PROPERTIES OF THE ROBINSON-SCHENSTED CORRESPONDENCE FOR
OSCILLATING AND SKEW OSCILLATING TABLEAUX
(EXTENDED ABSTRACT?)

CEDRIC CHAUVE? AND SERGE DULUCQ?

ABSTRACT. In this paper, we consider the Robinson-Schensted correspondence for oscillating tableaux and
skew oscillating tableaux defined in [15] and [4]. First we give an analogue, for the oscillating tableaux, of
the classical geometric construction of Viennot for standard tableaux ([16]). Then, we extend a construction
of Sagan and Stanley ([10]), dealing with standard tableaux and skew tableaux, to deduce a property
about the number of odd height columns of a skew oscillating tableau. Finally, we give analogues for
skew oscillating tableaux of two classical constructions about this correspondence, Knuth classes ([7]) and
Beissinger algorithm ([1]).

REsuME. Dans cet article, nous considérons la correspondance de Robinson-Schensted pour les tableaux
oscillants et les tableaux oscillants gauches définie dans [15] et [4]. Premi¢rement, nous donnons, pour les
tableaux oscillants, une construction analogue & la construction géométrique classique de Viennot pour les
tableaux standard ([16]). Ensuite, nous étendons une construction de Sagan et Stanley ([10]), pour en déduire
une propriété sur le nombre de colonnes de hauteur impaire d’un tableau oscillant gauche. Finalement, nous
donnons des analogues pour les tableaux oscillants gauches de deux constructions classiques liées a cette
correspondance, les classes de Knuth ([7]) et l’algorithme de Beissinger (aph-

1. INTRODUCTION

The Robinson-Schensted correspondence is a classical bijection between permutations and pairs of stan-

dard tableaux of the same shape. It was defined in [11], and followed by numerous papers dealing with
the combinatorial properties of this correspondence, like [12], [7), [5), [13], [16] or [1]. More recently, this
correspondence was extended to various kinds of tableaux that are generalizations, in the Young lattice,
of the standard tableaux: semi-standard tableaux ([7]), skew tableaux ([10]), oscillating tableaux (first by
Sundaram in [14, 15], then independtly Delest, Dulucq and Favreau in [3]) and skew oscillating tableaux
(14D).
In this article, we extend classical properties and constructions related to the Robinson-Schensted corres-
pondence to the correspondences for oscillating tableaux and skew oscillating tableaux. In the sections 2 and
3, we give basic definitions on biwords and tableaux and we present the correspondence for skew oscillating
tableaux. Then we extend a geometric version of the Robinson-Schensted correspondence due to Viennot
([16]) to the case of oscillating tableaux, and, following [10], we define a construction allowing extension of
properties of oscillating tableaux to skew oscillating tableaux. Finally, in sections 6 and 7, we extend to skew
oscillating tableaux a result of Knuth ([7]) and an algorithm of Beissinger ([1p-

2. DEFINITIONS AND NOTATIONS

We assume that the reader is familiar with the combinatorics of the Young tableaux in general and, in
particular, with the Robinson-Schensted correspondence (see [11], or [9] for a survey).

We use the notation A = (A1, ... , Ax) for both a partition and the corresponding Ferrers diagram displayed
in “French” notation (the smallest part Ax in the top row). The conjugate of ) is the partition N o=
(MN,... ,AL,), where X} = Card{i X; > j}. If p C X then the corresponding skew shape A/u is the set
{c| ce )\ c¢ p}. If |\ p| =n then we write A/ n and say that \/u is a skew partition of n.

A Young tableau T of shape A/u is a labeling of the cells of A/u with an ordered alphabet (of positive
integers here) so that the rows and columns are weakly increasing. We denote by T'(i, j) the label of the cell

1A complete version of this abstract is avalaible in [2].
2Email : chauve@labri.u-bordeaux.fr
3Email : dulucq@labri.u-bordeaux.fr
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in the it* row and jt* column, so that k € T means k = T(¢,7) for some %,j. A Young tableau is partial
if its elements are distinct. Further it is standard if it is partial and the labels are 1 through n = |[\/p|.
The sets of partial and (skew) standard tableaux of shape A/u will respectively be denoted by PT'(\ /1) and
ST(M/p). Analogously, the set of tableaux of shape A\/u with rows and columns strictly decreasing will be
denoted by PT(\/p). For example, when A = (5,4,2) and u = (3,2), the three following tableaux belong
respectively to PT'(A/u), ST(A\/p) and PT()\/u).

