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Abstract

The enumeration of transitive ordered factorizations of a given permutation is a combinatorial
problem related to singularity theory. Let n > 1, m > 2, and let 0o be a permutation of &, having
d; cycles of length i, for ¢ > 1. We prove that the number of m-tuples (o1, ..., om) of permutations
of &, such that:

® 0102 0Om = 00,
o the group generated by 01, ...,0m acts transitively on {1,2,...,n},

® > toc(o:i) = n(m—1)+ 2, where c(0;) denotes the number of cycles of o;,

d;
- [(m—1)n —1]! H ; mz;-l
[((m — 1)n — ¢(o0) + 2]! 7 i
A one-to-one correspondence relates these m-tuples to some rooted planar maps, which we call con-
stellations and enumerate via a bijection with some bicolored trees. For m = 2, we recover a formula
of Tutte for the number of Eulerian maps. The proof extends the method applied in [16] to the latter
case, and relies on the idea that maps are conjugacy classes of trees.
Our result might remind the reader of an old theorem of Hurwitz, giving the number of m-tuples
of transpositions satisfying the above conditions. Indeed, we show that our result implies Hurwitz’
theorem.

is

Résumé

L’énumération des factorisations ordonnées transitives d’une permutation est un probléme combi-
natoire lié & la théorie des singularités. Soient n > 1, m > 2 et soit oo une permutation de G, ayant
d; cycles de longueur i, pour tout ¢ > 1. Nous montrons que le nombre de m-uplets (o1,...,0m) de
permutations de &, telles que :

® 0102 Om = 0o,
e le groupe engendré par 01,...,0n, agit transitivement sur {1,2,...,n},

° Y c(oi) =n(m—1)+2, ol ¢(o;) désigne le nombre de cycles de o3,

d;
- [(m—l)n-—l]' H i mz'—l
[(m = 1)n — ¢(o0) + 2]! e i

Ces m-uplets sont en bijection avec des cartes planaires enracinées que nous appelons les constellations
et que nous dénombrons & 'aide d’arbres bicoloriés. Pour m = 2, nous retrouvons une formule due
a Tutte pour le nombre de cartes eulériennes. La preuve étend la méthode appliquée dans [16] & ce
dernier cas, et s’appuie sur I'idée que les cartes sont des classes de conjugaison d’arbres.

Notre résultat ressemble & un théoréme d’Hurwitz, qui donne le nombre de m-uplets de transposi-
tions satisfaisant les conditions précédentes. Nous montrons de fait que notre résultat implique celui
d’Hurwitz.

est
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1 Introduction

Let 0o be a permutation in the symmetric group S,. An ordered factorization of oo is an m-tuple
(o1,-..,0m) of permutations of &, such that o102 - --om = 00-

The enumeration of ordered factorizations of a fixed permutation is a widely studied problem. Its
numerous different motivations make it very versatile, and give rise to different kinds of conditions that
can be imposed on the factors. Here are some conditions often met in the literature.

e The cyclic type of the factors. One can decide that each factor o; must be taken inside a
prescribed conjugacy class of &,: in this case, one is merely trying to compute the connection
coefficients of the symmetric group. A very general formula can be given in terms of characters [18,
p.68]. The rank n—c(o) of a permutation o gives the length of the shortest ordered factorization of o
into transpositions. The rank being clearly sub-additive, we observe that the connection coefficient
is zero unless

> [n=c(o:)] 2 n = c(oo),

i=1
where c(c;) denotes the number of cycles of o; (which only depends on its conjugacy class). Equiv-
alently?,
m
" e(03) < nlm = 1) + c(o0)- 1)
i=1

e The general minimality condition. One can focus on the extremal case:

m

Zc(ai) =n(m — 1) + ¢(00), (2)

=1

which is minimal in terms of the lengths of the factors. This problems amounts to computing the
top connection coefficients of the symmetric group [6]. The most celebrated result in this field
corresponds to the case where all factors are transpositions and g is an n-cycle. The extremality
condition (2) becomes m = n — 1, and the number of such factorizations is n™ 2, the number of
Cayley trees [3, 7, 15].

