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ABSTRACT. In this paper, we consider the Robinson-Schensted correspondence for oscillating tableaux and
skew oscillating tableaux defined in [15] and [4]. First we give an analogue, for the oscillating tableaux, of
the classical geometric construction ofVieanot for standard tableaux ([16]). Then, we extend a construction
of Sagan and Stanley ([10]), dealing with standard tableaux and skew tableaux, to deduce a property
about the number of odd height columns of a skew oscillating tableau. Finally, we give analogues for
skew oscillating tableaux of two classical constructions about this correspondence, Knuth classes ([7]) and
Beissinger algorithm ([!]).
RfisuMfi. Dans cet article, uous considferons la correspondance de Robinson-Schensted pour les tableaux
oscillants et les tableaux oscillants gauches dfefinie dans [15] et 4]. Premi^rement, nous donnons, pour les
tableaux oscillaats, une construction analogue & la construction g6om6trique classique de Viennot pour les
tableaux standard ([16]). Ensuite, nous Stendons une construction de Sagan et Stanley ([10]), pour en dfeduire
une propri6t6 sur Ie nombre de colonnes de hauteur impaire d'un tableau oscillant gauche. Fiualement, nous
donnons des analogues pour les tableaux oscillants gauches de deux constructions classiques li6es a cette
correspondance, les classes de Knutb ([7]) et 1'algorithme de Beissinger ([1]).

1. INTRODUCTION

The Robinson-Schensted correspondence is a classical bijection between permutations and pairs of stan-
dard tableaux of the same shape. It was defined in [II], and followed by numerous papers dealing with
the combinatorial properties of this correspondence, like [12], [7], [5], [13], [16] or [1]. More recently, this
correspondence was extended to various kinds of tableaux that are generalizations, in the Young lattice,
of the standard tableaux: semi-standard tableaiuc ([7]), skew tableaux ([10]), oscillating tableaux (first by
Sundaram in [14, 15], then independtly Delest, Dulucq and Favreau in [3]) and skew oscillating tableaux
([4]).
ta this article, we extend classical properties and constructions related to the Robinson-Schensted corres-
pondence to the correspondences for oscillating tableaux and skew oscillating tableaux. In the sections 2 and
3, we give basic definitions on biwords and tableaux and we present the correspondence for skew oscillating
tableaux. Then we extend a geometric version of the Robinson-Schensted correspondence due to Viennot
([16]) to the case of oscillating tableaux, and, following [10], we define a construction allowing extension of
properties of oscillating tableaux to skew oscillating tableaux. Finally, in sections 6 and 7, we extend to skew
oscillating tableaux a result ofKnuth ([7]) and an algorithm ofBeissinger ([!]).

2. DEFINITIONS AND NOTATIONS

We assume that the reader is familiar with the combinatorics of the Young tableaux in general and, in
particular, with the Robinson-Scheasted correspondence (see [II], or [9] for a survey).

We use the notation A = (Ai,... , A<;) for both a partition and the corresponding Ferrers diagram displayed
in "French" notation (the smallest part A* in the top row). The conjugate of A is the partition A' =
(X[,... , A'^), where A^. = Card{i A, ^ j}. If /^ C A then the corresponding skew shape X/iJ, is the set
{c I c  A, c ^ /i}. If |A//x| = n then we write A/^ I- n and say that A/^ is a skew partition of n.

A Young tableau T of shape X/fi is a labeling of the cells of X/p, with an ordered alphabet (of positive
integers here) so that the rows and columns are weakly increasing. We denote by T(i, j) the label of the cell

1A complete version of this abstrEict is avalaible iu [2].
2Email : chauveClabri.u-bordeaux.fr
Email : dulucqfilabri. u-bordeaux. fr
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in the ith row and jth column, so that k eT means k = T(z, j) for some i, j. A Young tableau is partial
if its elements are distinct. Further it is standard if it is partial and the labels are 1 through n = |A/ju|.
The sets of partial and (skew) standard tableaux of shape \ I p. will respectively be denoted by PT(X/IJ.) and
ST(\/p, ). Analogously, the set of tableaux of shape X/p, with rows and columns strictly decreasing will be
denoted by PT(A/^). For example, wheii_A = (5, 4, 2) and fJ. = (3, 2), the three following tableaux belong
respectively to PT(\/fi), ST(X/^ and PT(A//^).