1[5 1]3 311
219 416 64
416] 215] 512]

A skew oscillating tableau of length n, initial shape o, and final shape 3 is a sequence of Ferrers diagrams
T = (o= Ao, A\1,... , Ay = ) where ) is obtained from A\;z_; by insertion or deletion of a cell. If o = 0, T
is an oscillating tableau. We denote by SOT, (a — B) the set of skew oscillating tableaux of length n, initial
shape a and final shape § and by OT,(8) the set of oscillating tableaux of length n and final shape 8. For
example, if @ = (3,2) and 8 = (2,2, 2), the following tableau belongs to SOTs(a — 8).

— — —

J ] [ ] |

Of course, a skew oscillating tableau of SOT,(u — A) having only insertion steps, is a (skew) standard
tableau of ST'(A/pu), the label of a cell being given by the step of creation of this cell.

Classicaly, we denote by S, the set of the permutations of [n] and by INV,, the set of the involutions
of [n], and, for a permutation o, we denote by o1 its inverse. Sometimes, we will write an involution as
a product of cycles in increasing order of their greatest element and with a < b for each cycle (a,b), as for
example, o = (1)(2, 3)(5)(4,6). A sequence of at most n integers, pairwise distinct and less than or equal to
n, will be called a partial permutation of [n]. For example, 4 1 5 is a partial permutation on [n] for n > 5.

A biword 7 on [n] = {1,2,... ,n} is a sequence of vertical pairs of positive integers of [n], pairwise distinct,
= (]’: ;: - ;’; ) In this paper we consider biwords such that all the i; and Ji are distinct in 7 and 4; > 7,

for [ =1,...k. We denote by # the top row of 7 and by # its bottom row, and we write such biwords with
the convention 4; > i5 > ... > ix. We denote the set of these biwords on [n] by BW,,. Moreover, we often
represent an element 7 of BW», with a graph G(r), as in the following example.

12 11 10 9 8 7

(12 11 8 7 3 G”—mX./.
T=\10 4 15 2 ﬂ-_o\_/o o
1 2 3 4 5 6

In such a graph, we call diagonal edges the edges between the two rows of vertices. If 7 € BW,,, its inverse
7~! is obtained by changing every pair (i;,5;) to (n +1 — jj,n+1 — 1;). It follows that, for 7 € BW,,,
G(7~!) is obtained from G(7) by an horizontal symmetry. :

12 11 10 9 8 7

12 11 9 8 3 () °

-1 _ -1\

g ‘(5 1,0261) Cas m ot
1 2 3 4 5 6

Finally, there is an immediate bijection between elements of BW,,, whose graph has exactly n diagonal

edges and permutations of S,.
1211 109 8 7

)G@:): — 243615
%

(12 11 10 9 8 7
= 3 615
2 3 4 5 6

2 4

Hence, if 7 corresponds to a permutation o, then 7! corresponds to o~ !.

3. ROBINSON-SCHENSTED CORRESPONDENCE

In [11], Schensted gives an algorithm which associates to a permutation ¢ of S,, a pair of standard tableaux
(P, Q) with the same shape A such that A n. The tableau P is called the insertion tableau of o and the
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tableau Q its recording tableau. This construction is the limiting case of one for partial permutations and
partial tableaux.

In [4], Dulucq and Sagan extend this algorithm to deal with skew oscillating tableaux. We recall their

result, keeping their notations. This algorithm relies on three kinds of insertion in a skew tableau (see

Example 3.1).
Let P be a skew tableau of shape A/pu.

1. The ezternal insertion is the insertion defined by Schensted ([11]) and inserts an integer z in P. We
denote the new tableau obtained after this insertion by ExztIns(P,z).

2. The internal insertion was introduced in [10]. Let (u,v) be a cell of P such that (u,v) ¢ por v =1,
(u—1,v) € poru=1,and (u,v—1) € u. The internal insertion of the cell (u,v) inserts the integer =
contained in P(u,v) from the row (u + 1) using the external insertion algorithm. This process doesn’t
add a label in the tableau P. We denote the new tableau by IntIns(P,u,v).

3. The empty insertion adds an empty cell in P(u,v), where (u —1,v) € poru =1, (u,v—1) € por
v =1, and (u,v) ¢ \. We denote the new tableau obtained after this insertion by EmptyIns(P,u,v).

