7]

Table 1: Some of the solved subclasses of square lattice polyominoes and their connective constants.

So to be able to enumerate larger classes of polyominoes, classes without the properties of convexity and
directedness need to be investigated.

In this paper we investigate some new larger classes of polyominoes with square and hexagonal cells.
These classes are conveniently described in terms of heaps of dimers. Heaps have already proved extremely
useful in the enumeration of directed animals: we recall in Section 2 the main definitions and results. We
define in Section 3 connected heaps, and show they are in one-to-one correspondence with a class of animals.
We also give a functional equation defining their generating function. The associated connective constant is
about 3.58, but we have not been able to evaluate it exactly yet. However, we find an algebraic generating
fanction for a subclass of connected heaps having a growth constant of 3.5. This is the largest class of
animals ever enumerated (Section 4). We give, in the last section, partial asymptotic information about
the generating function of connected heaps. We solve two functional equations related to that of connected
heaps.

All our square lattice results have triangular analogues.
lKlarner [15] announced to have obtained a better lower bound of 3.9.
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2 Heaps of dimers and directed animals

A square lattice animal is said to be directed if all its vertices can be reached from a specific vertex, called
the root, by a path formed of North and East steps that only visits vertices of the animal. A similar notion
exists for triangular lattice animals (Fig 2). These two models were first solved by Dhar [7] and are now
well understood. Perhaps the simplest solution is based on the fact that these animals are heaps of dimers.

.-^-^
.-^-^

6-^-^

.-^-^

Figure 2: Directed animals on the square and triangular lattices.

The "otion of heaps is a nice geometric version of partially commutative monoids, due to Viennot [20].
Intuitively, a heap of dimers is obtained by dropping a finite number of dimers until each of them falls either
on the axis, or on another dimer (Fig. 3. a). The heap is strict if no dimer has another dimer exactly above
it (Fig. 3. 6). The dimers that touch the axis are minimal. If there is only one minimal dimer, the heap is a
pyramid. If, moreover, this minimal dimer is the rightmost one, the heap is a demi-pyramid.

(a)
.^

w

*^ ^*

Figure 3: Two heaps of dimers; each has three minimal dimers.

It was observed by Viennot that directed animals on the square (resp. triangular) lattice are in one-to-one
correspondence with strict pyramids of dimers (resp. pyramids of dimers). This correspondence is simply
obtained by rotating the animal so that the preferred direction becomes North, and replacing each vertex
by a dimer (Figs. 4 and 5).

.-^

-^
.-^

^-^-^

^

Figure 4: A directed animal on the square lattice and the associated strict pyramid.

Figure 5: A directed animal on the triangular lattice and the associated pyramid.

The reason why using the notion of heap is interesting here is that there exists a monoid structure on
the set of heaps (the product of two heaps is obtained by putting one heap above the other and dropping its
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pieces). This yields unambiguous factorizations for heaps of duners.
Let us begin with the factorization of strict pyramids. A strict pyramid is either a strict demi-pyramid

or the product of a strict demi-pyramid and a strict pyramid (Fig. 6). Let Ps(x) denote the generating
function for strict pyramids, counted according to the number of dimers, and let Ds(x) denote the generating
function for strict demi-pyramids. Then Ps(x) = Ds{x)(l + Ps(x)). Now, a demi-pyramid having several
dimers is the product of a single dimer and either one or two demi-pyramids (Fig. 7), which implies Ds(x) =
x+xDs{x}+xDs{x)2.

These equations are readily solved yielding:

^>=I-VT)(^-^)=I(^-').D, (x} =

e

right half-width

Figure 6: The factorization of pyramids.

Figure 7: The factorization of demi-pyramids.

We can obtain analogous results for non-strict pyramids ofdimers (i. e., directed animals on the triangular
lattice) by a similar factorisation. Alternatively, we can use a nice mapping between strict and ordinary heaps:
To obtain an ordinary heap from a strict heap, we have to allow dimers to be placed directly on top of each
other. We can do this by replacing each dimer with a column of dimers (Fig. 8).

Figure 8: From strict heaps to ordinary heaps.

