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Abstract

We show how the problem of non-intersecting lattice paths on the directed square lattice
can be formulated as diiference equations. The difference equations are encoded by the
action of various "transfer matrices". We state several theorems that demonstrate how the
coordinate Bethe Ansatz for the eigenvectors of the transfer matrices, given certain conditions
hold, is equivalent to the Gessel-Viennot determinant for the number of configurations of AT
non-intersectmg lattice paths on the directed square lattice. Another way of viewing this
result is that it is a linear algebra proof of the GesseI-Viennot theorem for the particular
case considered in this paper. This is significant as the Bethe Ansatz is potentially capable
of solving various lattice paths problems, such as osculating lattice paths, which are beyond
the scope of the Gessel-Viennot theorem.

email: br&kOmaths. au. oz. au, j . essamavms. rlibnc. ac.uk, aleksSms. unimelb. edu. au

108



1 Introduction

Non-intersecting paths have been extensively studied in various contexts [1, 2, 3, 4, 5, 6], ciil-
minating in the Gessel-Viennot theorem [7, 8]. All these studies express the number of config-
urations as the value of a determinant. Non-mtersecting paths arise in another context, that
of vertex models in statistical mechanics [9], where it was noticed [10, 6], that if the vertices
of the "sbc-vertex" model are drawn in a particular way they could be interpreted as lattice
paths. If one of the vertices had weight zero, giving a five-vertex model, the resulting paths
were non-intersecting. The vertex models are traditionally solved by expressing the partition
function (a generating function) in terms of transfer matrices. The partition function is then
evaluated by either of two very powerful techniques, that of commuting transfer matrices [11]
or by direct diagonalisation of the transfer matrices iising the coordinate Bethe Ansatz [12, 13].

In this paper we will show that the Bethe Ansatz and the Gessel-Viennot Theorem are
equivalent so long as the eigenvectors of the N = 1 path transfer matrbc span its row (or
column) space.

The connection between the two methods is potentially significant as preliminary work on

osculating lattice paths and their relation to alternatmg sign matrices [14] has shown that the
Bethe Ansatz has the potential to solve lattice paths problems which are beyond the scope of
the Gessel-Viennot theorem.

Definitions and Notation The <5 be a square lattice rotated 45° directed in the North-
East and South-East directions. Label the vertices of S with orthogonal coordinates (a;, y). A
N-veitex. is an N-tuple of distinct vertices of S all of which have the same x coordinate. If
yi = (yl,... , y]v) and y/ = (y(, --- , y^) are N-vertices of <?, a A^-path from y! to y/ is a
N-tuple a; = (a?i,... , 0?^) such that wi is a path from y^ to y^. The TV-path is non-intersecting
if the paths a>a are vertex disjoint. Assign a weight to every edge of <S and a weight to each of
the vertices of the JV-vertex yi. We define the weight, w(a;a) of a path ̂ a as the product of the
weights of its edges and the weight of the initial vertex. The weight W(u>) of the N-patb. is the
product of the weights of its components.

We shall only coiisider the following special case of edge weights: the weights of all edges of
S above the line y = L> 0, and below the line y = 0 are set to zero. This restricts the paths
to a strip of width L - see figure 1. By controlling the width of the strip we can still obtain
paths in the half plane and full plane. Let ̂ ^ be the set of all non-intersecting N-psbbs with
non-zero weights from y' to y^. Note, all the paths are necessarily the same length, say t. We
are interested in computing the the strip generating function

=^"
^(y^y/)= E ^a;)

a,en^
(1. 1)

Note, the double bar above the Z denotes the strip.
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We require the following sub-domains of l.N

SL={y\'i^y<L, yeZandy odd},
SL={y\0^y^L, yeZandy even},
SL={y\0<y<L, y^Z},
UL={(yi,... , yN )\'i<yi<... <yN <L, y,  <?£}
UL={(yi,... , yN )\0<yi<... <yN ^L, yi^SL}

UL={(y-i,... , yN )\0<yi<-.. <yN <L, V^SL}

(1. 2a)
(1. 2b)
(1. 2c)
(1. 2d)
(1. 2e)
(1. 2f)

We will use UL to denote UL or UL- We will only consider the case that L is odd so that
UL \=\ UL \= {s N ). (If ̂  is even a null space enters the subsequent analysis of the

transfer matrices leading to a distractmg complication.)

0123 4 5 678 9 1011 12 13 14
m

Figure 1: Three non-intersecting paths of length t = 14 ina strip of width L = 9.
The variables x, y^ and yfa shown. The path closest to the lower "wall" has weight
v(l)w(l, 2)w(2, 3)w(3, 2)... w(l, 0)w(0, 1).