Conversely, the deletion of the cell P(u,v), denoted by Del(P,u,v), can be an empty deletion if the cell is an
empty cell, an internal deletion if the process (this is the classical process of deletion defined by Schensted)
ends in filling a cell of u, or an ezternal deletion if the process ends with the expulsion of an integer out of

P.
Ezample 3.1.
_ 216 _ 2(6(8 _ 2 . .
P= 318 Eztins(P,5) = 375 Del(P,2,3) = A5k external deletion
(4] 416 176
P= 216 IntIns(P,1,3) = 213 Del(P,3,1) = : internal deletion
21318
318] 8]
P= 6| EmptyIns(P,3,2) = 6| Del(P,3,1)= g : empty cell deletion
3 3
<o

Remark 3.1. We call the elements displaced during an insertion process the “bumped” elements.

We now give a description and a detailed example (Example 3.2) of this algorithm and of its inverse (cf

[4]). The first, denoted by ®s0, has for input a triple (w,T,U) of BW, x nganﬁ[PT(ﬁ/,u) x PT (/)] and
for output a tableau P of SOT,(a — B).

Algorithm 1. ®so(n,T,U) - The output is a tableau P.

Let P,=T.

For i fromn to 1:

(a) if there is a cell P;(u,v) = i, then erase this cell to obtain P;_1,

(b) else if the pair (i,) belongs to =, then P;_1 = Exztl ns(P;, x),

(c) else if U(u,v) =14 and P;(u,v) ezists (with label z), then P, = IntIns(P;,u,v),
(d) else P;_1 = EmptyIns(P;,u,v).

Finally, the tableauz P; have respective shapes A; Jui and P = (Ao, ... ,An)-

Algorithm 2. &3} (P) - The output is a triple (r,T,U).

Suppose P = (a0 = Ao, --- s An = B). '

Letm=0,To =a and Uy = a.

For i from 1 ton:

(@) if Ai = Mi—1 + (u,v), then add in T;—1 a cell in position (u,v) with label i to obtain T;, U; = U;—1,
(b) else (\; = Xi—1 — (u,v)) T; = Del(T;-1,u,v):

(b.1) if this deletion is external (z ejected out of T;1), then add the pair (t,z) tom, Uy =U;_1.

(b.2) else if it is internal (the cell T, (u',v') is filled), then label the cell Ui_1(u',v") with i to obtain U;,
(b.3) else label the cell U;_ (u,v) with i to obtain Ui.

Finally, T =T, and U = U,.
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Ezample 3.2. Let P be the following skew oscillating tableau.

— - =
P= | ] | [ ]
Then:

i= 0 1 2 3 4 5 6

1 [ [ 1] _

4 1[4 1
T; = l [3] 3] 3] [4]
2 5(2

U; = - - -

3z
Il
=
|
|
|
|
|
TN
w o |
—

P is in bijection with (w,Ts,Us). ©

Theorem 3.1. ([4]) Let o and B be fized partitions and n a fized integer. ®so is a bijection from triples
(7, T,U) of BWy x U, canglPT(8/1) x PT(a/n)], such that 7UTUU = [n], to tableaus P of SOT(a — B).

Remark 3.2. If the skew oscillating tableau P has only insertion steps (it is a skew standard tableau P’ of
shape 3/a), the bijection 5o is such that ®55(P) = (0, P',a).

Theorem 3.2. ([4]) Let @ be a fized partition and n a fized integer. There is a bijection RSso from triples
(m,T,U) of BWapn X U,canglPT(a/u) x PT(a/p)] such that 7UTUU = [2n] to pairs of tableauz (P, Q) of
UslSOT,(a = B) x SOT,(a = B)].

This result follows immediately from the previous theorem and:
Mo(=a)y--- 3 An,--- ydan(= @) +—= (P = (s A1;-- - 1 An(= 8))y @ = (A2n; A2n—1y--. , An(= B)))-

Using skew oscillating tableaux with empty initial and final shapes, we have a Robinson-Schensted cor-
respondence for oscillating tableaux, as stated in the following results.

Theorem 3.3. ([15]) Let B be a fized partition and n a fized integer. There is a bijection ®o from pairs
(7, T) of BW,, x PT(B) such that nUT = [n] to tableauz P of OT,(B).

Theorem 3.4. ([15]) Let n be a fized integer. There is a bijection RSp from biwords © of BWay, of size 2n
to pairs of tableauz (P, Q) of UglOTn(8) x OTn(B)]-

It is straightforward to verify that if P and @ have only insertion steps (i.e. P and @ are standard tab-
leaux), G(7) has exactly n diagonal edges (then 7 corresponds to a permutation) and we have the original
Robinson-Schensted correspondence for standard tableaux.