This corresponds to replacing the variable x in our generating functions by -^. Using this mapping (and
its inverse) we can take any strict heap (i. e. square lattice) result and easily find the corresponding ordinary
heap (i. e. triangular lattice) result, and vice-versa. For instance, the generating function for directed animals
on the triangular lattice is simply given by Pt(x) = Ps(x/(l - x)).

The above factorization of (strict) pyramids allows us to take into account an additional parameter,
which will play an important role in Section 4. This parameter is the right half-vridth of the pyramid, which
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we define as the number of columns of the heap to the right of the minimal dimer (Fig. 6). For instance, a
single column ofdimers has right half-width 0. We thus obtain the following refined result (the first part of
it was implicit in [12]).

Proposition 1 Let P, (x, w) (resp. Pt(, x w)) be the generating function for strict pyramids (resp. pyra-
mids), counted according to the number of dimers (x) and the right half-width (w). Then

_1 V(l+x)(l-3x)-l+x(l+2w}
S^, Wj = -^ w-x{l+w+w2)

and

Pt{x, w)=P, 1^'WJ=2
/l-4a; - 1 + 2x(l + w)
w-x^l +2w+w2)

3 Connected heaps of dimers

A heap of dimers is connected if its projection onto the horizontal axis is connected. For instance, the heap of
Fig. 3. 6 is connected, while that of Fig. 3. a is not. We define a bijection between (strict) connected heaps of
dimers and a class of polyominoes on the (square) triangular lattice as follows: we change each dimer into a
polyomino cell, and identify the polyomino components (two cells belong to the same poiyomino component
if they^are nearest neighbours - Fig. 9.b shows three such components). To connect the components, one
starts from the rightmost and works towards the left, lifting each polyomino component that has another
above it until all the components are connected to each other (Figs. 9.c and 9.d). The reverse bijection is
obtained by transforming each polyomino cell mto a dimer and then allowing the dimers to fall towards the
axis forming a heap.

^-iDl^.age of COIlnected heaps unde]" this bijection is a proper subset of polyominoes as the example of
figure 10 illustrates.

The class of hexagonally celled polyominoes defined by connected heaps of dimers is in fact equivalent
to a family of polyominoes studied by Klarner [14, p. 861]. His numerical study yielded the lower bound 4
for the corresponding connective constant. We have been able to improve upon the accuracy of Klarner's
estimate both by analysis of a functional equation that describes connected heaps, and also by the exact
enumeration of large subclasses of connected heaps.

®

Figure 9: (a) A strict connected heap ofdimers and its corresponding polyomino (d). Steps (b) and (c) show
the intermediate steps of the bijection.
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® 0

Figure 10: An example ofapolyomino that is not in bijection with a connected heap. The overhang in (a)
collapses when the polyomino is transformed into a heap (steps (b) and (c)). (d) shows the polyomino that
is in'bijection with the connected heap in (c). This example also shows that square lattice column-convex
polyominoes are not a subset of connected heaps.

Proposition 2 Let S{x, y) (resp. T{x, y)) be the generating function for strict (resp. general) connected
heaps, where the variable y counts the number of dimers in the rightmost column, and x counts the remaining
dimers. Then S(x, y) and T{x, y} satisfy the following functional equations:

S{x, y) = y+(l+y)s(x, x^^)-S(x^,
^,. ) = T^+Tl, r(-T^)-r(^>-

As the mapping between heaps and strict heaps implies, we observe that T(x, y) = 5(^, -^y).

Proof. One can interpret these equations as the description of the growth of a connected heap column by
column, and explain them graphicaUy. We do so here for general connected heaps (series T(z, 2/)).

A connected heap H is either a single column of dimers (= ̂ ) or has width m > 1. In this case, it can
be grown from a heap H' of width m - 1 by adding cells in the mth column. More precisely (see Fig. II):

1. Insert a (possibly empty) column of dimers to the above-right of each dimer in the rightmost column
of H'. This is represented by the substitution y i-^ -^y-

2. Insert a column of dimers to the below right of the lowest rightmost dimer of H'. The bottom dimer of
this column will form a new minimal piece in the heap. This operation is represented by multiplying
by r^-

We must avoid counting the cases where we have not added any new dimers to H', which is done by
subtracting T(x,x). .

