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Suminary

We introduce a family of subspace arrangements in K" called the k-consecutive
arrangements. They are associated with certain Coxeter groups and related to the
fe-equal arrangements. For example, in the type A case the subspaces are those of the
form

a;, =a;,+i = ... =a:t+fc-i, l<, i<, n-k+l.

We study the intersection lattices of these arrangements and show how the methods
of NBB bases and of fiinite fields can be used to combinatorially explain their Mobius
functions and characteristic polynomials, respectively.

Resunae

Nous definissons une famile d'arrangements des sousespaces en E" que nous ap-
pelons les arrangements k-consecutifs. Ils sont associes aux groupes de Coxeter et
relies aux arrangements fe-egals. Par exemple, dans Ie cas de type A, nous avons les
sousespaces de la forme

Xi=Xi+i= ...=Xi+k--i, l<, i<n-k+l.

Nous etudions les treillis d'intersection de ces arrangements et nous demontrons com-
ment les methodes des bases NBB et des champs fiois peuvent expliquer dans une
maniere combinatoire leurs fonctions Mobius et polynomes caracteristiques, respec-
tivement.

1 Introduction

The Jfc-equal subspace arrangements of type A were introduced by Bjorner, Lovasz and Yao [4, 5]
motivated by a problem in computational complexity. Computing the Mobius function of the
intersection lattice was crucial for obtaining a lower bound on the complexity. Since then there
has been a flurry of activity studying these arrangements and their analogs for the other infinite
families of Coxeter groups [6, 7, 9, 14, 22, 23].

The purpose of this paper is to introduce a new family of subspace arrangements, the k-
consecutive arrangements, which are closely related to the fc-equal ones. Their intersection lattices
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are also interesting from a combinatorial standpoint. We show how the theory of NBB bases
developed by Blass and Sagan [10] can be used to combinatorially explain the associated Mobius
functions. The finite field method of Athanasiadis [1] is used to compute the characteristic
polynomials.

The rest of this work is organized as follows. In Sections 2, 3, and 4 we discuss the coordinate,
type A, and type B cases, respectively (type D is similaj to the last). We consider the related
fe-circulaj arrangements in Section 5. Finally we end with some comments and open problems.

But &st let us review some basic definitions that will be needed in the sequel. By an ar-
rangement we will mean a finite set

A={K,, K^,..., K^}
of linear subspaces of R" . The corresponding intersection lattice is the set

L{A) ={X } X isan intersection of some of the Ki}

partially ordered by reverse containment, i.e., X <, Y if and only if X 3 Y. So L(A) has as
unique minimal element M" and as unique maximal element H^Ki. In an arbitrary finite lattice,
L, these two elements are denoted 0 and 1, respectively. Furthermore let V stand for the join
(least upper bound) operation and A stand for the meet (greatest lower bound) in L. We will
also be interested in the atom set of L, A = A(£), which consists of all elements covering 0. Note
that the Latin letter A is used for the atom set while a script A is used for an arrangement. In
the case L = I'(A), the atoms are just the subspaces if there are no containments among them.

Associated with any partially ordered set P having a 0 is its Mobius function, ̂  : ?->. Z,
defined recursively by

^^(y)=^,o (1)
y<x

where 6^y is the Kronecker delta. If P also has a 1 we will often write /x(P) for ju(l). For
the intersection lattice of an arrangement we also have the characteristic polynomial which is a
polynomial in t given by

x(A, t)= ^ ^X)tdimx.
X&L(A)

More about arrangements can be found in the book of Oriik and Terao [15] or the article
of Bjorner [3]. Good sources for general information about Mobius functions and characteristic
polynomials are Stanley's text [21] or Sagan's paper [19].

2 The coordinate case

Let Z>o denote the set of nonnegative integers. For i, j, n   Z>o we will use the notation

[n]={l, 2,..., n} and [i, j}= {i, i+l,. .., j}.
Define the k-consecutive coordinate arrangement, JCn-. k, to be the set of all subspaces in R"

of the form
Xi = Xi+l = ... = Xi+k-l =0, l<, i<:n-k+l.

It is easy to see that the intersection lattice L{fCn:k) is isomorphic to the poset Bn:k generated
by taking joins of mtervals

[i, i+k-l], l<, i<, n-k+1.
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[1, 4]

[1, 3]

[1, 3] [3, 5]

(55:3, ^)
Figure 1: 5g:3 and a partial order on its atoms

[2, 4]
(A . 3), <)

in the Boolean algebra of subsets of [n\, where a subset corresponds to the set of indices of
.ronables set equafto zero. As an example, we have drawn the Hasse diagram of Bs-. y on the left
in Figure 1.