e The transitivity condition requires that the group generated by o1,...,0m acts transitively
on {1,2,...,n}. This condition finds its origin in the link between ordered factorizations and
branched coverings of Riemann surfaces: roughly speaking, the transitivity condition is implied by
the connectedness of the surfaces. This condition is widely considered, and will also be adopted in
this paper: our factorizations will correspond to branched coverings of the two-dimensional sphere
by itself.

o The transitive minimality condition. Most importantly, the upper bound on Y ¢(o;) given by
(1) is no longer sharp under the transitivity condition. For instance, all transitive factorizations of
a permutation oo into m transpositions satisfy the following inequality 4, 19]:

m > n+ c(oo) — 2 3)
which is stronger than the inequality m > n — c(0o) provided by (1). From (3), we easily derive the

following inequality, valid for all transitive factorizations of op:

m

Y- clo:) < n(m—1) = c(oo) + 2,

i=1
which is stronger than (1). It can be understood in terms of the genus of the underlying Riemann

surfaces.

We shall focus on extremal transitive factorizations. The case where all factors are transpositions was
solved long time ago by Hurwitz [10] (see also [4, 19]).

1Condition (1) is necessary, but not sufficient, for the corresponding connection coefficient to be non zero.
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Theorem 1.1 (Hurwitz) Let n > 1. Let oo be a permutation of &, having d; cycles of length i, for
t 2 1. Then the number of m- tuples (11,...,7™m) of transpositions of &,, such that:

® 7172 Tm = 00,

e the group generated by 11,...,Tm acts transitively on {1,2,...,n},

e m = n+c(0g) — 2, where c(op) denotes the number of cycles of oo,
18

d;
Ii¢70 = nC(UO)—s(n + C(U'O 2)' H [ 1)'] .
il

In this paper, we count extremal transitive factorizations regardless of the cyclic type of the factors.
Our main theorem follows. We shall see that it implies Hurwitz’ theorem.

Theorem 1.2 Let n > 1. Let oo be a permutation of &, having d; cycles of length i, for i > 1. For
m 20, let Gy, (m) denote the number of m-tuples (o1, ...,0m,) of permutations of &, such that:

® 0102---0;m = 0Op,
o the group generated by 01, ...,0m acts transitively on {1,2,... ,n},

o Yt yc(o:) =n(m — 1) + 2, where c(o;) denotes the number of cycles of o;.

Gt = e ()

Let us call an ordered factorization proper if none of its factors is the identity. The inclusion-exclusion
principle implies that the number of proper minimal transitive m-factorizations of g is, for n > 2 and
m >0,

Then for m > 2,

Foolm) = 31" (77 ) Guu () @

k=0

Observe that a proper factorization (o1,...,0m) satisfies 31w c(0;) < ¢(00) + m(n — 1). If it is also
transitive and minimal, then } 7" ¢(0;) = n(m—1)+2 and thus, m < n+c(ag) 2. Moreover, the choice
m = n + ¢(og) — 2 forces c(0;) to be n — 1, for 1 < i < m, so that each factor is a transposition. This
shows that the number of minimal transitive factorizations into transpositions, evaluated by Hurwitz, is

H,, = Fyo(d)

where d = n + ¢(og) —
Theorem 1.2 provides, for each g € &5, an explicit polynomial P(z) € Q[z], of degree d = n+c(oq)—2
such that G, (m) = P(m) for all m > 0. Defining the difference operator A by AP(z) = P(z+1) - P(z),

we can rewrite (4) as follows:
F, (m) = A™P(0).

Observe that A%(z*) = 0if k < d and A%(z?) = d!. This implies that H,, is, up to a factorial, the
leading coefficient of P(z):
H,, = Fy(d)
= AP(0)
d'[z?P(z)
di
_ -3
TR T | (R

21

This is exactly Hurwitz’ theorem.