6]
A skew oscillating tableau of length n, initial shape a, and final shape 0 is a sequence of Ferrers diagrams

T = (a = AQ, AI,.. . , An = /3) where Afc is obtained from \k-i by insertion or deletion of a cell. Ifa = 0, T
is an oscillating tableau. We denote by SOTn(a -^ 0) the set of skew oscillating tableaux of length n, initial
shape a and final shape /3 and by OTn(/3) the set of oscillating tableaux of length n and final shape ft. For
example, if a = (3, 2) and ̂  = (2, 2, 2), the following tableau belongs to SOT^a -^ 0).

Of course, a skew oscillating tableau of SOTn(p, -> A) having only insertion steps, is a (skew) standard
tableau of 5T(A//^), the label of a cell being given by the step of creation of this cell.

Classicaly, we denote by Sn the set of the permutations of [n] and by INVn the set of the involutions
of [n], and, for a permutation a, we denote by cr-l its inverse. Sometimes, we will write an involution as
a product of cycles in increasing order of their greatest element and with a < & for each cycle (a, &), as for
example, a = (1)(2, 3) (5) (4, 6). A sequence of at most n integers, pairwise distinct and less than or equal to
n, will be called a partial permutation of [n]. For example, 4 1 5is a partial permutation on [n] for n ^ 5.

A biword TT on [n] = {1, 2,... , ra} is a sequence of vertical pairs of positive integers of [n], pairwise distinct,
7r = d1 ^ '. ^ jki)'In this pape1'we consider biwords such that all the ii and ji are distinct in TT and t; > j;,
foi I =l,... k. We denote by v the top row of TT and by TT its bottom row, and we write such biwords with
the convention ?i >i2 > ... >i*. We denote the set of these biwords on [n] by BWn. Moreover, we often
represent an element TT of BW^n with a graph G'(TT), as in the following example.

121110 9 8 7
12 118 7 3

n=( 10 4- 1 5 2J ^)=,
123456

In such a graph, we call diagonal edges the edges between the two rows of vertices. If TT   BWn, its inverse
7T-1 is obtained by changing every pair (?. ;,.?;) to {n+l-ji, n+l- ii). It follows that, for TT G BW^n,
<?(7T-1) is obtained from G'(TT) by an horizontal symmetry.

7T-1= G(7T-1) =12 11 98 3
5 10 2 6 1

123456

Finally, there is an immediate bijection between elements of BW^n whose graph has exactly n diagonal
edges and permutations of Sn.

12 11 10 9 8 7

7T == Gw=^^<^^ 24361512 11 1098 7
2 4 3615

123456

Hence, if TT corresponds to a permutation <T, then 7r-l corresponds to cr-l.

3. ROBINSON-SCHENSTED CORRESPONDENCE

In [II], Schensted gives an algorithm which associates to a permutation a of Sna pair of standard tableaux
(P, Q) with the same shape A such that A I- n. The tableau P is called the insertion tableau of o- and the
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tableau Q its recording tableau. This construction is the limiting case of one for partial permutations and
partial tableaux.

In [4], Dulucq and Sagan extend this algorithm to deal with skew oscillating tableaux. We recaU their
result, keeping their notations. This algorithm relies on three kinds of insertion in a skew tableau (see
Example 3. 1).
Let P be a skew tableau of shape A/^.

1. The external insertion is the insertion defined by Schensted ([11]) and inserts an integer x in P. We
denote the new tableau obtained after this insertion by ExtIns(P,x).

2. The internal insertion was introduced in [10]. Let (u, v) be a cell of P such that (u, v) ̂  ^or v =1,
(u-l, v) £ ^ oru = 1, and (u, u - 1) 6 /^. The internal insertion of the cell (u, v) mserts the integer x
contained in P(u, v) from the row (u + 1) using the external insertion algorithm. This process doesn't
add a label in the tableau P. We denote the new tableau by IntIns(P, u, v).

3. The empty insertion adds an empty cell in P(u, v), where (u-l, v) e fi or u-= 1^ (u, v - !)_  p. or
v = 1, and (u, v) i \. We denote the new tableau obtained after this insertion by Empty Ins(P, u, v).

Conversely, the deletion of the cell P{u, v), denoted by Del{P, u, v), can be m empty deletion if the cell is an
empty cell, an internal deletion if the process (this is the classical process of deletion defined by Schensted)
ends in filling a cell of ̂ , or an external deletion if the process ends with the expulsion of an integer out of
p.

Example 3. 1.

p=

p=

p=

8J ExtIns(P, 5} =

IntIns(P, l, 3~) =

EmptyIns(P, 3, 2) =

£>e;(P, 2, 3)=

Del(P, 3, l)=

Del(P, 3, l)=

I18J
: external deletion

u"
internal deletion

: empty cell deletion

Remark 3. 1. We call the elements displaced during an insertion process the "bumped" elements.
We now give a description and a detailed example (Example 3.2) of this algorithm and ofrtsinverse (cf

[4]). The first, denoted by $so, has for input a triple (TT, T, U) of BWn x U^s"n^[PT^/^ x PT(a/^ and
for output a tableau P of SOTn[a -^ f3).