4. ANALOGUE OF THE GEOMETRIC CONSTRUCTION OF VIENNOT

In this section, we give an analogue for oscillating tableaux of a beautiful construction of Viennot for
standard tableaux ([16]). We follow the presentation of the construction of Viennot given in [9].
First, we explain how we represent a biword on [2n], 7 = (J’; ;; - ;: ) of [n] X [n] in the part {0,1,... ,n} x
{0,1,...,n} of the Cartesian plane (see Example 4.1).
1. We define a map X from abscissas z (z = 0,1,...,n) into {2n + 1} U % such that X(0) = 2n + 1 and
X (z) is the zt? greatest element of #, for z > 0.
2. We define a map Y from ordinates y (y =0, 1,...,n) into {0} U# such that Y'(0) = 0 and Y (y) is the
y** lowest element of #, for y > 0.
3. We define a valid domain which is the set of points (z,y) such that X (z) > Y (y).
4. For each pair (41, j;) of 7, we set up the point (X ~*(3;), Y ~1(5;)) (which is in the valid domain).

Ezample 4.1. Here we give a biword = of BW; and its representation (for readability, the limit of the valid
domain, the dashed line, is slightly extended on the figure).
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We introduce definitions intuitively related to a lighting of the representation of a biword from (0,0)
(illustrated in Example 4.2). ;

Definition 4.1. The shadow S(r) of a biword w is the set of points (z,y) such that there is a point (z',y')
of the representation of m with ' < z and y <y.

Shadow lines of = are defined recursively. The first shadow line Ly of m is the boundary of S(w). To construct
the shadow line Liy1 of m, remove the points of the representation of m lying on L; and construct the shadow
line of the remaining points. This procedure ends when there is no remaining point on the plane.

The SW-corners of a shadow line are the points of the representation of m located on this line.

The NE-corners of a shadow line are the points (z,y) of the shadow line such that (z,y) is in the valid
domain and (z + 1,y) and (z,y + 1) don’t belong to this shadow line.

Definition 4.2. The kt* skeleton ©(®) of a biword m is a biword defined recursively by
1. W =qx

2. n(k+1) = (’;83 {,(83 - ;’,{((;::;) where (i1,71);-- - » (im,jm) are the NE-corners of n(k),

The shadow diagram of 7 is the set of shadow lines of all the skeletons ©®) of m. The shadow lines of (k)
are denoted Lgk).
Ezample 4.2. Let 7 be the biword of Example 4.1. The figure on the left gives the shadow of = (which has

two shadow lines). The points marked with a circle (i.e. the points of the biword) are the SW-corners, and
the points marked with a square are the NE-corners. The figure on the right gives the shadow diagram of 7.

']
Y@y V vV Y(y)y z=y
WLy il AL L) L@
8 6 / / 8 6 | 2
NN/ .
7 5 Y 75 |
//4 1
6 4 7 // 6 4 "
3 3 3 3 =% b
]
2 2 Ly 2 2 L
d m
11 4 11 — L
1 ]
0 01 2 3 4 5 62 0 07123 4 5 62
131211 109 5 4 X(@) 1312 11 10 9 5 4 X(z)

o

In the following result, we show that, for a biword 7, the behaviour of the algorithm ®o(7,9), can be
described by the shadow diagram of 7.

Theorem 4.1. Let 7 be a biword of BWa, and T an oscillating tableau of OTen such that ®o(x,0) =T.
Following, from the left to the right, the shadow line Lg-’) describes the behaviour of the 5t cell of the ith row
of the tableauz Ton, ... ,To in the following way:
1. a SW-corner (z,y) indicates that during step X (z), the label Y (y) fills this cell, which is created if not
present,
2. when the line leaves the valid domain at (z,y), this cell is deleted during the step Y (y),
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3. otherwise, the cell remains unchanged.
Ezample 4.3. Let 7 be the biword of BW;, defined above (see Example 4.1). We recall its shadow diagram.

b g F—
o llill g
7 5 '

6 4 !

3 3 == ()
2 2 — LV
11 —L{")
0 0§ S5 6%

131211109 5 4 X(z)
The execution of ®o(7, ) produces the following partial tableaux Tis, ... , Tp:

7 718 7
0 (718] [318] [36] [3[6] [3T6] 2] [12] 0
Ty Tuu T Ty T3 Ty Ts Ts Ty T3 T T To

Now, we observe, for example, the second cell of the first row and the shadow line Lgl).

The line has a first SW-corner at (2,6) with X (2) = 11 and Y(6) = 8, followed by the SW-corner (4, 4) with
X(4) =9 and Y (4) = 6, leaves the valid domain at the same point (4, 4), enters the valid domain again to go
to the SW-corner (6,2) with X(6) = 4 and Y(2) = 2 and finally leaves the valid domain at the same point
(6,2).