Many of the enumeration problems mentioned above have an alternative description in terms of
trees, maps, or hypermaps. Our theorem is not an exception to this rule: in Section 2, we describe a
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family of maps, called constellations, which are in one-to-one correspondence with minimal transitive
factorizations. The rest of the paper focuses on constellations: we first define and enumerate a family of
trees (Section 3), then we describe a correspondence between these trees and constellations (Section 4).
This correspondence is one-to-one so that we obtain the number of constellations, and hence, of minimal
transitive factorizations. The proof that it is indeed one-to-one is omitted due to space limitations (see

[1))-

2 Constellations and their relatives

A planar map is a 2-cell decomposition of the oriented sphere into vertices (0-cells), edges (1-cells), and
faces (2-cells). Loops and multiple edges are allowed. The degree of a vertex (or a face) is the number
of edges incident to this vertex. Two maps are isomorphic if there exists an orientation preserving
homeomorphism of the sphere that maps cells of one of the maps onto cells of the same type of the other

map and preserves incidences. We shall consider maps up to isomorphism. :

Definition 2.1 Let m > 2. An m-constellation is a planar map whose faces are coloured black and white
in such a way that

e all faces adjacent to a given white face are black, and vice-versa,
e the degree of any black face is m,
o the degree of any white face is a multiple of m.
A constellation is rooted if one of its edges, called the root edge, is distinguished.

The black faces of a constellation will often be called its polygons or its m-gons. In what follows, we
will mainly consider rooted constellations, and the word “rooted” will often be omitted. Observe that it
is possible to label the vertices of an m-constellation with 1,2,...,m in such a way the vertices of any
m-gon are labelled 1,2,...,m in counterclockwise order. We adopt the convention that the ends of the
root edge are labelled 1 and 2: this determines the canonical labelling of the constellation (Fig. 1).

™\ 2

Figure 1: A rooted 3-constellation and its canonical labelling.

One can object that our maps do not look very much like real constellations. The terminology?, which
is due to Alexander Zvonkin, becomes more transparent if we replace each m-gon by an m-star (Fig. 2):
we thus obtain a connected set of stars, which is undoubtly a constellation [8].

Our interest in constellations originates in the theory of “dessins d’enfants” (see for instance [12] and
references therein). For more details, and an application of our result in this context, see [1].

Proposition 2.2 Let n > 1 and m > 2. There ezists a one-to-one correspondence between m-tuples
(01,...,0m) of permutations of &, such that:

2Note that the word “constellation” was formerly used by Jacques with the meaning of “map” [11].
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Figure 2: How constellations appear.

e the group generated by 01,...,0m acts transitively on {1,2,...,n},
o Y mycloi) =n(m—1)+ 2, where 09 = 0102 - Om,

and rooted m-constellations formed of n polygons, labelled from 1 to n in such a way the polygon containing
the root edge has label 1. Moreover, if the constellation has d; white faces of degree mi, then oy has d;

cycles of length i.

Proof. Let C' be a rooted m-constellation formed of n polygons labelled from 1 to n. Recall there is a
canonical labelling (by 1,2,...,m) of the vertices of C. For 1 < i < m, each m-gon is adjacent to exactly
one vertex of label i: hence, turning clockwise around vertices of label i defines a permutation of the n
polygons, denoted o;, which we identify with a permutation of &,,.

As the constellation is connected, the group generated by o1, ...,0m acts transitively on {1,2,...,n}.

Moreover, let W be a white face of degree mi: it has exactly 7 vertices of label m. Let By, Bs,...,B;
denote the 7 black faces adjacent to W by an edge labelled (1,m), arranged in counterclockwise order
around W. Then the permutation® ¢ = 6103 - - - 0, maps B; onto Bjy; for 1 £ j <4 (with B;y; = By).
Hence, each cycle of g corresponds to a white face of C, and the cycle type of oy is given by the degrees
of the white faces.

Finally, the number of vertices of C'is v = Y/, ¢(0;), the number of its faces is f = n+c(o¢) and the
number of its edges is e = nm. The constellation C is drawn on the sphere, so that Euler’s characteristic
formula v+ f = e+ 2reads }. v c(o;) =n(m — 1) +2.