Algorithm 1. ^so(. ^, T, U) - The output is a tableau P.
Let Pn = T.
For i from n to 1:
(a) if there is a cell Pz(u, v) = i, then erase this cell to obtain P, -i,
(&) else if the pair (i, x) belongs to TT, then P,_i = ExtIns(Pi, x),
(c) else if U(u, v) = i and P, (u, v) exists (with label x), then P._i = IntIns{Pi, u, v),
(d) elsePi-i =EmptyIns(Pi,u, v).
Finally, the tableaux P, have respective shapes A, /^, and P = {\o,... , \n).
Algorithm 2. $50 (p) ' '77le °utPut is a triPle (7!'>T»£7)-
Suppose P= (a = AO,... , An = /3).
Let TT= 0, To =a and Uo = a.
For i from 1 to n:
(a) if\i = A,_i + (u, v), t/icn adri m Ti-i a ce/^ tn position (u, v) with label i to obtain T,, Ui = C/i-i,
[b) else (\i = A._i - (u, u); r, = £>eZ(T. -i, u, v):
(&. 1) if this deletion is external (x ejected out ofTi-i), then add the pair (i, x) to TT, £7, = ?7, _i.
(&. 2) else if it is internal (the ce^T, _i(u', -u') is filled), then label the cell Ui-i(u', v') with i to obtain Ui,
(6.3) else label the cell t7,_i(u, u) with i to obtain Ui.
Finally, T=Tn andU=Un-
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Example 3.2. Let P be the following skew oscillating tableau.

Then:

p=

z =

Ti=

Ui=
7T =

&a

0

P is in bijection with (Tv, Te, Ue). o

Theorem 3. 1. ([4]) Let a and /3 be fixed partitions and n a fixed integer. ^so " a bijection from triples
(7T, T, [7) ofBWn x U^can/3[p7'W^) XPT(a/^)]' SUCA thatTrUTOU = [n], to tableaux P of SOTn(a -> /3).
Remark 3.2. If the skew oscillating tableau P has only insertion steps (it is a skew standard tableau P' of
shape /3/a), the bijection $50 is such that $5o(P) = (0, P', a).
Theorem 3. 2. ([4]) Let a be a fixed partition and n a fixed integer. There is a bijection RSso from triples
(7T, T, U) Of BW^n x U^can/3[PT(a/^) x PT(, a/p,)] such that TTUTOU = [2n] to pairs of tableaux (P, Q) of
U^[50Tn(a ^ /3) x 50^ (a ̂  ^)].

This result follows immediately from the previous theorem and:

(Ao(=a),..., A»,..., A2n(=a))^^(P=(Ao, Al,..., A»(=/3)), Q = (\2n, >2n-l,. . . , \n(= W).
Using skew oscillating tableaux with empty initial and final shapes, we have a Robinson-Schensted cor-

respondence for oscillating tableaux, as stated in the following results.

Theorem 3. 3. ([15]) Let /3 be a fixed partition and n a fixed integer. There is a bijection $o from pairs
(7T, T) ofBWn X PT(^) SUCft that TTLJT = [n] to tableaux P of OTnW.
Theorem 3. 4. ([15]) Let n be a fixed integer. There is a bijection RSo from biwords TT of BW-in of size 2n
to pairs of tableaux (P, Q) of[J^[OT^) x OTn(/3)].

It is straightforward to verify that if P and Q have only insertion steps (i.e. P and Q are standard tab-
leaux), (;(7r) has exactly n diagonal edges (then TT corresponds to a permutation) and we have the original
Robinson-Schensted correspondence for standdrd tableaux.

4. ANALOGUE OF THE GEOMETRIC CONSTRUCTION OF VlENNOT

In this section, we give as. analogue for oscillating tableaiuc of a beautiful construction of Viennot for
standard tableaux ([16]). We follow the presentation of the construction of Viennot given in [9].

First, we explain how we represent a biword on [2n], TT = (^ ̂  ... ̂ ) of [n] x [n] in the part {0, 1,... , n}x
{0, 1,... , n} of the Cartesian plane (see Example 4. 1).

1. We define a map X from abscissas a; (a; = 0, 1,... , n) into {2n + 1} U ^ such that X(0) = 2n + 1 and
X(x) is the Xth greatest element of7r, for a; > 0.

