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ABSTRACT. This paper relates the recent theory of discrete Morse
functions due to Fonnan [13] and combinatorial decompositions
such as shellability, which are known to have many useful appli-
cations within combinatorics. First, we present the basic aspects
of discrete Morse theory for regular cell complexes in terms of
the combinatorial structure of their face posets. We introduce the
notion of a generalized shelling of a regular cell complex and de-
scribe how to construct a discrete Morse function associated with
such a decomposition. An application of Forman's theory gives
us generalizations of known results about the homotopy proper-
ties of shellable complexes. We show that for simplicial complexes
constructing generalized shellings is equivalent to constructing dis-
crete Morse functions. We also discuss an application to a set of
complexes related to matroids.

1. INTRODUCTION

This paper will focus on a recent development in topology - namely
a discrete version of Morse theory developed by Forman [13] - and
relate it to combinatorial decompositions such as shellings and inter-
val partitions which have been studied extensively in combinatorics
[2]. The primary purpose of this paper is to present the basic ideas
of discrete Morse theory using combinatorial terminology and to show
that it provides a unifying framework for some problems of topolog-
ical combinatorics. We will discuss results and examples of discrete
Morse theory that are readily accessible given some familiarity with
the tools of topological combinatorics discussed in the survey [3j. We
refer the reader interested in further topological details of this theory
to Forman's paper [13].

One of the principal ideas of discrete Morse theory is to construct
for a given finite cell complex (which we will assume to be regular), a
"more efficient" cell-complex (which will not, in general, be regular),
while retaining topological properties of the original space as much
as possible. The construction of the more efficient complex depends
on the existence of discrete Morse functions on the original regular
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cell complex. We will show that for a given generalized shelling of
a regular cell complex there is a canonical discrete Morse function.
A simple application of Forman's theory gives us a generalization of
known results [6], [7] about the homotopy properties of shellable cell
complexes. We show that for the special case of simplicial complexes
constructing discrete Morse functions is, in a certain sense, equivalent
to constructing generalized shellings. We conclude with an application
to a class of complexes related to matroids. Further combinatorial
applications of discrete Morse theory can found in the recent papers
[I], [20] and [14].

2. PRELIMINARIES

We will assume familiarity with the notion of cell complexes [3],
which are traditionally called CW-complexes in standard algebraic
topology texts such as Munkres [19] and Massey[16], [17]. Throughout
the paper we will assume all such complexes to be finite. In a combina-
torial context, it is most natural to consider regular cell complexes since
with this additional property, the topology of the associated space is
completely determined by the face poset of closed cells ordered with re-
spect to containment. We refer the reader to [3] or [8] for further details
and terminology. Hence forth, without change of notation we will also
regard a regular cell-complex S as a poset, whose order and cover rela-
tion are denoted by ̂  and -<<; respectively, with >., <, >- etc. having the
obvious interpretations. For o- e S, let So- be the boundary subcomplex
of a and let a = {a} U 5o-. Recall that if S is a regular cell complex ,
o- is (homeomorphic to) the dima-b&ll while 6a is a (dima - l)-sphere.
The dimension of E is the number max{dima : o-   E}, and we will
say that E is pure if all its maxima! cells have the same dimension.
When the regular cell complex is a simplicial complex, we will refer to
its cells as its faces and its maxima! cells as facets.

The property of shellability has been classically been studied only in
the context of pure cell complexes and pure simplicial complexes. Re-
cently, Bjorner and Wachs [6j; [7] have undertaken a systematic study
ofshellability for general (non-pure) cell complexes and its applications.
We now present this definition of shellable complexes.

Definition. An ordering (7i, <72, . . . ; 0'm of the maxima! cells of a d-
dimensional regular cell complex S is a shelling if either c?= 0 or ifit
satisfies the following conditions:

. (Sl) There is an ordering of the maximal cells of do-i which is a
shelling.
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. (S2) For2^j^m, 6aj n (U^ Sa^) is pure and (dimaj - 1)-
dimensional

. (S3) For 2< j ^ m, there is an ordering of the maximal cells
of Say which is a shelling and further, the maximal cells of Saj H
(ud Sffk) appear first in this ordering.