Conversely, let (o1,...,0m,m) be an m-tuple of permutations as described in the proposition. We
consider elementary black m-gons with vertices labelled from 1 to m in counterclockwise order, and
white polygons of degree mi for ¢ > 1, the vertices of which are labelled 1,2,...,m,1,2,...,m, etc. in
clockwise order. We take n black m-gons, labelled from 1 to n, and ¢(op) white polygons, d; of which
are of degree mi. The m-tuple (01,...,0.,) describes an incidence relation on these n + ¢(op) polygons.
Following this relation, we glue polygons together by identifying edges. According to general topology
theory [14, chap.1], this yields a unique 2-cell decomposition of a compact connected surface without
boundary. The condition Y '~ ¢(0;) = (m — 1)n + 2 ensures, via Euler’s characteristic formula, that this
surface is the sphere, and hence that the map we have obtained is a planar constellation.

o

Example. For the labelled rooted 3-constellation C' of Fig. 3, we find o1 = (1)(2,3), 02 = (1,2,3) and
o3 = (1,3)(2). We compute o9 = 010203 = (1)(2)(3) which fits with the fact that C has three white
faces, each of degree 3.

As the m-gons of a rooted constellation formed of n polygons can be labelled in (n — 1)! different
ways and n!/ Hi;l [id" dil] permutations have exactly d; cycles of length %, Proposition 2.2 implies the
equivalence between Theorem 1.2 and Theorem 2.3 below, on which we shall focus from now on.

Theorem 2.3 Let m > 2. The number of rooted m-constellations C having d; white faces of degree mi,

fori>1, s J
_ [(m = 1)n]! 1 (mi—-1\"
mfm — 1)f 1[(m—l)n—f+2]! g&'[!(i—l‘) :

3We multiply permutations from right to left, as we compose functions.
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Figure 3: A 3-constellation with labelled 3-gons.

where n = Y id; is the number of m-gons, and f = Y d; the number of white faces of C.
We can derive right now two interesting corollaries. :
Corollary 2.4 Letn > 1 and m > 2. The number of rooted m-constellations formed of n polygons is

(m + 1)m™? (mn)
(m-1n+2[(m-n+1]\n /)

Proof. There is a simple one-to-one correspondence, which preserves the number of polygons, between
m-constellations and (m + 1)-constellations whose white faces have degree m + 1. Our result will thus
follow from Theorem 2.3, by replacing m by m + 1 and setting d; =n, d; =0 for i > 2.

To describe this correspondence, we use once again the canonical labelling of the vertices. We add at
the center of each white face a new vertex labelled m + 1, and pull the center of each edge (m,1) of the
face so that it coincides with the new vertex (Fig. 4). We obtain an (m + 1)-constellation whose white
faces have degree m+1 (as each of them contains exactly one vertex labelled m + 1), and the construction

is clearly reversible.

Cm (77') =

Figure 4: From a 3-constellation to a 4-constellation with all faces of degree 4.

Dual maps® of constellations will be called m- Eulerian maps. The definition of constellations provides
the following characterization for m-Eulerian maps (Fig. 5).

Definition 2.5 A planar map is m-Eulerian if it is bipartite (with black and white vertices), and
o the degree of any black vertez is m,

o the degree of any white vertez is a multiple of m.

The case m = 2 justifies our terminology: if we remove all black vertices from a 2-Eulerian map, we
obtain a map having only vertices of even degree; such maps are usually called Eulerian.

Of course, counting m-Eulerian maps is equivalent to counting m-constellations. In particular, The-
orem 2.3 gives the number of rooted m-Eulerian maps having d; white vertices of degree mi, for ¢ > 1.
When m = 2, we recover an old result of Tutte [2, 16, 20].

4Recall that the dual map C* of a map C describes the incidence relation between the faces of C: in particular, the
vertices (resp. faces) of C* are the faces (resp. vertices) of C.

101



Figure 5: A rooted 3-Eulerian map, dual of the 3-constellation of Fig. 1.