2. We define a map Y from ordinates y (y = 0, 1,... , n) into {0} U TT such that y(0)=0 and Y{y) is the
yth lowest element of TT, for y>Q.

3. We define a valid domain which is the set of pouits (a;, y) such that X(x) > Y(y).
4. For each pair (ii, ji) of TT, we set up the point (X~l(j, i), Y~l(ji)) (which is in the valid domain).

Example 4. 1. Here we give a biword TT of BW^ and its representation (for readability, the limit of the valid
domain, the dashed line, is slightly extended on the figure).
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7T =
12 11 109 54
7 8 3612

Y{V)V
8 6

5

4

3

S. 2

1 1

0 0 0T-2 3 4 5 6-a:
13 IS 11 10 9 5 4 X{x)

We introduce definitions intuitively related to a lighting of the representation of a biword from (0, 0)
(illustrated in Example 4. 2).
Definition 4.1. The shadow 5(7r) of a biword TT is the set of points (x, y} such that there is a point (a-', yf)

of the representation of n with x' -^ x and y' <:y-
"Shadow'Unesof^are defined recursively. The'first shadow line Li O/TT is the boundary of S^). Townstruct
"theThado'wiine Li+i O/'TT, remove the points of the representation O/TT lying on L, and construct the
~Une'of "the remaining points. This procedure ends when there is no remaming point on the plane.
The SW-comers of a shadow line are the points of the representation of TT located on this line.
The NE-comers of a shadow line are the points\x, y) of the shadow line such that (x, y) is in the valid
domain and (x + 1, y) and (x, y+ 1) doTi't belong to this shadow line.
Definition 4. 2. The kth skeleton TT^ of a biword TT is a biword defined recursively by

2; 7T(fc+1) = (%.^ %j ::: %tj) ̂ ere (ii, ji),... , (im,.?m) are the NE-corners of ̂ .
The shadow diagram O/TT is the set of shadow lines of all the skeletons ̂ W of v. The shadow lines of-K^
are denoted L}"'.
Example 4.2. Let TT be the biword of Example 4. 1. The figure on the^left gives the shadow^^_(_whlch h^
twos'hadow-lines). The points marked with a circle (i.e. the points of the biword) are the^ SW^omers,^
the points marked with a square are the NE-corners. The figure on the right gives the shadow diagram of TT.

Y(y)y
8 6

01234 5 6 -a;
13 12 11 10 9 5 4 X{x)

3 3
2 2

1 1

0 0

x=y
-(2)

Ft- L(2)

41)
. (1)

0i~-2 3 4 5 6'z

13 12 11 10 9 5 4 X(x)

In the following result, we show that, for a biword TT, the behaviour of the algorithm $o(7r, 0), can be
described by the shadow diagram of TT.
Theorem 4. 1. Let v be a biword of BW^n and T an oscillating tableau of OT-in such that ̂ o^, 0)= T.
Following, from the left to the right, the shadow line Lw describes the behaviour of the jth cell of the ith row
of the tableaux T2n,... , TQ in the following way:

1. a SW-comer\x, y) indicates that during step X(x), the label Y(y) fills this cell, which is created if not
present,

2. 'when the line leaves the valid domain at {x,y), this cell is deleted during the step Y(y),
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3. otherwise, the cell remains unchanged.

Example 4.3. Let TT be the biword of BWiy defined above (see Example 4. 1). We recall its shadow diagram.

YWy
8 6

^=^(2)

rw
^
-d)

01 1 3356-~£-

13 12 11 10 9 5 4 X(x)

The execution of $o(7T, 0) produces the following partial tableaux T^, .
|7| 17] 81 [7} [3}

0 LTJ |7|8| |3|8| F3T61 r3 l6-] [III] [3] fTI
Tl2 Tll TlO ?9 ?8 T? Te Ts T4

, To:

23 ?2 Ti To
Now, we observe, for example, the second cell of the first row and the shadow line L^).
The line has a first SW-corner at (2, 6) with X(2) = 11 and V(6) = 8, followed by the SW-corner (4, 4) with
-X'(4) = 9 aad V(4) = 6, leaves the valid domain at the same point (4, 4), enters the valid domain again to go
to the SW-corner (6, 2) with X(6) = 4 and V(2) = 2 and finally leaves the valid domain at the same point
(6, 2).
On the other hand, durmg the execution of $o, (the tableaux are constructed from T^ to To), the second
cell of the first row is created during step 11 (passing from Tii to Tio) with label 8, this label is replaced
during step 9 by the label 6, which remains unchanged until the first deletion of the cell during step 6. The
cell is created again during step 4 with label 2 and is finally deleted during step 2.
Finally we can say that TT is in bijection with the following pair (P, Q) of oscillating tableaux.

p=oD DDD, Q=0Da^Bl)S&:
Remark 4. 1. If TT is a biword of BW-^n such that G'(TT) has exactly n diagonal edges, our construction
is equivalent to the original construction of Viennot (in particular, the valid domain is {0, 1,... , n} x
{0, 1,... , n} and there is no need of the maps X and V).