A regular cell complex is said to be shellable if it admits a shelling.
In the general non-pure context, the following result is due to Bjorner
and Wachs [6], [7] and it describes the primary topological consequence
of shellability.

Theoreni 2. 1. If a regular cell complex E is shellable then it is homo-
topy equivalent to a wedge of spheres.

Next, we define an even more general decomposition property for
regular cell complexes which has a natural relation to the discrete Morse
theory of Forman.

Definition. An ordering (71, 0-2,... , o-m of distinct (not necessarily
maxima!) cells of a regular cell complex S is a generalized shelling if
satisfies the following two conditions and (Sl), (S2) and (S3):

. (Gl) E = um^ a^.

. (G2) If (Ji 6 8(jj then i<j.
Hence if o-i, <72,... , Om are maximal cells of E, then we get the def-

inition of Bjoraer and Wachs [6]. We will show later that there are
examples of complexes that are not shellable but admit non-trivial
generalized shellings that are, in some sense, canonical. We should
point out that this notion of generalized shelling is quite different from
one defined for posets by Kozlov in [15].

The next proposition relates the existence of generalized shellings in
simplicial complexes to interval-partitions and provides a non-recursive
definition for generalized shellings in this context. We omit the proof,
which is quite routine. Note that, as is traditional in combinatorial
literature, the empty set is also considered to be a ((-l)-dimensional)
face.

Proposition 2.2. Let 'E be a simplicial complex. Then for an ordered
subset Pi, F2,. .. -Fm of faces of S (/ie following are equivalent:

(i) Fi, F^,... Fm is a generalized shelling for E.
(ii) There exist faces G^G^,... Gm with Gi C F, such that the se-

guence {[Gi, Fi\, i = 1,... , m} of intervals, partitions E and further
U^[Gi, Fi\ is a simplicial complex for A; = 1, 2,... , m.

Following [9], we will refer to the ordered sequence of intervals {[(?,, Fi},i
1,... , m} as an S-partition of E.
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3. ELEMENTS OF DISCRETE MORSE THEORY

We will derive results for the homotopy type of complexes which
admit non-trivial generalized shellings by applying the theory of djs-
crete Morse functions developed by Forman [13]. We begin with the
definition of these functions.

'Definition. Given a (finite) regular cell complex S, ̂(discrete) Morse
funct'ion on S is a function f :'S ̂  R satisfying the following two
conditions for every cell o- of S :

. |{r-<a :/(r) ^/((T)}!^ 1. (Ml)

. \{u, >a:f^)^f{a)}\^l. (M2)
A convenient way to think about a Morse function is to regard it

as being "almost increasing" with respect to dimension. Clearly, any
function which is increasing with respect to dimension would be an
(uninteresting!) example of a discrete Morse function. Figure 1 shows
an example of a discrete Morse function on a 2-dimensional cell com-
plex. Note that this complex is not pure and it is not shellable in the
sense of Bjorner and Wachs.

3^

Figure 1. Example of a discrete Morse function

Definition. A p-dimensional cell o- of E is critical (with respect to a
fixed "Morse function /) if it satisfies each of the following conditions:

. |{r-< a: AT ) ^/(<7)}|= 0. (Cl)

. \{u>a:W^f{a)}\=0. {C2}
We will denote by C(/) - the set of critical cells of S with respect

to /. The reader can verify that in the example of Figure 1, there
are'exactly two critical cells for the given Morse function - the vertex
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labelled with 1 and the edge labelled with 6 which has both vertices
labelled with 5.

The following is one of the central theorems of discrete Morse theory.
Theorem 3. 1. 1. ^[13] Corollary 3. 5) Suppose E is regular cell com-

plex with a discrete Morse function. Then E is homotopy equiva-
lent to a cell complex with exactly one cell of dimension p for each
critical cell of S of dimension p.