3 Eulerian trees

A planted tree is a plane tree with a marked leaf (also called the root). In our figures, planted trees hang
from their marked leaves. The (total) degree of a vertex is the degree in the context of graph theory, i.e.,
one more than the arity in the functional representation of trees. Vertices of degree 1 are referred to as
leaves, the others as inner vertices. The inner degree of a vertex is the number of inner vertices adjacent
to it. The depth of a vertex is its distance to the root. The left-to-right prefix order (Ir-prefix for short)
on the vertices of a planted tree T is obtained recursively by visiting first the root of T, and then its
subtrees Ty, ..., Tk, taken from left to right, in Ir-prefix order. The right-to-left prefix (rl-prefix) order is
defined symmetncally The number of planted trees having n + 1 edges is the famous Catalan number
Cn = - +1 (2"). More generally, the Lagrange inversion formula (see [5] for instance) or encodings by
Lukaciewicz words [13, p.221] give the following classical result, first proved by Harary, Prins and Tutte

[9].

Theorem 3.1 The number of planted plane trees having d; inner vertices of degree i + 1 for i > 1, is
(e—1)!
(. 1)! H d;! Ak
where e = 1+ ) id; is the number of edges and £ = 2 + (i — 1)d; the number of leaves of such trees.
Definition 3.2 A bicolored (black and white) tree, planted at a black leaf, is said to be m-Eulerian if
o all neighbors of a white vertex are black, and vice-versa,

e all inner black vertices have total degree m and inner degree 1 or 2,

e all inner white vertices have total degree mi, for some i > 1, and have ezactly i — 1 inner neighbors
of inner degree 1.

Figure 6 shows a 3-Eulerian tree (plain lines).

Proposition 3.3 Let m > 2. The number of m-Eulerian trees having d; white vertices of degree mi, for

121, 1s J
] [(m — 1)n]! mi— 1\ %
e [(m—Dn—f+1]! Hd'(i—l) ’

where n = Y id; and f =Y d;. Such trees have ezactly:

o f inner white vertices,

e n — 1 inner black vertices,

e (m—1)n— f —m+ 2 white leaves,
e (m—1)n— f+2 black leaves.
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Proof. We can construct all m-Eulerian trees having d; white vertices of degree mi as follows.

1. We start with a planted tree T} having white inner vertices and black leaves, such that all vertices
have degree 1 modulo m — 1. More precisely, let d; be the number of (inner) vertices having degree
(m — 1)i + 1, for i > 1. According to Theorem 3.1, the number of such trees is

_ [(m —1)n]! 1
T(dy,do,...) = T 7 +1] 1;[1 o

2. In the middle of each inner edge of T, add a black vertex of total degree m. This vertex has m — 2
white leaves, which can be displayed in m — 1 different ways. As T; has f — 1 inner edges, the number
of trees T, thus obtained is (m — 1)f~1T'(d;,dz,...).
3. To each of the d; white vertices of Tp of degree (m — 1)i + 1, add 7 — 1 black children of total degree
m. The position of these children can be chosen in (":’_'il) different ways, and this observation concludes
the proof.

(]

Let T be an m-Eulerian tree. Let us arrange its leaves cyclically by reading them in Ir-prefix order.
For the tree of Fig. 6, starting from the root we obtain the (cyclic) word bwbbwbbwbbwwwbbbwbbwwbw,
where b (resp. w) denotes a black (resp. white) leaf. We now match the letters w and b of this word as
if they were respectively opening and closing brackets:

bwbbwb@wb@wwwbbbwb@wwbw

:_II_IIL_IL_J‘L_I]LJ I_JI_:

More precisely, at step 1, each letter w that is followed by a b is matched with this occurrence of b. We
then forget all matched letters and repeat the procedure until no more matches are possible. We match
accordingly the leaves of T' (Fig. 6). As there are more black leaves than white leaves, some black leaves
— exactly m of them — remain unmatched: we call them single.

- -

- N ~
7 a3
s [ ] ~ \\
7 N N
-, S N
4 \
> S
7 o \ N
’ S \ \
7 A \
/ \ \
/ \
/ O [ g O O ©O ] O N
e
/ -z | T 4 \
/ // \ i/ \\
/ , & S 1/ \
/ / / s ~
7 ~ \
/ 7 1! |
/ \ 1
! s ! ]
/ - !
1 ; [ O AR @, [ 1 Q L] Q O ’
i i 1oy (I Ma y
\ \ 1 \ \ | \ ——
~
\ \ 1 \ N { -~ S
A \ f 4 \ \ J
N s~ 7 \ N I
N - 7 N P
S - \ L 7
A ’
~ 7

Figure 6: Matching the leaves of a 3-Eulerian tree (circles represent leaves, squares represent inner
vertices).