On the other hand, during the execution of ®¢, (the tableaux are constructed from T, to Tb), the second
cell of the first row is created during step 11 (passing from Ti; to Tjo) with label 8, this label is replaced
during step 9 by the label 6, which remains unchanged until the first deletion of the cell during step 6. The
cell is created again during step 4 with label 2 and is finally deleted during step 2.

Finally we can say that 7 is in bijection with the following pair (P, Q) of oscillating tableaux.

p=oJ[T] JBDED,Q=0DW—I | | 13

<

Remark 4.1. If 7w is a biword of BWa, such that G(w) has exactly n diagonal edges, our construction
is equivalent to the original construction of Viennot (in particular, the valid domain is {0,1,...,n} x
{0,1,... ,n} and there is no need of the maps X and Y).

Now, we show how we can use the shadow diagram of a biword to deduce combinatorial properties of the
Robinson-Schensted correspondence for oscillating tableaux.
Theorem 4.2. Let 7 be a biword of BWs,, and P, Q two oscillating tableauz of OT,(B) such that RSo () =
(P,Q). Then, the i*® row of B has k cells if and only if k shadow lines Lg-’) intersect the line x = y in the
valid domain. _
Ezample 4.4. The biword 7 of Example 4.1 is in bijection with a couple (P, Q) of oscillating tableaux of
OTs(B) such that = [IJ. On the shadow diagram of 7 (see Example 4.3), the line z = y intersects in the
valid domain only Lgl) and Lgl) and we verify the result. o

One of the beautiful properties of the Robinson-Schensted correspondence relies on the inversion of the
standard tableaux P and Q. Schiitzenberger showed, in [12], that if (P, Q) is in bijection with a permutation
o, then (@, P) is in bijection with 6=, and so, the Robinson-Schensted correspondence is a bijection between
involutions and standard tableaux. Later, these results were again demonstrated by Viennot in [16] using
symmetry properties of its geometric construction. In the same way, with our construction we can prove
similar results for oscillating tableaux.

Property 4.1. If 7 is a biword of BWoy,, then the valid domain and the shadow lines of 7= are the reflection
in the line ¢ = y of those of the representation of .
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Definition 4.3. We denote INV,; the set of involutions on [n] such that every cycle (a,b) (a #b) and every
fized point (a) can be of two types (colors), called bold or normal.

Proposition 4.1. There is a bijection (: {m € BWap|r =71} = INVZ.

1211.),0.\9.87
:>\,/,<:I<—C+//.\\>

[e]
1 2 3 4 5 6

Ezample 4.5.

1 2 3 4 5 6

We have then ((r) = (3)(2,4)(1,5)(6): the cycle (2,4) and the fixed point (8) are bold, the cycle (1, 5) and
the fixed point (6) are normal.

Using Property 4.1 and the previous Proposition, we have a geometric proof of the following results.

Theorem 4.3. ([3]) Let 7 be a biword of BWa, and P, Q oscillating tableauz such that RSo(m) = (P, Q)-
Then RSo(r~!) = (@, P)-

Corollary 4.1. ([3]) RSo induces a bijection between OT,,(B) and the involutions of INVZ having no bold
fized point.

Furthermore, with the bijection between involutions and standard tableaux, Schiitzenberger ([12]) showed
that the number of columns of this standard tableau with odd height is the number of fixed points of the
involution, a result which has a direct geometric proof using the construction of Viennot. Similarly, using
our construction, we have a geometric proof of an analogous result for oscillating tableaux.

Theorem 4.4. Let o be an involution of INV¢ without bold fized point and P an oscillating tableau of
OT,(B) such that o is in bijection with P as in Corollary 4.1. Then odd(B) = fizn (o), where odd(B) is the
number of columns in (§ with odd height and fizn (o) 15 the number of normal fized points of 0.

5. PROPERTIES OF SKEW OSCILLATING TABLEAUX

In this section, we extend some of the previous properties of the Robinson-Schensted correspondence
for oscillating tableaux to the correspondence for skew oscillating tableaux. We define an extension of a
construction of Sagan and Stanley (see [10]), in order to treat a pair of skew oscillating tableaux as a pair of
oscillating tableaux.

Definition 5.1. The column word of a partial tableau P is the sequence of integers corresponding to the
columns of P read from left to right, each column being read from top to bottom.

Let o be a Ferrers diagram. We denote C, the oscillating tableau corresponding to the construction of
column by column, from left to right, each column being constructed from top to bottom. P, is the standard
tableau corresponding to Co (which has only insertion steps), and T the column word of Py.