2. (< [18] [13] Corollary 3. 7 ) "Weak Morse Equalities": Let ̂  be
the j 'th Betti number o/E with coefficients in some fixed field and
mj be the number ofj-dimensional critical cells, then (3j <, mj for
every j.

We will indicate later an outline of Forman's proof of statement (1)
of this theorem. If we take the dimension as a Morse function on any
complex, every cell would be critical and hence the above theorem tells
us nothing new. Hence, it is important to construct "efficient" Morse
functions (that have few critical points), especially in view of (2) of the
above theorem. For more details about both weak and strong Morse
inequalities, we refer the reader to [18] and [13]. Observe that applying
the above theorem to the example of Figure 1 shows that the complex
is homotopy equivalent to the circle.

We will now restate the basic concepts of discrete Morse theory in
graph-theoretic terms to emphasize the combinatorial nature of the
theory for regular cell complexes. The discrete vector fields discussed
in Forman's paper [13] and the work of Stanley [21] and Duval [12]
on decompositions of simplicial complexes have underlying ideas that
are similar in nature to what we will present. We begin with following
simple lemma of Forman.

Lemma 3. 2. If f is a Morse function on a regular cell complex E and
o- is any cell of S, then conditions (Cl) and (C2) cannot both be false
for a.

Proof. If possible, \etw > a> T satisfy /(^) ^ /(a) ^ /(r). Now let
Q; be a cell distinct from o- that also satisfies u > a> T. The existence
of such an a for a regular cell complex follows from the fact that Suj
is a sphere. Applying condition (Ml) to a> and (M2) to T, we have
/(a;) > /(a) > /(r) which leads to a contradiction. D

In particular, if a cell is not critical then it violates exactly one of (Cl)
and (C2). Now, we can regard the Hasse diagram of E as a directed
graph, which we call G'(E), with the edges being cover relations directed
from higher to lower dimensional cells. Clearly, G(E) is acyclic in the
directed sense. The above lemma implies that there exists a matching
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M(/) on the Hasse diagram of E associated with every discrete Morse
function / of E such that the set of cells of E not incident to any edge
of M is exactly C{f). From the defiinition of a discrete Morse function,
it is clear that M(/) is precisely the set of the cover relations where
/ is non-increasing with respect to dimension. In general, for a set M
(possibly empty) of edges of(?(E), we let (?M(S) be the directed graph
obtained from G{E) by reversing the direction of edges in M. Then the
following easy proposition gives an alternative description of Forman's
framework for regular cell complexes.

Proposition 3.3. A subset C of the cells of a regular cell complex S
is the set of critical cells for some discrete Morse function f if and only
if there exists a matching M on G'(S) such that GM(S) is acyclic and
C is the set of nodes o/G'(S) not incident to any edge in M.

We will refer to a matching M. satisfying the conditions of the above
proposition as a Morse matching for G'(E). Since G'M(S) corresponding
to a given discrete Morse function / is acyclic, it must have a sink node.
F'rom the construction it is clear that this sink node must be a vertex,
and this vertex must be critical. Thus any discrete Morse function on a
nonempty cell complex has at least one critical vertex. Now we can also
give an outline ofForman's proof of the first statement ofTheorem 3.1
using the language of the above proposition. G'M(S) must also have
a source node, say a p-dimensional cell a. Now assume that ff is not
maxima! in E. Then by the construction of G'Af(S), a is contained in
the boundary of exactly one (p+ l)-dimensional cell, say r and further
a and r must be matched to each other in M. It is well known that
the subcomplex of E, defined by S \ {a, r} is homotopy equivalent
to S - more specifically, it is a deformation retract of S. Hence the
proof for this case essentially follows by induction. Such a reduction
S -> E\ {o-, r} is referred to in the literature as an elementary collapse
[13], [3]. Now suppose cr is a maximal cell. Then o- must be critical.
We apply the result inductively to the subcomplex E \ {a}, which
completely contains the boundary of the cell a. Then if we glue the
open cell a back on, along its boundary, the resulting complex has the
desired properties. We remark that in this case, the resulting complex
need not be regular, as the boundary of o- might be collapsed to a point.