Definition 3.4 An m-Eulerian tree is said to be balanced if its root remains single after the matching
procedure.
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Proposition 3.5 Let m > 2. The number of balanced m-FEulerian trees having d; white vertices of degree

mi fori>1 s J
1 [(m - 1)n] mi —1\*
m{m = 1)f [(m —D)n— f+2'Hd'(i—1) :

where n = id; and f =5 d;.

Proof. Let A denote the number given by Proposition 3.3. Then mA can be understood either as the
number of m-Eulerian trees having a single leaf distinguished, or, by planting the tree at this leaf, as the
number of balanced m-Eulerian trees having a black leaf distinguished. As an m-Eulerian tree having d;
white vertices of degree mi has (m — 1)n — f + 2 black leaves, the proposition follows.

]

Observe that the expressions given in Theorem 2.3 and Proposition 3.5 are identical: hence Theorem
2.3 will follow from Proposition 3.5 via a one-to-one correspondence between balanced Eulerian trees and
constellations.

4 The bijection between balanced Eulerian trees and constella-
tions

4.1 From trees to constellations: the transformation @

The transformation of a balanced Eulerian tree T into a constellation C = ®(T) is easy to describe.
Actually, most of the work has been done already. The construction is exemplified on Fig. 7.

We form a first planar map E; by adding edges between the matched leaves of T. We thus obtain
the dashed edges of Fig. 7a. Exactly m black leaves remain single. By construction, all of them lie in
the same face of E;; in what follows, we shall often consider E; as map on the plane (rather than on the
sphere) by taking the convention that the single leaves lie in the infinite face.

We add in the infinite face of E; an extra star, having a black center and m rays. Each ray ends with
a white leaf. We match these m white leaves with the m single vertices of the tree (dotted lines in Fig.
7a) in cyclic order to obtain a planar map. We mark the dotted edge that ends at the root of the tree.
We finally erase all leaves of the underlying tree T' and replace dashed and dotted lines by plain lines.
By construction, the map we have obtained is a rooted m-Eulerian map E. Taking the dual of E gives a
constellation C' which we define to be ®(T').

Observe that the Eulerian map associated with the tree of Fig. 7 is the map of Fig. 5 and that its
dual is the constellation of Fig. 1.

(b)

Figure 7: From a balanced 3-Eulerian tree to a 3-Eulerian map.

We wish to prove that the transformation @ is a bijection between balanced m-Eulerian trees and
m-constellations. What can the reverse bijection be? Imagine we start with a rooted m-constellation

104



C (or its dual map E, which is m-Eulerian) and try to construct the corresponding m-Eulerian tree T.
What we need to do is select — in a clever way — a set S of edges of E, add two vertices on each of them in
such a way the resulting map remains bicolored, and then delete the part of the edge that links these two
vertices; this must yield two connected components: an m-star and a balanced m-Eulerian tree. Thus,
the central difficulty of the reverse bijection consists in describing the set S of edges of E we need to
open.

Let us consider again the Eulerian map of Fig. 7b. Looking at Fig. 7a tells us what the set S has to
be. Let us draw the set of dual edges, denoted S’ (Fig. 8, thick lines). We observe that S’ is formed of
the root m-gon of the constellation C, on which m trees, denoted T1,..., T,, are planted. These m trees
cover all vertices of C. We shall see that this is a general phenomenon: describing the reverse bijection of
& boils down to defining a certain covering forest of a constellation, which will be called its rank forest.

..‘-....-)(-......

Figure 8: The dual edges of the dashed and dotted edges of Fig. 7a.