G'reene [13] first calculated the Mobius function of the Bn:fc using ̂ gebraic techniques.
will show how ̂  can be derived combinatorially by using the theory of NBB bases [l^, _which
we now review. This is an extension to an arbitrary lattice of the concept of an NBC base
in a geometric one [18]. In fact part of the motivation for this generalization was the current
interest in subspace'arrangements which, unUke arrangements of hyperplanes, can fall to have
£(A) geometric. . _,...,...,

Given a lattice (L, <,), put an arbitrary partial order < on the atoms A(L). Note that $
be the partial order mL while < wUl be the one in A(£). The latter can be anything from the
total incomparability order induced by ̂  to a total order as would be used in the NEC case. We
say that D C A(L) is bounded below (BB) if, for every d   D there is an a   A(£) such that

1. a < d, and

2. a<V-D-
By way of illustration, let us go back to ̂ 5:3 and put the partial order shown in Figure 1

on A(B5:3). From the first condition of this definition, it is clear that if D contains a minimal
element of < then it can not be BB. Also from the second requirement we see that if \D\ <, 1
then again D is not BB. So in our example, the only possible BB set is D = {[1, 3], [3, 5]}. It is
easy to verify that it is indeed BB since

1. [2, 4]<l[l, 3], [2, 4]<[3, 5], and

2. [2, 4] < [1, 3] V [2, 4] =[5].
Now say that B C A(L) is an NBB base ofx ̂ Lif\/B =x a,nd B does not contain any D

which is BB. The main result about NBB bases is as follows.

Theorem 2. 1 ([10]) Let L be any finite lattice and let < be any partial order on A(L). Then
for allx  . L

^) = ^(-l)lsl
B

where the sum is over all NBB bases B of x. .
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Oi 03 04 Ofc+i Ofe+2 fflfc+4 Ofc+5 02fc+2

02 Ok+S

Figure 2: The order < for Bn..k

Returning again to our example, we see that /i([l, 4j) = (-1)2 = 1 since [1, 4] has exactly one
NBB base, namely {[1, 3], [2, 4]}. However ,^([5]) = 0 since [5] has no NBB bases: If B were such
a base then we would have to have [1, 3]   B since this is the only atom containing the element
1. DuaUy we are forced to have [3, 5]   B and so B must contain our forbidden BB set. It is
easy to verify that these {JL values are correct directly from the definition (1).

Proposition 2.2 ([13]) In Bn-.k we have

1 t/n=0 (modfc+1),
ju([n]) == ̂  -1 ifn=-l (mod fc + 1),

0 else.

Proof. Let the atoms of Bn:k be ai,..., On-k+i where ai=[i, i+k-l}. Define < as in Figure 2.
Let B be an NBB base of [n] if it exists. Then ai   B since ai is the only atom containing

1. So none of 03,.. -, ak+i is in B since any of these atoms forms a BB set with ai. The only
available atom remaining which contains fe+ 1 is 02, forcing 02 6 B. Iterating this argument we
find that if B exists then it must be unique and

B = {ai, a2, ak+2, CLk+3, ---}-

Ifn s 0 or - 1 (mod k + 1) then \/ B == [n] so we have a base of even or odd cardinality,
respectively. Otherwise On-k+i ̂  B and since this is the only atom containing n, B does not
join to [n]. .

We will now use the finite field method to calculate the characteristic polynomial x(K^'n:kit).
This was not considered by Greene or others studying Bn..k S L(ICn:k) because the poset is not
ranked and so one needs to consider it as an intersection lattice to obtain the necessary powers
off.

The finite field method was developed by Athanasiadis [1] in an effort to generalize a theorem
of Blass and Sagan [11]. In fact, it is based on an older result of Crapo and Rota [12] which
was also rediscovered by Terao [24], but Athanasiadis was the first one to realize the theorem's
power and apply it systematically. The basic idea is that one considers ̂ 4 as an arrangement in
the vector space ¥^, where Fp is the Galois field with p elements and p is a large prime. Then to
evaluate \(A, t) att=p one just counts the points of ¥^ that are not contained in any subspace
of A. For the precise statement of the result, let | . | denote cardinality.

Theorem 2.3 ([1, 12, 24]) If A is a subspace arrangement in R" defined over Z and hence
over Fp, then for large enough primes p

X(^P}=\^\[JA\. »
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Figure 3: The arrangement jBg in IF|

For example, consider the B-i Coxeter arrangement which consists of the hyperplanes

B-2 = {Xl = 0, Z2 = 0, Xl = 3:2, Xl = -X^}.