=^
We will show that Zf (yi -^y/), is given by the following Gessel-Viennot determinant:

^(yz-^y/)=

Z[{y{-^y() Z't(y[-^y^ ... Z^(y{-^yf^
Zt(y^y() Zt[y^yi) ... Zt(y^yf^

=5 =5 =5
Zt(yN ^y() Zt(yN ^y^) ... Zt(yN ^yfN)

(1. 3)
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=5
where single path the generating function, Zf Wj-^Vk) is defined as

=s
^(yl ^y/)= E w(ct;)2-/

^ "1,
(1. 4)

Remark. Note, the detenninant (1. 3) can be obtained directly from the Gessel-Viennot the-
orem, however the point of this paper is that the same result can also be obtained from an
eigenvector Ansatz.

2 From Bethe Ansatz to deterininant

2. 1 Transfer matrix formulation
=-v

The generating function Z/ (y1 ->. y/) can be written as the matrbc element of a product of

"transfer matrices". The calculation of the generating function via the transfer matrices then
requires we diagonalise the matrices. We will show that if this can be done for the N = 1 case
then the JV-path problem is given by (1. 3). First we define the matrices and show how Zf can
be expressed in terms of the transfer matrices.

Definition 1. Lety  SL and y' G. SL- For A' = 1 the two one-step single path transfer matrices
are defined as

^ ^ I 0 if|y- y'l > 1
[ Ti) , =

'y-v' [w(y, y') i{\y-y'\=l
(2. 5a)

and

'oe
(Tl ). "..=

y',y

if|y'-y|>l
^w(y', y) i{\y-y'\=l.

(2. 5b)

where w(y, y') is the weight of the edge of S from (a;, y) to (x, y'}. The ̂ V-path transfer matrices
for N > 1 are sub-matrices of the direct product of the above N =1 matrices:

N

(Tjv)y, y' = ( (^) Tl
. i=l /y, y'

y ^Landy' ^ (2. 6a)

and

N

(Tjv)y', y =
eo

Ti y/ ^andye^
, !=! y',y

The two "two-step" transfer matrices are then defined as
e-e eo oe

Tjv = TN TN
o-o oe co

Tjv=TjvTjv.

(2. 6b)

(2. 7a)
(2. 7b)
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Remark.^(l) Note that only "nearest neighbour" steps are allowed in all cases, and that in
general (¥1)^^ ̂  (^1) , - since we are only considering L odd we have that ̂  and ^
are square matrices.

=^/"
The generating function Z/ (yt ^y/) of non-intersecting JV-paths of length ( in a strip is

related to z;_^y2 ->y) by recurrence, the coefficients of which are the elements of one of the

two one-step transfer matrices defined above. This relationship is given by the following lemma.
Lemma 1. For t > 0, the generating function Zf (y!-^-y/) is given by

=-v / . .,eo .
;y6^zt-l(y^y)(Tiv)y-y/ for Yf ̂ UL

(2. 8)
=M
Z't(yi-^yf)=

=A^
Ey ̂ zf-l(y!^y)(T7v)y, y/ for vf ̂ UL

and for t=0,

where

=M
^o(y^y/)=^., y/^(y!), (2. 9)

N

^yi)=n^), (2. 10)
a=l

and v{y^) is the weight of vertex (0, y^).

A simple proof of this Lemma can be constructed using induction on (.

Remarks. (1) The restriction of TN and TN to submatrices of the direct product eliminates
the possibility of two paths arriving at the same lattice vertex.

(2) The condition that the single path transfer matrbc with elements that vanish for \y'-y\ > 1
prevents the generation of configurations in which pairs of paths "cross" without without having
a lattice vertex in common. This the analogue of the non-crossing condition of the Gessel-
Viennot Theorem. This "non-crossing" condition is unnecessarily restrictive in the single path
case, but necessary for N > 1.

Corollary. For t=2r, r a positive integer,

^(yi) ((Te7v)r)^^ for yi^UL andyf^UL
^2r(y^y/)=

and for t==2r+l,

^2r+i(yl ^y/)=

V^(CTNY)^^ for y^UL andyf^UL
(2. 11a)

ny!)E^^((Te^r)^(^)^ for y^UL and yf ^

(v(yi)z^uA(OTN)r)y., y^N^f f°T yi^L andyfeUL
(2. 11b)
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2.2 From transfer matrices to deternunants

The theorems proven below show that the equivalence of the Bethe Aiisatz for the eigenvectors
of (2. 7), in the form of equation (2. 17) and the result of the Gessel-Viennot Theorem in the form
(2. 33) rests on showing that for any given set of weights that the resulting one path eigenvectors
(conditions of Lemma 2) span the row (or column) space of the corresponding two-step traiisfer
matrix.