Now, we show how we can use the shadow diagram of a biword to deduce combinatorial properties of the
Robinson-Schensted correspondence for oscillating tableaux.
Theorem 4.2. Let-JT be a biword of BW^n and P, Q two oscillating tableaux o/OTn(/3) such that RSoW =
(P, <3). Then, the ith row of /3 has k cells if and only if k shadow lines L^) intersect the line x = y in the
valid domain.

Example 4.4. The biword TT of Example 4. 1 is in bijection with a couple (P, Q) of oscillating tableaux of
OTe(13) such that /3 = OH. On the shadow diagram of TT (see Example 4.3), the line x=y intersects in the
valid domain only L^> and L^> and we verify the result, o

One of the beautiful properties of the Robinson-Schensted correspondence relies on the inversion of the
standard tableaux P and Q. Schiitzenberger showed, in [12], that if (P, Q) is in bijection with a permutation
a, then (Q, P) is in bijection with o--l, and so, the Robinson-Schensted correspondence is a bijection between
involutions and standard tableaux. Later, these results were again demonstrated by Viennot in [16] using
symmetry properties of its geometric construction. In the same way, with our construction we can prove
similar results for oscillating tableaux.

Property 4. 1. J/TT is a biword ofBW^n, then the valid domain and the shadow lines o/7T-l are the reflection
in the line x = y of those of the representation of TT.

146



INV^.

c

Definition 4.3. We denote INV^ the set of involutions on [n] such that every cycle (a, b) (a ̂  b) and every
fixed point (a) can 6e of two types (colors), called bold or normal.

Proposition 4.1. There is a bijection (, : {v   BWtn\v = TT~I}
Example 4. 5.

12 11 ^0^8 S 7
.

123456

We have then C(7r) = (3)(2, 4)(1, 5)(6): the cycle (2, 4) and the fixed point (3) are bold, the cycle (1, 5) and
the fixed point (6) are normal.

Using Property 4. 1 and the previous Proposition, we have a geometric proof of the following results.

Theorein 4. 3. ([3]) Let TT be a biword of BW^n and P, Q oscillating tableaux such that RSoW = (-P, Q)-
ThenRSo{7T~l}=(Q, P).

CoroUary 4.1. ([3]) RSo induces a bijection between OTn(/3} and the involutions of IN V^ having no bold
fixed point.

Furthermore, with the bijection between involutions and standard tableaux, Schiitzenberger ([12]) showed
that the number of columns of this standard tableau with odd height is the number of fixed points of the
involution, a result which has a direct geometric proof using the construction of Viennot. Similarly, using
our construction, we have a geometric proof of an analogous result for oscillating tableaux.

Theoreru 4.4. Let a be an involution of INV^ without bold fixed point and P an oscillating tableau of
OTn(0) such that a is in bijection with P as in Corollary 4-1- Then odd(0) = fixrf^a), where odd{0) is the
number of columns in 0 with odd height and fixN(cr) is the number of normal fixed points of a.

5. PROPERTIES OF SKEW OSCILLATING TABLEAUX

In this section, we extend some of the previous properties of the Robinson-Schensted correspondence
for oscillating tableaux to the correspondence for skew oscillating tableaux. We define an extension of a
construction of Sagan and Stanley (see [10]), in order to treat a pair of skew oscillating tableaux as a pair of
oscillating tableaux.

Definition 5.1. The column word of a partial tableau P is the sequence of integers corresponding to the
columns of P read from left to right, each column being read from top to bottom.
Let a be a Ferrers diagram. We denote Ccc the oscillating tableau corresponding to the construction of a
column by column, from left to right, each column being constructed from top to bottom. Pc, is the standard
tableau corresponding to Ca (which has only insertion steps), and ira the column word of Pa. .

Example 5. 1. a = (2, 2)

(7c, =0D B& p.= and TTo =2 14 3

Now we introduce the notion of completion of a skew oscillating tableau. Let a be a partition such that
a t- m. We define a map cpl from SOTn(a ->. /3) into OTn+mW, that associates to a skew oscillating tableau
P the osdllating tableau cpl(P) that is the concatenation of Co and P. We say that Ccc is the completion
of P.

Example 5.2.