Viewing % as an arrangement in ]F|, where we use F5 = {-2, -1, 0, 1, 2}, we get the picture in
Figure 3. So, by inspection, the number of points on none of the hyperplanes is |IFi \ IJ^I = 8.
On the other hand, it is well known that ̂ (B2, t) = (t-l)(t-3). So ̂ (52, 5) = 4-2 ̂ 8, agreeing
with the previous count.

To apply the method to our current situation we need to define some constants related to the
bmomial coefficients, namely

:=# of S C [n], \S\ =i, iiok consecutive.
. VA

For example, (^2 = 4 counting
{1, 3, 5}; {1, 3, 6}; {1, 4, 6}; {2, 4, 6}.

Proposition 2.4 The characteristic polynomial of K.n-.k is

X(/C^, *)=EQ (<-!)"-'. (2)
Furthermore, we have the divisibility relation

(t-l)L"AJ [^n:t, t). (3)

Proof. Let p be a sufficiently large prime and consider a point (a;i, a:2,... , a;n)   1F^ \ |j }^n:k- If
i of the coordinates are to be zero, there are (^)^ ways to pick them. Then the remaining n - i
nonzero coordinates can be chosen in a total of (p - l)n-t ways. Summing on i, we see that
equation (2) holds for an infinite number of values t=p and so must be true for general t.

A largest subset of [n] with no k consecutive is

[n]\{fc, 2fc, 3fe,... }.

So (^) =0i!n-i < \n/k\. Plugging this into the characteristic polynomial gives (3). .

3 The type A case
Define the k-consecutive arrangement of type A, An-. k, to be all subspaces of R" of the form

2;, =a;,+i =... =a;i+fc-i, l^i<, n-k+l.
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1+1+1+1+1+1

Figure 4: The lattice C'e:4

The intersection lattice L(An:k) is isomorphic to the poset Cn:k generated by taking joins of
compositions (ordered partitions)

fc4-l+---+l, l+A;+l+---+l,..., l+---+l+fe.

in the poset of all compositions of n ordered by refinement. As an example, we have drawn Ce-A
in Figure 4. The reader will note a resemblance to Bs-.s. This is not an accident as we will now
see.

Define a lattice
B^={[n]\S : SeBn.. k}

where the elements are ordered by reverse inclusion. So B^ is just a relabeling of Bn:k with
relabeling isomorphism a: Bn-.k -> B^.k where

a{S)=[n]\S.
If 5 C [n] then we write S = {ni,... ,TI(}< to mean that the elements of S are listed in increasing
order. Now define 0 : B^ -> Cn+i-.k+i by

/3({ni,..., n(}<) =ci +C2+---+Q+i

where c; = n, - n,_i and by definition no = 0, n;+i = n + 1. It is easy to check that /3 is also a
well-defined lattice isomorphism. So by composing these two maps

C'n+l:fc+l ^ 5^:k.

Because of this isomorphism we can immediately write down the Mobius function and char-
acteristic polynomial of L{An:k)-

Proposition 3. 1 The MSbius function of Cn-.k is

1 ifn=l (mod fe),
^(n) = ^ -1 ifn=. Q (mod fe),

0 else.

The characteristic polynomial of An:k is

X(^n:fc, t)=^(/Cn-l:k-l, t)=Efn 7 ) t(t-l}n-i-1. .
~^ \ l /fc-l
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Using the definition of An:k permits us to write down another expression for ̂ , this time in
terms of the falling factorial basis for the polynomial algebra. We will use the notation

(f), :=t(t-l)(t-2)... (f-t+l).
We also need to define a deformation of the Stirling numbers of the second kind parallel to the
ones considered for the binomial coefficients. In particular, let

Sk (n : Q := # of partitions Bi/... /B, of [n] with
no Bj containing k consecutive integers.

For example, 5's(4: 2) = 5 counting

1, 2/3, 4; 1, 3/2, 4; 1, 4/2, 3; 1, 2, 4/3; 1, 3, 4/2.
Proposition 3.2 The characteristic polynomial of An:k can be written

x(^n:k, t)=^Sk(n:i){t)i.
I

Proof. Let p » 0. Any x   B^ \U-4":fc has » different coordinates for some i, l<:i < n. There
are (p), ways to pick the values to be used and Sk(n : i) ways to distribute these values among
the coordinates. .

Note that Sk(n :i) > Ofoi 1 <i <:n sono nice divisibility relation can be derived.