We will say that S collapses to a subcomplex F, if F is obtained
from S by a sequence of elementary collapses. This is true precisely
when for some discrete Morse function / on S, the corresponding Morse
matching matches every face ofF - S to some other face of F - E (see
[13]).
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4. GENERALIZED SHELLINGS AND DISCRETE MORSE FUNCTIONS

In this section, we will construct discrete Morse functions for com-
plexes with given generalized shellings. We will first prove these results
for shellable pseudomanifolds. Recall that a rf-pseudomanifold is a pure
ri-dimensional regular cell complex such that (i) every (d-l)-cell is con-
tained in at most two d-cells, and (ii) for any two d cells /3 and T there
exists a sequence of d-cells /3 = o-i, o-2, . . . , o'm = T such that a; and
o-,+i share a common (d - l)-cell for 1 ^^ m-1. The boundary of
a ri-pseudomanifold is the subcomplex generated by the set of (d- 1)-
cells which are contained in exactly one d-cell. A very fundamental and
useful result of Bing ([II], 8] Chapter 4) asserts that a shellable pseu-
domanifold is a ball (a sphere) if it has a nonempty(empty) boundary.
In the next proposition, we show that shellable pseudomanifolds are
"nice" examples for discrete Morse theory in that we can construct the
most efficient Morse functions for them. Following Bjorner [2], we will
call the cell a,, forj" ^ 2, a homology cell with respect to a fixed gener-
alised shelling 0-1, 0-2,... , o-m of a complex E if 5o-j n (U^ ^crfc) = 5cTj.
In the special case when £ is a simplicial complex (as in Prop osi-
tion 2. 2), these homology faces derive from intervals in the associated
.S-partition for which £, = Z7,.

Proposition 4.1. Letcri, ^^,... , 0'rn be a shelling of a d-pseudomanifold
E and let v be any vertex in o-i. Then, E admits a Morse function f
such that

(i) If S is the d-sphere then v and o-m are only critical cells, while if
E is a d-ball then v is the only critical cell.

(ii) When restricted to U^ak for 1 <:j < m, the only critical cell
of f is v.

Theorem 4.2. Let o'l, 0-2,... , a'm be a generalized shelling of a regular
cell complex S and let v be any vertex in o-i. Then there exists a discrete
Morse function fofL such that v is critical and further any other cell
a is critical if and only if it is a homology cell.

Applying Theorem 3. 1 to the Morse function of the above theorem
we get the following result.

Corollary 4. 3. For a d-dimensional regular cell complex E, let mj
be the number of j-dimensional homology cells in some generalized
shelling, j = 0, 1,... , d and suppose they are not all zero. Then we
have the following:

1. E t's homotopy equivalent to a cell complex with mo +1 points and
mj j-dimensional cells for j .==1, 2... , d.
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2. If the homology cells appear in non-increasing order of dimen-
sion in the generalized shelling then S is homotopy equivalent
to a wedge of spheres consisting of mj j-dimensional spheres,
j =0, 1, 2,..., d.

Remarks. The condition of non-increasing dimension for homology
cell is inspired by the rearrangement lemma (2. 6) ofBjorner and Wachs
[6], [7]. They show that the maxima! cells of a shellable regular cell
complex can be rearranged to give a shelling order in which the maximal
cells appear in non-increasing order of dimension. Hence for shellable
complexes, Statement 2 of the above corollary reduces to Theorem 2. 1.

Finally, we show that as far as simplicial complexes are concerned
constructing generalized shellings is equivalent to constructing discrete
Morse functions. For the following theorem, recall that for any discrete
Morse function on a simplicial complex, there will always be a critical
vertex which minimizes the Morse function or equivalently, this is the
unique vertex which is a source node in the directed graph GM(S). We
will call all other critical faces of a Morse function non-trivial.