. B& un ^ cpi(p) = 0 D &m
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Furthermore, we use a new alphabet for the labels of partial tableaux, N U {jk :.?', &  N} U {jk :j, ke
such that, for x, j, k and k' positive integers we have - ' L- ." - ~ "J ~ l. -' .. ".."- -J'

3k < Jk+l < U + l)k' <x<^<jk+^<(j- if
^Ne3rt'^let. a'^and Abe partitions such that ̂ C aand ju C A. We use a map [.]^ (defined in flOD from

(a/^) into PT(a), that associates to a partial tableau P the tableau [P]^ obtainedTnlabeling l(from"t"op
t^ botto m) the empty cells of the ^ column of P with j>l,, j-^- -1,... , ^, l^-+i . ifA =/., we write fP'l fo'r
[PJA. For example, let A =(4, 3, 1) (A'=(3, 2, 2, 1)). ' " '"' . --. -^

p=
8]

.

> [-PL =  . [-P] - ^
8]

^ow' ,foll^g [1?) we define a transformation of a triple (TT, T, U) of Theorem 3. 2 ((TT, T, U)   ^W-zn x
^(a/_^-x PTWtf) with a hm ajld a/ has z rows) into a biword of Bww with n' =n'+m./ We'den"ot'e

[7T, T, [7] or, when there is no possible confusion, [n].
Algorithm 3. [.](TT, T, U) - The output is a biword [v} ofBWw.
Let[TT']=7T\J U U /i ... /°i(Z-l)1 ... (;-l)°;-i\.. l^ . ^ ia;
For each element a of [v'}:
(a) ifaev, then [7r'](a) = 7r(a),
(6) else if a =3^, then [7T'](a) = [T\^k, j),
y e!fc (a^u(k'j)^'[7r/](a) = .?'fc'? wz^ ̂ ' =^- -^+1.
Finally, [TTJ is given by the normalization of [TT'] on [2n'].
Example 5. 3. With the following triple (7T, T, <7)

7T = T= u=

we have

W^f^. li222i 5 4 2t7r'J =l "3' li 7 22 I"1 1 21 J ' M= 14 1312 119 8 6
7 2 10 4 153

,

we ̂ow=give_theresult that relates. the Robinson-Schensted correspondence for skew oscillating tableaux
to the Robinson-Schensted correspondence for oscillating tableaux. This is an extension"ofa"sin^il^"resuk
LemT ̂ Let^uLG Bmn x PT(aw x PT(-a/^ p and Qbe ta^^ of SOT^a -^ f3). If(7T, T, [7) = (P, Q) t/ien ̂ 5o([7T]) = (cpl(P), cpl{Q)).'

Elampk5A:^tnfe^Tfu} 0! the Example 5-3 is in byection by RSso with the couple of skew
tableaux (P, <9).

p= , Q=
M is in bijection by RSo with the oscillating tableaux (?', Q') = (cpl(P), cpl(Q}). o

.

»usmgthis_construction'we have new proofs °fProPerties of the Robinson-Schensted correspondence for
tableaux.

Defiludon ̂ '2'Letn be an mt 9er and. p a tableau °fpTW^ (respectively PT(\/p. )), such that all
labels_ar\less^han^r equate to n. We define the tableau Pc'of PT(X/p}'(respectively

(u, v) =n+l- P(u, i;) for each cell (u, v)   X/p,.
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Example 5.5. Let n = 8.

p= =»pc=
Ill]

Theorem 5. 1. ([4]) Let {-n, T, U)   BW^n x PT(o:/lj t) x PT(a/^) and P, Q (wo skew oscillatmg tableaux

ofSOTn(a-^/3), such that RSso(^, T, U) = (P, Q). Then RSso^~l, UC, TC) == (Q, P).

CoroUary 5.1. ([4]) RSso induces a bijection between SOTn{a -i- /3) and the pairs (o-, r) such that a  
INV^, T   PT(a//x), C-1MOTOTC = [2n].
Example 5.6. Let P be the following skew oscillating tableau.

p=

The pair (P, P) is in bijection with {TT, T, U):

=vT-l, r=7T =
11 9 8
425 , u= -,c=r

and, as PI- == 7r-l and U = Tc, we have P in bijection with (CT, T):

<T=(1)(3)(2, 4)(5)(6), T=

Moreover, using Theorem 4.4 and Lemma 5.1 we can prove a new result on the number of odd height
columns of the final shape of a skew osdllating tableau.

Theorem 5.2. Let a be an involution of I NV^, T   PT(a/ti) and P   50Tn(a -». ̂ ), sucft t/ia( ((7, T) is
in bijection with P following Corollary 5. 1. Then odd(/3) == odd(fji) + fix ̂  (a-).