4 The type B case
The k-consecutive arrangements of type B, Bn-. k-, consist of all possible subspaces of the form

Xj =0, 1 <J < n, and
eiXi = c,+ia;,+i = ... = et+fc_ia;, +fc-i, l<, i<, n-k+l.

where  j = ±1 for all j. Using the finite field method, we can obtain the generating function for
the corresponding characteristic polynomials.
Proposition 4. 1 For fixed k we have the generating function

"_ «-l)a:(l-2^^-1) ^
^:A, t^ - i_2^ _ (^_ 3^(1 _ 2k-l2;A-l) .

n>l

This expression is too complicated to hope for a simple derivation of the Mobius function by
NBB means. However, when k = 2, the fraction simplifies and we can set t = 0 to obtain the
following result which also has an NBB proof.
CoroUary 4. 2 For n>, l we have

^5n=2) - (-l)"3n-1. -
As Bjorner and Sagan [6] have done in the fc-equal case, we can consider arrangements Bn:k:h

with subspaces

Xj = Xj+-i = .. . = 2;j+h-l =0, 1 ^j ^ n-/i+ 1, and
dXi = £t+ia;t+i = ... = ei+k-iXi+k-i , Ki<:n-k+l.

Then Bn-. k-. i = Bn:k and Bn-. k-. k is a fe-consecutive analog of type D. One can write down generating
functions like the one in Proposition 4.1 in this case as well.
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5 The ^-circular arrangements

Following a suggestion of Athanasiadis, we define the k-circular coordinate arrangement, fC^:k'
as all subspaces of K" of the form

X, = Xi+l =... = Xi+k-1 =0, Ki^n

where the subscripts are taken module n. Circular analogs for other types are defined in the
obvious way. Note that L^K,^) is isomorphic to the poset B^ generated by taking joins of
intervals

[i, i+k-l], l<, i<n
{i+k -1 taken module n) in the Boolean algebra of subsets of [n].

We can use our usual methods to prove the next result, as well as ones for the other types.

Proposition 5. 1 In B^, n>, k, we have

k ifn=0 (modk+1),
^W)-\ ':i e^.""^"""' "'

and
X(JC°n.. ^=E(n} (*-l)"-i'

~T v?^fc

where (^)^ is the number of S C [n], \S\ = i, with no k circularly consecutive. .

6 Comraents and open problems
I. Coefficients. The constants introduced as coeificients of the vcirious characteristic polynomials
have interesting properties. Consider, for example, the (^)^. Clearly (^)^ = (^) forO ̂ n < fc.
And for small k we have

= 6i, o (Kronecker),

<7^^ fn-i+V

{i}. = \ i }'
m \ fn-i

S-m-2] \ m43 m

- z + 2
m+2

+
m

z -m - 3

n-i+1

m+2

where the last expression is only true for t ^ 3 and does not have a closed form. We also have
the recursion like the one for ordinary binomial coefficients except for an extra term.

Proposition 6. 1 For n^fc ^ 1 we have

(?). +(B7-\-1). =("T1). -(:--0.
where {~^\ = 5,, o and {n^-=Q for i <Q or i> n>0. m
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There are also many unanswered questions about these coefficients. For example, if two of
the indices are held fixed and the third one varies, does one get a unimodal or even log concave
sequence?

'II. Topology and group actions. Let Sd be the sphere of dimension d and let
order complex of lattice L. Using non-pure lexicographic shellings, Bjoraer and Wachs proved
the following strengthening of Proposition 2. 2.

Theorem 6.2 ([8]) We have

A(C-^) ^
g2(n-l)/k-2

g2n/k-3
point

ifn=l (mod fc),
ifn=0 (mod fc),
else. .

A subset of an NBB base is NBB, so let NBB(£) be the simplicial complex of NBB bases of
al\ofx L, x^i. Segev has shown that there is a close relationship between the two complexes
under consideration.

Theorem 6.3 ([20]) There is a homotopy equivalence

A(£)^NBB(£). .

It would be interesting to derive Theorem 6. 2 from Theorem 6.3. This is non-trivial since the
NBB bases of L do not form a matroid. For example, it is not always the case that an NBB base
for some x can be extended to one for any y>. x.