We have so far been unable to solve either functional equation of Proposition 2. Nor have we been able
to find exactly the radius of convergence of the solution at y = 2;, which is identical to the reciprocal of the
connective constant (about 3. 58 for the square lattice and 4. 58 for the triangular lattice).

Despite this, we have been able to solve two large subclasses of connected heaps. In section 4 we solve
a subclass whose connective constant is exactly 3. 5 (and 4. 5 for the triangular lattice). Then, in section 5,
we solve a different class on the triangular lattice whose connective constant is exactly v^+ 2 ^ 4. 236. We
also examine the shape of the singularity diagram for connected heaps.
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Figure 11: A recursive construction for connected heaps of dimers.

4 Multi-pyramids

Any heap ofdimers can be factored into pyramids by successively pushing upwards the leftmost minimal piece.
Ideally, we would like to be able to use this factorisation to obtain the generating function for connected heaps.
?owey^r' ̂ ^e ̂ xist connected heaps for whlch the removal of a pyramid factor disconnects the'remammg
heap (Fig. 12). Because of this we cannot define connected heaps recursively in terms of pyramids.

1-T
Figure 12: A connected heap and its pyramid factors. Note that affcer the leftmost pyramid factor is removed,
the remaining heap is no longer connected.

However, we can define an exactly enumerable subclass of connected heaps by requiring that the heap
remains connected upon the removal of successive pyramid factors (Fig. 13)". We call this"subclass mulH-
pyramids.

Figure 13: A multi-pyramid formed from three pyramids of dimers, and its corresponding polyomino.
Each multi-pyramid is (see Fig. 14):

. either a single pyramid (if it has only a single minimal piece).

. or the product of a pyramid and a multi-pyramid. Note that conversely, the pyramid factor can be
placed in a niunber of ways equal to its right half-width.

Proposition 1 gives the generating fanctions Ps(x, w) and Pt(x, w) for strict pyramids and general pyra-
mids respectively, counted by their size and right half-width. The above factorisation of multi-pyramids
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Figure 14: The recursive factorisation of multi-pyramids. Each new pyramid factor can be added to a
multi-pyramid in a number of ways equal to its right half-width.

yields, for the square lattice,
M, (3-) = P^x, l) + M^x)^(x, l),

where M, (a;) denotes the generating function for strict multi-pyramids. A similar equation holds for the
triangular lattice.

Proposition 3 The generating functions for strict multi-pyramids and general multi-pyramids are respec-
tively:

1 (1 - x}(l - 2x) - (1 - 4a;)^(l - 32;)(1 +x^
MsW = ^--2-7^/v' ----'
M.(.) = ^a-^-^--/-^. (^).

Hence the connective constants for multi-pyramids on the square and triangular lattices are 3. 5 and 4.5
respectively.

The class of multi-pyramids is the largest class of lattice animals for which an exact generating function
is known. We have to qualify what is meant by this last statement; the current lower bound of 3.9 for
the connective coiistant of square lattice polyominoes is calculated by enumerating polyominoes of bounded
column height by a transfer matrbc method [15]. In such studies, only an estimate of the largest eigenvalue
of the transfer matrix is usually published, and not the corresponding rational generating function, which is
essentially the determinant of a matrbc that grows exponentially with the bounding height.

We can extend the factorisation of multi-pyramids to count the number of miiiimal pieces, and from this
we find that the average number of minimal pieces grows Unearly with size. This miplies that the average
width of a multi-pyramid also grows linearly with size. This compares with y/n growth for directed animals
[12] and n°-644 for unrestricted animals [18].

5 Asymptotic results and saw-tooth connected heaps
la this remaining section we discuss exclusively classes of animals on the triangular lattice and their corre-
spending heaps. Recall the functional equation for connected heaps:

^y)=^^(^~)-T^. (1)

Let us consider the series T(x, xy): it is a series in x with polynomial coefficients in y. We are mainly
interested in the case y = 1. From (1), we have been able to determine the shape of the singularity diagram
for the function T(x, xy} (though not completely). A nearly identical result exists for the generating function
S(x, xy) counting strict connected heaps.
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Proposition 4 Let p{y) denote the radius of convergence ofT(x, xy) for y fixed. Then there exists pc ̂  1/4
such that

where

In particular p{l) == pc -

pc. . " /or0 < y ^ yc,
1/y-l/y2 foryc<y,

1 + v/l - 4pc
2pc

>2 .