Theorem 4.4. For a subset C of the faces of a simpHcial complex S,
the following are equivalent:

(1) C is the set ~of non-trivial critical faces of some discrete Morse
function on E.

(ii) C is the set of homology faces of some generalized shelling for
s.

In the next section we show that there are interesting complexes
which are not shellable but do admit very structured generalized shellings.

5. ON SOME COMPLEXES RELATED TO MATROIDS

In this section we use discrete Morse theory to study the topology of a
set ofsimplicial complexes related to matroids called Steiner complexes
which were introduced by Colbourn and Pulley blank [10]. We will not
present the original definition but rather a simpler reformulation in
terms of matroid ports which is shown to be equivalent to the original
in [9]. In what follows, we assume familiarity with the basic concepts
of matroid theory.

Definition. Given a connected matroid N and an element e of the
ground set of N, the port of N at the element e is the set

y= {(7-{e} : ee C, Cis a circuit of N}.
A Steiner complex on a ground set £ is a simplicial complex S defined

by
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§={E-A:PCAfoi some P 6 T}
where 7 is the port of some connected matroid N on ground set Eu{e}
at the element e.

The most important example of ports from the point, of view of ap-
plications are Steiner trees of a graph with respect to fixed subset K
of the vertices of a connected graph. The number of faces of the cor-
responding Steiner complex is of great interest in network reliability
applications [10], [9]. A matroid complex is also a Steiner complex,
however, it is easily seen that Steiner complexes are neither pure nor
shellable in general. We will show that the topology of these com-
plexes is closely related to the topology of broken-circuit complexes
[2]. Steiner complexes also have a natural matroid-theoretic duality
property that is interesting from a topological perspective. Consider
the set T* of inclusion-minimal elements of 2£ - S. It follows from
elementary matroid theory that 7* is the port of the matroid N* at
the element e. An important consequence of this fact is that if 8 is
a Steiner complex defined with respect to the matroid N then §6 is a
Steiner complex associated with N*, where N* is the the dual of N,
a.nd§b ={E-F : F e2E -§}. It follows that the topology of S and
§b are related by the combinatorial version of Alexander duality (see
[2], [4]).

If we define M to be the matroid N - e and denote by 3(M) the
complex of independent sets of M, then 3(M*) C § and 3(M) C §i-.
For the rest of this section, we will assume a fixed total order on E\J{e}
in which e is the smallest element. With respect to this total order,
let RBC(N), and RBC{N*} be the reduced broken circuit complexes
associated with N and N* (see [2] for definitions). It follows from the
definition of these complexes that RBC(N*) C 3(M*) C § and dually,
RBC{N) C 3(M) C S&. The following theorem may seem surprising
at first since the complex RBC(N*) depends heavily on the total order
on E while the Steiner complex does not.

Theorem. 5. 1. 8 is homotopy equivalent to RBC(N*); in fact, 8 col-
lapses to RBC(N*).

Remarks. Due to its shellability, RBC{N*) is homotopy equivalent
to a wedge of f3(N*) {\E\ - /?)-dimensional spheres, where p is the rank
of N [2], [22]. Therefore, the same result is also true for S. For the
connected matroid N and its dual N* on the ground set E U {e}, we
have /3(Ar) = /3(Ar*). As observed by Bjorner, ([2], (7. 39)) this implies
the following for every i.

138



Hi{RBC{N)) ̂  H^-i-\RBC[Nt}}
To quote Bjorner [2] - "(this is)... a curious topological duality for

reduced broken-circuit complexes that seems to lack a systematic ex-
planation". We have already shown that § is homotopy equivalent to
RBC{N*). By matroid port duality mentioned earlier, Sb is homotopy
equivalent to RBC{N). Therefore, the topological duality of the re-
duced broken-circuit complexes observed by Bjorner follows, via the
above theorem, from the "natural" Alexander duality of the appropri-
ate pair of Steiner complexes.
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