In particular, the first theorem states the conditions imder which the Ar-path transfer ma-
trices can be diagonalised: the major condition is that the one-path transfer matrices can be
diagonaJised - see Lemma 2. The second theorem states that if the Bethe Ansatz gives a
complete set of eigenvectors for the N-p&tb. problem for N > 1, then the N-p&th generating
function is a determinant of one-path generating functions.

Leinina 2.

(a) Let Ti and Ti &e defined by (2. 7) f/ien if there exist vectors <P^ and <P^ such that

TI^=AA^ and TiV^ = \k ^ (2. 12)
o _ e _ o-o e-e

then V^ and V^ are right eigenvectors of Ti and Ti respectively with eigenvalue X^.

(b) Let {y^fceKi o-nd {f^}k^K. -i, where /Ci is some index set, be maximal sets of independent
vectors satisfying (2. 12). If these sets span the respective column spaces (in which case they

e-e o-o . o . _ e

are said to be complete) of Ti ind Ti, then corresponding sets {V^}k^K. i and {V^k^K-i
of row vectors may be found such that

p^r- fe = ^, ^' and E ̂ W h^y'} = Sy,y-
fc /Ci

(2. 13)

for each p   {e, o}, where the * denotes complex conjugation.

(c) Let {^}fc6K, o.nd {^}fcejCi satisfy (2. 13) f/ien
°r oe , er . e, eo . °
^ Ti= AA ̂  and ^ Tx= AA <i^ (2. 14)

and also V^ and y^ are /e/t eigenvectors o/Ti an^ Ti respectively with eigenvalue Aj.

The proof of the lemma is elementary linear algebra and we omit it.

Remark. Notice that if Aj;; is a solution of (2. 12) then so is -\k with vector y^ replaced by
- y^-. These vectors are clearly not independent and normally sufficient independent vectors to
form a spanning set are obtamed by taking only the positive values of \k.

Remark. The reader should observe that /Ci is a set of cardinality [L + 1)/2.

From the above left and right one-path vectors we now construct the N-path vectors and
0-0

hence eigenvectors of TN and Tjv.
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e-e o'o

Theorem 1. Let TN and TN, N > 1, be given by equations (2. 7). By imposing an arbitrary
ordering on the elements ofK,\ define

K^N = {k = (A;i, A;2,.. . kN}\ki   K.^ and ki <k^ <... < kN} (2. 15)

and

N

AR^HA^. (2. 16)
a=l

(a) If for C   {L, R} and p   {e, o}, {V^}ksKi satisfy the conditions of Lemma 2 then the
vectors {$^}k JCjv given by the Bethe Ansatz,

fey) = E ̂  II ̂ (ya) = E e- H ̂ ^) y ^' (2. 17)
o-SPjv ct=l <r Pjv a=l

satisfy
oe e
Tjv ̂  =Ak ̂  and TN ̂  = Ak $^. (2. 18)

co oe

where PN is the set of permutations o/{1, 2,..., AT}.
(b) Moreover Lemma 2 holds with Ti and Ti replaced by TN and IN, JCi replaced by K. N, and
\k replaced by Aic.

Reinark. Note, if further neighbour steps are allowed then the crossing condition would be
violated and in general, it is not possible to use the Bethe Aiisatz to obtain a complete set of
eigenvectors.

The proofs of part of this theorem and Theorem 2 require the following result.

Proposition 1. For k   /Cjv o,nd y ^UL let
N N

$k(y) = S e<, J] ̂  (ya) a"^ ^k(y) = S ̂  I] ̂ , (ya).
o-ePjv a=l o- P^r a=l

(2. 19)

Also let
N

/(k) = U /(&,) (2. 20)

then

a=l

N

^ /(k)$k(y)^k(y/) - E ̂ H I E /(^)^(ya)^J^)
ke/Cjv ae. P/r a=l \fca£/Ci

(2. 21)

and

N

E ^k(y)^k'(y)= E e. n | ^ ^(y. )^(ya)
Y^-UL

2-^
o-ePw a=i \,, _c.?.

1^0

(2. 22)
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Proof.

^ /(k)$k(y)^(y/) = $; £. E E ^H/(fca)^(y. )^(ya) (2. 23)
ke^Cjv V^-PN ke/CNTe^N- a=i

N

= E e^' E E n/(^)^(y")^(y^) (2. 24)
O-' PAT ke/c^TeP^a=i

The double sum over permutations, r and k   /Cjv is equivalent to summing each ka indepen-
dently over /Ci (terms for which two or more components of k are equal make zero contribution)
and the first result follows. The second result follows in the same way by interchanging the roles
of k and y. D

Proof, {of Theorem 1) (a) We first obtain the cyclic property (2. 18) as follows.
N

'y,y'AA
N

(¥^R), =E £-(^LlI<te)
y' Kri, o-ePjv a=l

=E'.E
a PN y' U^=l

n(¥l)^.., -^(ya) (using (2-6))