1/2/-1/2/2

Figure 15: Schematic plot of the singularity diagram of T(x, xy).

We have made numeric estimates of p(y), using the ratio of successive coefRdents in the expansion of
T(x, xy) in powers of x. From such analysis we have found that pc ^ 0.218, and hence p, a 4.587 and
yc ̂ 3. 114. See Fig. 16.

Figure 16: Plot of p(y) for connected heaps. Plotted are numerical data (the ratio the 79th and 80th
coefficients in the expansion of T{x, xy) in powers of a;), and the function 1/y - 1/y2, for y ^ 2, which is the

predicted value of the radius for y ^ ̂ c = 3. 114...

Let us now discuss two variations of the functional equation (1). By removmg the term that corresponds
to the creation of new minimal pieces from this equation, we obtain a functional equation for demi-pyramids
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of dimers (pyramids whose minimal dimer is the leftmost one):

Dt(x, y) =
y

1-y
+Df[x,

x

i-y -Dt(x, x). (2)

Again, we are able to determine that the shape of the singularity diagram of Df(x xy) is identical to that
given by Proposition 4. Moreover, because we know p(l) = pc = 1/4 from the solution of demi-pyramids

(see Section 2), the singularity diagram is completely determined.
We can iterate Eq. (2), which yields the following closed form expression of Dt(x, y):

xn-lyA(.,. )=Ep^_;p^ (3)

where Pn = Pn(a;) is the matching polynomial of a line with n vertices. Equivalently, the generating function
for these polynomials is

-1-. (4)EP.(^"=^
n>0

^x'

Expression (3) is a simple extension of the known enumeration of Dyck paths of fixed height [5]. The
singularity diagram of Dt(x, xy) can be directly derived from (3).

The functional equations for demi-pyramids and connected heaps are very similar, excepting the factor
that corresponds to the generation of new minimal pieces, ^-y = T. +y+y2 + .... One way of extending

our solution for demi-pyramids towards a solution for connected heaps would be to replace this factor with
only the first few terms of its expansion, that is, only allowing short columns to be inserted. By doing so we
would obtain the functional equation for a class of heaps that interpolates between the demi-pyramid and
connected heap models.

Exploring this idea, we investigated the foUowing functional equation:

N(x^=^+(l+y)N(x, ^)-N{x, x). (5)

The lower edge of the animals described by the solution of this equation is constrained so that (when drawn
from left to right) it may only grow downwards diagonally, but is able to grow straight up, something like
the edge of a saw-tooth. Because of this similarity, we call these animals saw-tooth animals, and denote their
generating function by N (Fig. 17).

Figure 17: An example of a sawtooth connected heap.

Once again, the functional equation satisfied by N{x, y) implies that the smgularity diagram of N(x, xy)
is identicalto that given in Proposition 4. By iterating (5), we obtain the following expression for N(x, y):

^n-ly n^(.. ^_^-^.^k-^^
where the polynomials Pn are given by (4). From this expression, we can completely determine the shape of
the singularity diagram_for N(x, xy). 'We'find that pc = p(l) = v/5- 2, so that the connective constant for
saw-tooth animals is v/5+ 2 ^ 4. 236.
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The method that allowed us to obtain this result looks interesting. We plan to apply it to other fanctional
equations that interpolate between directed animals and connected heaps. In the limit, it would yield the
exact value of the connective constant for connected heaps.

Another plan is the investigation of the average width of connected heaps and saw-tooth animals. It
is known that n-celled directed animals on the triangular lattice grow like v/n, and unrestricted animals
grow like n°-644. We have found that average width of mul-ti-pyramids grows linearly, and it would be very
interesting to know what behaviour is exhibited by connected and saw-tooth heaps.
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