4.2 From constellations to trees: the transformation ¥

Let C be a rooted constellation; let us draw it on the plane in such a way the infinite face is the root
m-gon. Let C be obtained by orienting the edges of C in clockwise direction around white faces. We
define the rank r(v) of a vertex v as the length of the shortest (oriented) path of C going from a vertex
of the root m-gon to v (Fig. 9). The rank of v should not be mixed up with its label £(v) € {1,2,...,m},
given by the canonical labelling defined in Section 2. The following lemma tells us how to construct the
rank forest of a constellation. The principle is simple: we start from the root m-gon and proceed by
breadth first search, from right to left. The reader is advised to practice on the example of Fig. 9.

Lemma 4.1 Let C be a rooted constellation. There exists a unique covering forest F of C, consisting of
m trees T,, 1 < a < m, respectively planted at the vertez labelled a of the root polygon, that satisfies the
following four properties.

1. The orientation of edges of F induced by the trees T, (from the roots to the leaves) coincides with their
orientation in the oriented map C.

2. The rank increases by one along each edge of F. In other words, the depth of a vertex of T, is given
by its rank.

Let u be a vertez of C. Properties 1 and 2 imply that u belongs to T,, where a = £(u) — r(u) mod m.

3. Assume r(u) > 0. All the vertices of label £(u) —1 and rank r(u) — 1 occur in the same tree T,, where
a = £(u) — r(u) mod m. If we visit them in ri-prefiz order, the first one that is adjacent to u is the
father of u in Ty.

4. Let v be the father of u in T,. Let e be the edge of T, that links v to its father. If we visit the edges
of C adjacent to v in clockwise order, starting from e, the first one that ends at u belongs to T,.
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This covering forest will be called the rank forest of C.

Proof. We construct F inductively, adding at step k all vertices of rank k (Fig. 9). At step 0, for
1 < a < m, the tree T, is reduced to the vertex labelled a that belongs to the root polygon. We plant 7T,
by attaching to this vertex a short extra edge that lies in the infinite face of C.

Assume that, after step k, the forest we have obtained is not yet covering C. Let u be a vertex of
rank k + 1. All vertices of rank k and label £(u) — 1 belong to the same tree 7,. We choose the father v
of u according to Property (3) of our lemma, and the edge of T, Joining v to u according to Property (4).

|

s

Figure 9: A rooted 3-constellation: the ranks of the vertices and the rank forest.

Once the rank forest of C' is constructed, the Eulerian tree ¥ (C) is easy to obtain. Let S’ be the set
of edges of C that belong either to the rank forest, or to the root m-gon. Let F be the dual map of C,
and S be the dual set of S’. On each edge e of S, we add two vertices in such a way the resulting map
remains bicolored; we then delete the part of e that links these two vertices. We claim that this provides
an m-star and a balanced m-Eulerian tree, which we plant by the root edge of E.

Example. Starting from the constellation of Fig. 9, we obtain the tree of Fig. 7a.

The two constructions ® and ¥ we have described achieve our main ob jective: giving a one-to-one
correspondence between balanced m-Eulerian trees and m-Eulerian maps.

Theorem 4.2 The transformation ® is a bijection from balanced m-Eulerian trees to m-constellations.
The reverse bijection is ¥. Moreover, if ®(T) = C and T has d; white vertices of degree mi, then C has

d; white faces of degree mi.
This result is far from immediate. Its proof is given in [1].

Our bijection illustrates a general idea that is developed in (17]: natural families of rooted planar maps
are canonical representatives of conjugacy classes of planted plane trees. Here, we say that two trees are
conjugated if one is obtained from the other by changing the root. This implies that conjugacy classes
are simply plane trees, but the terminology originates in the analogy with words. Indeed, conjugating a
tree results in conjugating the word obtained by a prefix ordering of its leaves, so that Proposition 3.5
can be seen as an application of Raney’s theorem. The motto of [17] could then be stated: if applying
Raney’s theorem to words yields trees, applying it to planted trees yields maps. Besides constellations,
planar maps, Eulerian planar maps, nonseparable planar maps and cubic nonseparable maps can indeed
be obtained from suitable balanced trees by some matching procedure very similar to ®.

Aknowledgements. We are grateful to Alexander Zvonkin who introduced us to constellations via his
exciting talks and many interesting discussions.
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