Ezample 5.1. a=(2,2)

214
Ca=(0[:| B i . Py=13] andme=2143

<

Now we introduce the notion of completion of a skew oscillating tableau. Let a be a partition such that
a F m. We define a map cpl from SOT,(a = B) into OTn4m (B), that associates to a skew oscillating tableau
P the oscillating tableau cpl(P) that is the concatenation of C, and P. We say that Cy is the completion
of P.

Ezample 5.2.

P=B jJ (1] = epi(P)=0 [ B 1]
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Furthermore, we use a new alphabet for the labels of partial tableaux, N U { .ﬁ 15,k € N} U {j*: j,k e N},
such that, for z, 7, k and k' positive integers we have

F <TG <o << < (o1,

Next, let @, u and X be partitions such that # C aand p C A We use a map [y (defined in [10]) from
PT(a/u) into PT(a), that associates to a partial tableau P the tableau [P]x, obtained in labeling (from top
to bottom) the empty cells of the j** column of P with 5, j%i-1, ... FNTEFL I = 1 we write [P] for
[P]x. For example, let A = (4,3,1) (V' = 3,2,2,1)).

1 1 [1]
P= 217] _, [Phh= BR7[2]7] , [P)= [P27[27%
58 17RT3%[5]8] 11273758

Now, following [10], we define a transformation of a triple (m, T,U) of Theorem 3.2 ((x,T,U ) € BW,,, x
PT(a/u) x PT(a/u) with a - m and o has I rows) into a biword of BWsn with n’ = n +m. We denote
this biword [r, T, U] or, when there is no possible confusion, [=].

Algorithm 3. [|(7,T,U) - The output is a biword (7] of BWay.
Let[f]=2U U U L1 ... 1% (I—1)! ... (- 1) S LI 8
For each element a of [r']:

(a) if a € %, then [7'](a) = n(a),

(b) else ifa= .ﬁ: then [ﬂl](a) = [T]a(kaj):

(c) else (a=U(k,7)), [v')(a) = j* , with k' = o, =k +1.

Finally, ] is given by the normalization of [7'] on [2n].

Ezample 5.3. With the following triple (7, T,U)

7r=<4>T_—_ 316/ y= |22

1

we have
[,]_ﬁ112_21542 (41312110986
”_31262211121”"72104153'

We now give the result that relates the Robinson-Schensted correspondence for skew oscillating tableaux
to the Robinson-Schensted correspondence for oscillating tableaux. This is an extension of a similar result
of [10].

Lemma 5.1. Let (n,T,U) € BW,, x PT(a/p) x PT(a/u), P and Q be tableauz of SOTp(a — B). If
RSso(m,T,U) = (P,Q) then RSo([r]) = (cpl(P),cpl(Q)).

Ezample 5.4. The triple (r,T,U ) of the Example 5.3 is in bijection by RSso with the couple of skew
oscillating tableaux (P, Q).
[] 1

P= [ ] [1, 0= 1 [ 1,
[7] is in bijection by RSo with the oscillating tableaux (P’, Q') = (cpl(P), cpl(Q)). o

Using this construction, we have new proofs of properties of the Robinson-Schensted correspondence for
skew oscillating tableaux.

Definition 5.2. Let n be an integer and P a tableau of PT (M u) (respectively PT(\/p)), such that all
these labels are less than or equal to n. We define the tableau P° of PT(\/p) (respectively PT(\/u)) by
Pe(u,v) =n+1— P(u,v) for each cell (u,v) € M p.
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Ezample 5.5. Let n = 8.

P= 2 = P°= 7
1[3]5] 8]6]4]

(o

Theorem 5.1. ([4]) Let (n,T,U) € BWan x PT(a/ 1) x PT(e/p) and P, Q two skew oscillating tableauz
of SOTy(a — B), such that RSso(w,T,U) = (P,Q). Then RSso(r~1,U¢,T¢) = (@,.P)-

Corollary 5.1. ([4]) RSso induces a bijection between SOT, (o — B) and the pairs (o,T) such that o €
INVS, T € PT(a/p), ¢~ (o)UTUT® = [2n].

Ezample 5.6. Let P be the following skew oscillating tableau.

=
P= J il
The pair (P, P) is in bijection with (7, T,U):
12 1]
R I
7] 6]
and, as 7 = n~! and U = T°, we have P in bijection with (o, T):
12

o= 1)@)@46)6), T=[3

<

Moreover, using Theorem 4.4 and Lemma 5.1 we can prove a new result on the number of odd height
columns of the final shape of a skew oscillating tableau.