We can verify this result on the previous example (Example 5.6), where the final shape 0 of P has two
odd columns, p, has one odd column and o- has one normal fixed point.

6. KNUTH CLASSES FOR OSCILLATING AND SKEW OSCILLATING TABLEAUX

Another classical property of the Robinson-Schensted correspondence is due to Knuth ([7]). He gives a
characterization of permutations having the same insertion tableau (this result was later extended to give a
characterization of permutations having the same recording tableau).

Definition 6.1. Two partial permutations on [n], a and cr , differ by a Knuth relation if and only if there
are three integers a, b and c(\<^a<b<c^n) such that

cr=j\... jk ba c jk+4, ---jp and a' =ji... jk b cajk+A---]p, or
o- = Ji. --Jk a cb jk+4, ... Jp and a' =ji... jk c a b jk+4. . . -jp-

Definition 6.2. Two partial permutations on [n], a and a', such that the elements of a are ji < J2 < ...<
jp and those of a' are j[<j^ < ... < j'p, differ by a dual Knuth relation if and only if there is an integer k
such that

<7 = Jh . .. Jk+1-. -Jk .. -Jfc+2 .. .J.p and a' = j'^ .. .j^ .. .^ . .. j^.. .^, or
^=3ii . . -Jk+1 . . -jk+2 .. . Jk---ji^ and a' = j'^ .. . ^ .. . j^. .. j^. .. j'^.

Example 6. 1. 534176 and 534716 differ by a Knuth relation of the form (6 a c-+ 6ca).
3 101 5 2 and 49287 differ by a dual Knuth relation of the form [jk+2 ... jk-- . jk+\ -> j'k+\ ... J'k--- Jfe+a)
(the elements involved by this transformation are underlined), o
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Defimtion 6*3" TVJO paTtw\ Permutations on [n], a and <T', are K-equivalent, a ^K v' (respectively K'-
equimlent a^K' ff'), if and only if there are <T^ .. , ap, partial permutations on [n], such'that a7='a,
<7p = a', <7, anri o-,+i ^ycr only by a Knuth relation (respectively a dual Knuth relation).

The result of Knuth is the following.

Theorem 6. 1. ([7]) Let a and a' be two permutations of Sn in bijection, by the Robins on-Schensted corres-
pondence, repectively with (P, Q) and (. P', Q').

1. P = P if and only if a ^K v' .
2. Q = Q' if and only if a C^K' o"'.

Now, we extend this result to oscillating tableaux.

Definition 6.4.^ Two bwords TT and TT' of BWn are K-equwalent, TT ̂ ^ TT' (respectively, K'-eqwvalent,
^..^' nl}'if andonly ̂  there are 7ri' . ; ..' 7rp' biv'ords of BWn, such that TT, = TT, Tr'p = TT', "and ̂ and^
differ only by a Knuth relation (respectively TT. = TT,+I, TT, and in+i differ by a dual "Knuth relation)'.'
Definition 6.5. Let v be a biword of BW^n. The three biwords ̂ , ̂  and ̂  are defined by

^ = {(. iiJi)\ii > n, ji > n}, TT; = {(ii, ji)\ii ^ n, ji ̂  n}, ̂  = {{ii, ji)\ii > n, ji ̂  n}.
Theorem 6. 2. Let TT and TT' be two biwords of BWtn such that RSoW = (P, Q) and RSoW = (P/, Q').

1. -P = -P' </ o"ri on^y if TT; = TT;' anc? TTc ̂ A- ̂ .
2. Q=Q' if and only if-K^ = ^ and 7rc ̂ K' v'c-

Example 6. 2. Let TT and TT/ be the following biwords.

7T =
14 13 12 11 10 7 4
9538612 7T' = 14 12 11 1097 4

13 5 6 8312

If RSoW = (P, Q) and RSoW = (?', Q'), then P = P' because

7T; = 7T;' =
7 4i

1 2. and TTr = 13 12 10
7T. =

12 11 9
563 =»7Tc=536^A-563=7r:

Using this result and Lemma 5. 1, we have a characterization of Knuth classes and dual Knuth classes for
^oscillating tableaux We have no simple necessary and sufficient conditions on the'tnples"(^'T,^)^of

Theorem 3. 2 to express these notions of Knuth classes and dual Knuth classes, but we have simple :
conditions.