=E
o-ePjv

E(¥0.,,,. ^(.i)
j/'i^SL

yi,y'i s. (¥'),.,. » ^. (!'-)
iy'if^SL

(2. 25a)

(2. 25b)

(2.25c)

= Ee- [x^ ^ (y1 )] . - . [x^ ^ (^)] (using (2-12)) (2-25d)
T^PN

= Ak &(y) (2.25e)

The critical step, and the whole reason for introducing the Bethe Ansatz, is to enable one to go
from the restricted sums of (2.25b) to the unrestricted sums in (2.25c). This is justified for two
reasons,

1. since $^(y ) is a determinant, if any of the ya's are equal then $^ = 0 - this allows the
restriction y[ <y'^... <y'^ on. the smn to be relaxed to y[ .^y'^... ^y'^

2. the Va are in strictly mcreasing order combined with the fact that the matrbc elements of
Ti, are only non-zero if |ya -yal ^ 1 (^he "non-crossing" condition) allows the restriction
on the sum to be removed altogether.

The second part of (2. 18) follows mutatis mutandis.
Also, ^ is a right eigenvector of TN with eigenvalue A^, since

e-e e^ co oe e
TN^ = TNTN $£ = T^Ak $£ = Ak ^

which follows from (2. 18). Similarly $^ is a right eigenvector of Tjv with eigenvalue A^ which
completes (a).
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(b) First consider orthogonality and normalisation. Using (2. 22), for k, kf   K.N

E &*(y) fe(y)= E e-n I E ^:(^) ̂ .J^)
ye^ aepN a=l\v^S.

N

= E ̂ n^,^ (usins (2-i3))
o-GPjv a=l
N

= n ska, k'^
a=l

since the components of k and k/ are in the same order only the identity permutation gives a
non-zero delta function product. Thus

^. ^=^k, k'. (2. 26)

Our derivation of the "completeness condition" closely parallels the previous derivation but
usmg(2.21). Fory, y' ZY£

N

E ^(y) ̂ (y/) = E e-H I E ^. (^) ̂ :(^) ]
k /Cw o-ePjv a=l \fea£/Ci

N

= ^ ^Jjj^, ^ (using (2. 13))
a'e.Pn a^l
N

= n 8v»,^
0=1

so

E fe(y)&*(y')=^,y (2. 27)
k /Cjv

Notice that \KN\ = (2 jy ) which is the row (and column) space dimension, as it should be for
completeness.
Using basic linear algebra gives

and

o, oe e.
^TN =$£Ak

$£ TN=^I

el eo °,
^TN =$£Ak

0, 0-0 0,$£ TN=^I

Leninia 3. If the conditions of Theorem 1 hold then

K(yi^yf)=v(yi)^ fey'X^(y/) yi^ULand yf  UL
ke/Cjv

where if t is even, p =p but otherwise p and p' are of opposite parity.

(2. 28)

(2. 29)

D

(2. 30)
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Proof. If the conditions of Theorem 1 hold then equation (2. 13) implies (2. 26), (2. 27), (2. 28)
and (2. 29) are valid. Using (2. 28) and (2. 27) it follows that

(^)y, y = E A>- ̂ (y) &*(y') and (eTN^' = E Ak ̂ (y) ̂ ^- (2-31)
keKif ke/Cw

Also, using (2. 29) and (2. 27) it follows that

(Te^)y, y- = E A^ i£(y) ̂ (y') a^d (T^)y, y- = E A^ ̂ ^) ̂ ^')- (2-32)
ke/Cjv k /Cjv

Substituting these into (2. 11) and using (2. 26) gives the result immediately.

Theorem 2. If the conditions of Theorem 1 hold then
=M . . =5. ,
Zt (y'^y^) =det||Z( (ya^y^)llQ, /3=i...^-

Proof. Usmg (2. 10), (2. 21) and (2. 30) (which follows from (2. 13) by Lemma 3)

^(y^y/)= ^ ^f[ (^) ^ A^^(^)^:(^)1
0-ePjV Ct=l \ <Ea£/Cl

= E^n^^-^^)-
o-ePjv o:=i

which is an expansion of the required determinant.

2.3 One wall and no wall geometries

D

(2. 33)

(2. 34)

a

=5 .
', (yia-When L sufficiently large the path closest to the wall a.t y = L cannot touch it and so Zf (Va

y^) become the generating function for paths that are affected by only one wall Zf(y^-)-y^).
Hence taking the limit L ̂ - oo gives the corollary,

Corollary. For yi  UL and yf ^UL, the N-path generating function with only one wall at
height y=0 is given by,

^(y!->y/) = \\zf(y^y^\\a, 0=i... N. (2. 35)

If we also condition the path closest to the wall a.t y =0 so that it cannot touch that wall
we will end up with the "no boundary" results.
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