Theorem 5.2. Let o be an involution of INVZ, T € PT(a/u) and P € SOT,(a — B), such that (0,T) is
in bijection with P following Corollary 5.1. Then odd(B) = odd(u) + fizn(o)-

We can verify this result on the previous example (Example 5.6), where the final shape § of P has two
odd columns, p has one odd column and ¢ has one normal fixed point.

6. KNUTH CLASSES FOR OSCILLATING AND SKEW OSCILLATING TABLEAUX

Another classical property of the Robinson-Schensted correspondence is due to Knuth ([7]). He gives a
characterization of permutations having the same insertion tableau (this result was later extended to give a
characterization of permutations having the same recording tableau).

Definition 6.1. Two partial permutations on [n], o and o', differ by a Knuth relation if and only if there
are three integers a, bandc (1<a<b<cs<n ) such that

=j1...jkba,cjk+4...jp anda’:jl...jk bcajk+4...jp, or
o=j1..-jkacbhjrta---Jp and o’ =j1...Jk € Qb jrta .- Jp-

Definition 6.2. Two partial permutations on [n], o and o', such that the elements ofo are j1 <j2 <...<
jp and those of o' are j < jh<...<jp, differ by a dual Knuth relation if and only if there is an integer k
such that

0’=j,;.1 ---jk+1-«-jk--'jk+2--~ji,, a’I'I,dO":j.;1 J;c+2];c];c+1-7:,’ or

0=ji1 --'jk-i-l---jk+2---jk---ji,, anda’:jgl J;cj;€+2];c+1~7:p
Ezample 6.1. 534176and 53471 6 differ by a Knuth relation of the form (bac—bca).
310152 and 49 287 differ by a dual Knuth relation of the form (k42 - - - Jk - - - Jk+1 = Jky1 -~ o Tkya)
(the elements involved by this transformation are underlined). o
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Definition 6.3. Two partial permutations on [n], o and o', are K-equivalent, o ~y o (respectively K-
equivalent, o ~x+ o'), if and only if there are oy, ... »Op, partial permutations on [n], such that oy = o,
op =0', 0; and oiy1 differ only by a Knuth relation (respectively a dual Knuth relation).

The result of Knuth is the following,.

Theorem 6.1. ([7]) Let o and o’ be two permutations of Sy, in bijection, by the Robinson-Schensted corres-
pondence, repectively with (P,Q) and (P',Q’ ).

1. P=P if and only if 0 ~g o'.
2. Q=Q' if and only if o ~y o'.

Now, we extend this result to oscillating tableaux.

Definition 6.4. Two biwords = and ' of BW, are K-equivalent, ™ ~g 7' (respectively, K "-equivalent,
7~ '), if and only if there are m, ... » Tp, biwords of BW,, such that m, =, mp =7, and %; and iy,
differ only by a Knuth relation (respectively #t; = #t;,1, #; and Tit1 differ by a dual Knuth relation,).

Definition 6.5. Let w be a biword of BWa,. The three biwords Th, T and T, are defined by
T = A{(, )l > n, 5t >0}, mo= {0l < n, §i <n}, 7= {GLa)li > n, S <n}

Theorem 6.2. Let w and n' be two biwords of BWa,, such that RSo(r) = (P,Q) and RSo(n') = (P',Q").

1. P=P' if and only if m = T and T g 7.
2. Q=Q' if and only if 7}, = m, and T, ~gr mh.

Ezample 6.2. Let 7 and 7’ be the following biwords.

_(14 13 12 11 10 7 4\ , (14 12 11 10 9 7 4
"“\9 5 3 8 6 12)"=(135 6 8 3152)-

If RSo(r) = (P, Q) and RSo(n’') = (P',Q’), then P = P’ because

7rl=7r{=<,17 3)and7rc=<153 1532 160)7ré=(152 ];51 §>=>7“rc=536:1<563='é.

Using this result and Lemma 5.1, we have a characterization of Knuth classes and dual Knuth classes for
skew oscillating tableaux. We have no simple necessary and sufficient conditions on the triples (r, T, U ) of
Theorem 3.2 to express these notions of Knuth classes and dual Knuth classes, but we have simple necessary
conditions.

Definition 6.6. Let P be a tableau of PT(\/p) or PT()\/u) and k a fized integer.
We denote Psy, the restriction of P to cells P(i,7) > k obtained by emptying (suppressing if P € PT(\/p))
the cells P(i,j) < k. We define analogously Psi, P<y and Py.

Ezample 6.3.

_[3]4 B EE _
P—125|=>P<4‘121’P—54ﬂ=>P<4‘ 1]

(]

Corollary 6.1. Let (r,T,U) and (7', T'",U’) with RSso(r,T,U) = (P,Q) and RSso(x',T",U") = (P',Q").