Another approach for using NBB bases to obtain topological infonnation about A (£) would
be to try and generalize Bjomer's construction of a homology basis in a geometric lattice [2]. Let
L be geometric and let B = {ai,.. ., an} be an NBC base of 1. Associate with B an element of
A(£) defined by

PB= ^, (-l)'r(a^(l), aT (l)VT(2). ---^7T(l)V... Vn-(n-l))
wes»

where 6n is the symmetric group on [n] and (-l)7r is the sign of TT 6 6n. It is not hard to verify
directly from their definition that the PB are cycles. In fact these cycles can be used to compute
the homology of A(£) (with integer coefilcients).
Theorem 6.4 ([2]) Let L be a geometric lattice of rank n. Then the only non-vanishing homol-
ogy group o/A(Z) u in the top dimension, n-2, having as a homology basis

{pB : B an NBC base for 1}. .

It would be very useful to have an analog of this theorem for NBB bases.
Finally, in the case of the fe-circular arrangements there is an action of the cyclic group on

the subspaces and hence on the intersection lattice and its homology. Sundaram and Welker [23]
have studied the action of the symmetric group on the fe-equal arrangements. No doubt the
fc-drcular case will lead to interesting representations of the cyclic group.

References

[1] C. A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields,
Adv. in Math. 122 (1996), 193-233.

127



[2] A. Bjomer, On the homology of geometric lattices, Algebra Universalis 14 (1982), 107-128.

[3] A. Bjorner, Subspace arrangements, in "Proc. 1st European Congress Math. (Paris 1992),"
A. Joseph and R. Rentschler eds., Progress in Math., Vol. 122, Birkhauser, Boston, MA,
(1994), 321-370.

[4] A. Bjorner and L. Lovasz, Linear decision trees, subspace arrangements and Mobius func-
tions, J. Amer. Math. Soc. 7 (1994), 677-706.

[5] A. Bjorner, L. Lovasz and A. Yao, Linear decision trees: volume estimates and topological
bounds, in "Proc. 24th ACM Symp. on Theory of Computing," ACM Press, New York, NY,
1992, 170-177.

[6] A. Bjorner and B. E. Sagan, Subspace arrangements of type Bn and Dn, jac 5 (1996),
291-314.

[7] A. Bjorner and M. Wachs, Nonpure shellable complexes and posets I, Trans. Amer. Math.
Soc. 348 (1996), 1299-1327.

[8] A. Bjorner and M. Wachs, Nonpure shellable complexes and posets II, Trans. Amer. Math.
Soc. 349 (1997), 3945-3975.

[9] A. Bjorner and V. Welker, The homology of "fc-equal" manifolds and related partition lat-
tices, Adv. in Math. 110 (1995), 277-313.

[10] A. Blass and B. E. Sagan, Mobius functions of lattices, Adv. in Math. 127 (1997), 94-123.

[11] A. Blass and B. E. Sagan, Characteristic and Ehrhart polynomials, J. Algebraic Combin. 7
(1998), 115-126.

[12] H. Crapo and G. -C. Rota, "On the Foundations of Combinatorial Theory: Combinatorial
Geometries, " M. I.T. Press, Cambridge, MA, 1970.

[13] C. Greene, A class of lattices with Mobius function ±1, European J. Combin. 9 (1988),
225-240.

[14] S. Linusson, Partitions with restricted block sizes, Mobius functions and the fe-of-each prob-
lem, SIAM J. Discrete. Math. , to appear.

[15] P. Oriik and H. Terao, "Arrangements of Hyperplanes, " Grundlehren 300, Springer-Verlag,
New York, NY, 1992.

[16] A. Postnikov, "Enumeration in algebra and geometry, " Ph.D. thesis, M. I.T., Cambridge,
1997.

[17] A. Postnikov and R. P. Stanley, Deformatioas of Coxeter hyperplane arrangements, preprint.

[18] G.-C. Rota, On the foundations of combinatorial theory I. Theory of Mobius functions, Z.
Wahrscheinlichkeitstheorie 2 (1964), 340-368.

[19] B. E. Sagan, Why the chajacteristic polynomial factors, Bull. Amer. Math. Soc., accepted.

[20] Y. Segev, The simplicial complex of all NBB nonspanning subsets of the set of atoms of a
prelattice L is homotopic to the order complex of£, European J. Combin., to appear.

128



[21] R. P. Stanley, "Enumerative Combinatorics, Volume I," Cambridge University Press, Cam-
bridge, 1997.

[22] S. Sundaram and M. Wachs, The homology representations of the fc-equal partition lattice,
Trans. Amer. Math. Soc. 349 (1997) 935-954.

[23] S. Sundaram and V. Welker, Group actions on linear subspace arrangements and applications
to configuration spaces, Trans. Amer. Math. Soc. 349 (1997) 1389-1420.

[24] H. Terao, The Jacobians and the discriminants of finite reflection groups, Tohoku Math. J.
41 (1989), 237-247.

129