Defimtion6. 6. LetP be a tableau ofPT^X/fz) orPT{\/^ and k a fixed integer.
We denote P>k the restriction of P to cells P(i, j) > k obtained by emptying (suppressing if P sPT(
the cells P(i, j) ̂  k. We define analogously P>k, P<k and P<k.
Example 6.3.

p= p= P<4=

CoroUary 6. 1. Let^, T, U) and (, TT', T', UI) with RSso(^, T, U) = (P, Q) and RSso(^', T\U') = (P', Q').
1. IfP= P', then .KI = TT; and U<n = U'^.
2. J/ Q = Q' then ̂  = ^ and T^n = T^.
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7. BEISSINGER ALGORITHM

The Robinson-Schensted correspondence implies a bijection between involutions and standajd tableaux
(an involution o- is in bijection with a pair of standard tableaux (P, P)). In [I], Beissinger gives a simple
algorithm to directly obtain the standard tableau P in bijection with o- without using the Robinson-Schen-
sted correspondence. In this section, we extend this result to the case skew oscillating tableaux (see Corollary
5. 1).

First, we recall briefly the algorithm of Beissinger. Let a be an involution written as in Section 2.

Algorithin 4. Beiss{cr) - The output is a tableau P.
Let PQ = 0.
For i from 1 to k, the number of cycles of a:
(a) if the ith cycle Ci of a is a fixed point (a), then P, = ExtIns(P, -. i, a').
(b) else (ci = (a, b)), P[ = ExtIns(Pi-\, a), this insertion ending in row u, and add b at the end of rouiu+l
of P^ to obtain P,.
Finally, P = Pk.

Example 7. 1. Let o- = (3)(1, 5)(4, 6)(2, 7)(8)(9). The execution of Beiss(a) gives the following result.

i01234 5 6

Pi 0 M]=p

Theorem 7.1. ([!]) Let a   INVn and P = Beiss(v). Then a is in bijection, by the Robinson-Schensted
correspondence for standard tableaux, with (P, P).

Now, we propose a similar algorithm related to the Robinson-Schensted correspondence for skew oscillating
tableaux. This algorithm, denoted Beissso^ has for input a pair (cr, T) satisfying the conditions of Corollary
5. 1, for output a triple (TT , T', U') where TT is a biword, T and P two partial tableaux and has the following
property, that is a generalization of Theorem 7. 1.

Theorem 7. 2. Let P   SOTn(a -+ /3), (T   JNVnc, r   PT{a/p. ) and TT = C-I(^) such that RSso(P, P) =
(7T, T, TC ). Then ^so(. Beissso(. <7, T)) = P.

Algorithna 5. Beissso(o', T) - The output is a triple (TT', T', U').
fa   INV^, T G PT(a^); TT' = 0, TO = /^, ̂ / = ^n+i .
For i from 1 to the number of cycles of a-:
(a) if the ith cycle c, of a is such that Ci = (a, b), then add (a, 6) to TT', T' = T,'_r
(i>) else if a = (a, &), then T; = ExtIns{T^, a), this insertion ending in row q, and adding b at the end of
rowq+1 ofT[' gives T[.
(c) else ifci =. (a), then T', = ExtIns(T^, a).
[d) else (a = (a);,
(d. l) if a, = T^n+i(u, v) and T',_i(u, v) exists, then T/ = IntIns(T^, u, v), this insertion ending m row q,
and adding a at the end of row q+1 of T'^' gives T,.
(d.2) else if a =- T<n+i(u, u) and the cell T i_i{u, v) doesn't exist, then T[' =. Empty Ins (T^, u, v), and
adding a at the end of row u + 1 ofT(' gives T,.
{d.S)elsea=T^^v), Ti=Ti_,.
Finally, T'=Tk.

Example 7.2. Let (a, T) be the following pair,

[cr=(l)(3)(2, 5)(6)(4, 7)(8), r= ?6|
1E =»r.<9 =a W8]

w^ =
> -1<9 -
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Beissso (o", T) has the following behaviour
t 0 1 2 3

T/ II]

'. =(I)-T<= , u'=

Remark 7. 1. Using Theorem 7.2, we have a new and simple proof of Theorem 5. 2.

8. CONCLUSION
As stated in [4], the Robinson-Schensted correspondence for the skew oscillating tableaux defined by

Dulucq and Sagan is a very natural extension of the Robinson-Schensted correspondence, and, following the
ideas of Sagan and Stanley in [10], it seems reasonable to hope find another properties of this correspondence,
in particular, with the notions of generalized insertion and generalized deletion (see [6]). On the other hand,
it could be interesting to study the class of shifted skew oscillating tableaux (see [8, 17]). Finally, there
are few other classical properties of the Robinson-Schensted correspondence we didn't extend, like the "Jeu
de taquin" ofSchutzenberger ([13]) or the "vidag&-remplissage" ([12, 5], extended in the case of oscillating
tableaux in [3]).
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