1. If P=P, then m, = m] and U<n =Ug,.
2. IfQ == QI then Th = 7:';z and TZ" = Tén
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7. BEISSINGER ALGORITHM

The Robinson-Schensted correspondence implies a bijection between involutions and standard tableaux
(an involution ¢ is in bijection with a pair of standard tableaux (P, P)). In [1], Beissinger gives a simple
algorithm to directly obtain the standard tableau P in bijection with o without using the Robinson-Schen-
sted correspondence. In this section, we extend this result to the case skew oscillating tableaux (see Corollary
5.1).

First, we recall briefly the algorithm of Beissinger. Let o be an involution written as in Section 2.

Algorithm 4. Beiss(o) - The output is a tableau P.

Let Py = 0.

For i from 1 to k, the number of cycles ofo: -

(a) if the it* cycle c; of o is a fized point (a), then P; = ExtIns(Pi-1,a).

(b) else (c; = (a,b)), P = EztIns(Pi—1,a), this insertion ending in row u, and add b at the end of row u+1
of P! to obtain P;.

Finally, P = P.

Ezample 7.1. Let o = (3)(1,5)(4,6)(2,7)(8)(9). The execution of Beiss(co) gives the following result.

i 0 1 2 3 4 5 6
7 7] i
5] 5(6] [5]6 506
316] [3[4] [3]4 34
P, 0 14 [12] R [OkED =r

<

Theorem 7.1. ([1]) Let o € INV, and P = Beiss(n). Then o is in bijection, by the Robinson-Schensted
correspondence for standard tableauz, with (P, P).

Now, we propose a similar algorithm related to the Robinson-Schensted correspondence for skew oscillating
tableaux. This algorithm, denoted Beissso, has for input a pair (o, T) satisfying the conditions of Corollary
5.1, for output a triple (#',T",U’) where 7 is a biword, T and P two partial tableaux and has the following
property, that is a generalization of Theorem 7.1.

Theorem 7.2. Let P € SOT,(a = B), 0 € INVE, T € PT(a/p) and 7 = ¢~1(o) such that RS55(P, P) =
(7, T,T€). Then ®so(Beissso(o,T)) = P. -

Algorithm 5. Beissso(o,T) - The output is a triple («',T',U").

(0 € INVE, T € PT(a/p)) ™' =0, Tg = 1, Ul = T8«

For i from 1 to the number of cycles of o:

(a) if the it* cycle ¢; of o is such that ¢; = (a,b), then add (a,b) to n', T} = T;_,.

(b) else if c; = (a,b), then T}' = Extl ns(T._,,a), this insertion ending in row g, and adding b at the end of
row g+ 1 of T} gives T}.

(c) else if c; = (a), then T] = ExtIns(T)_,,a).

(d) else (ci = (a)),

(d.1) if @ = T<n41(u,v) and T’;—1(u,v) ezists, then T}’ = IntI ns(T!_,,u,v), this insertion ending in row g,
and adding a at the end of row g+ 1 of T} gives T,

(d.2) else if a = T<n41(u,v) and the cell T";_1(u,v) doesn’t exist, then T} = EmptyIns(T!_,,u,v), and
adding a at the end of row u+1 of T;' gives T;.

(d.3) else a =TS, (u,v), T{ =T

Finally, T' = T.

Ezample 7.2. Let (0,T) be the following pair,

(-=weeseune. 7= HHm) = - Hpm ™= 0D
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Beissso(o,T) has the following behaviour

i 0 1 2 3 4 5 6
6] 6]
5 | 15
5] 3 3
(] (] 3 2 218
i/ - [3] 2] | - |
- (D)
6]
5
v=(1)m=p_ v=H4n
218
H

©

Remark 7.1. Using Theorem 7.2, we have a new and simple proof of Theorem 5.2.

8. CONCLUSION

As stated in [4], the Robinson-Schensted correspondence for the skew oscillating tableaux defined by
Dulucq and Sagan is a very natural extension of the Robinson-Schensted correspondence, and, following the
ideas of Sagan and Stanley in [10], it seems reasonable to hope find another properties of this correspondence,
in particular, with the notions of generalized insertion and generalized deletion (see [6]). On the other hand,
it could be interesting to study the class of shifted skew oscillating tableaux (see [8, 17]). Finally, there
are few other classical properties of the Robinson-Schensted correspondence we didn’t extend, like the “Jeu
de taquin” of Schiitzenberger ([13]) or the “vidage-remplissage” ([12, 5], extended in the case of oscillating
tableaux in [3]).
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