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Summary. We present a connection between distance-regular graphs and the quantum enveloping
algebra'£/g'(s^(2)fo fthe Lie algebra sl(2). Let F be a distance-regular gI'aPhwithdiameter^_^3 alld

valency fc^ 3 which is not isomorphic to the d-cube. Fix a vertex 2; and letT=T(x) denote the.
TerwiTliger algebra of F. Then T is generated by certain matrices satisfying the defining relations of
Ug\sl(2)) for some complex number q i {0, 1, -1} if and only if F is bipartite and 2-homogeneous
in the sense of Nomura.

Nous presentons une connexion entre des graphes distance-reguliers et 1'algebre enveloppante quan-
tique Ug(sl(2)) de 1'algebre de Lie s/(2). Soit F un graphe distance-regulier de diametre d> 3 et de
valence fc ̂  3 qui n'est pas isomorphe a un hypercube. Soit x un sommet de F et soit T = T(. c)
1'algebre deTerwilliger de F. Alhors T est genere par certaines matrices qui satisfait les relations de
la definition de Uq(sl(2)) pour un nombre complexe q i {0, 1, -1} si et seulement si F est bipartite
et 2-homogne dans Ie sens de Nomura.

Extended abstract.
This poster is based upon [4]. We present a connection between distance-regular graphs

and Ug{sl{2)), the quantum enveloping algebra of the Lie algebra sJ (2). h is well known
that there'is a "natural" sl(2) action on the d-cubes (see Proctor [10] or Go [5]). Here we
describe the distance-regular graphs with a similar natural Ug(sl(2)) action. We show that
these graphs are precisely the bipartite distance-regular graphs which are 2-homogeneous in
the sense'of [8, 9]-, excluding the d-cubes. To state this precisely, we recall some definitions

Let (r/(sf(2)) denote the unital associative C-algebra generated by /V-, X+, and Z
subject to the relations

Z^--X-Z=2X-, ZX+-X+Z=-2X+, ^-X+-X+X-=Z. (1)

U(sl{2)} is called the universal enveloping algebra of sl (2). For any complex number q
satisfying

g^l, g^O, 9^-1, (2)
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let Ug(sl{2)) denote the unital associative C-algebra generated by A'~, ^+, y, and y~l
subject to the relations

yy-l=y-ly=i, ^
yX -=qlX-y, ^+=^-2^+y, X-^ -X+X-='y~y~'.

q-q-1
ug {slW) is called the quantum enveloping algebra of sl (2). For more on Uy(sl{2)'), see

[6, 7].
Let F = {X, R) denote a finite, undirected, connected graph without loops or multiple

edges and having vertex set X, edge set R, distance function 5, and diameter d. F is said
to be dzstance-regular whenever for all integers ̂  i, j (0 ̂  £, i, j ^ d) there exists a scalar
Pl, such that for all x, y e X with Q[x, y} = ^, |{^ ̂  X\ 9(x, z) = i, 9(y, 2) = j}\ = pe,.
Assume that F is distance-regular Set CQ = 0, c, = p\^ (1 ̂  z ^ d), a, = p[^ [Q ̂  i ^d},
^ = P\i+i (0 < » ^ri-l)'_and bd = 0- F is regular with valency k = bo = p?i, -and
c, + a-i + bi = k (0<i^d). F is bipartite precisely when a, =0 {Q ̂ i^d). For more on
distance-regular graphs, see [1, 2].

Let F = (^, ^R) denote a bipartite distance-regular graph. F is said to be 2-homogeneous
whenever for all integers i [1 ̂  i < d) there exists a scalar 7, such that for all x, y, z EX
with Q(x, y^ = z, 9(x, z} = i, 9(y, z) = 2, |{w   ̂|9(. c, w) = i, 5(y, u;) = l, '^, w~)=
1^ = 7Y. The c?'cu6e is the §raPh with vertex set x = {0' l}d (the d-tuples with entries
in {0, 1}) such that two vertices are adjacent if and only if they differ in precisely one
coordinate. The c?-cube is a 2-homogeneous bipartite distance-regular graph with 7, = 1
(1 ̂ '^ c?- 1). In the ri-cube, there is a unique vertex at distance d from any given vertex,
so the rf-cube is 2-homogeneous despite the fact that 7^ is not defined. The 2-homogeneous
bipartite distance-regular graphs have been studied in [3, 4, 9, 12].

Let Mat^(C) denote the C-algebra of matrices with rows and columns indexed by X.
Let A   Ma^(C) denote the adjacency matrix of F. For the rest of this section fix x   X.
For all i (0 S » ^ ^define ^* = ^(a-) to be the diagonal matrix in Mat^(C) such
that for all y ^ X_, E^ has (y, y)-entry equal to 1 if 9(x, y) = i, and 0 otherwise. 'Let
r=J'^^.,denote. thesuba!gebraofMa^(c) generated by A, £'0*, E^, ..., £'^. TiscalTed
the Terwilliger algebra of T with respect to x. For more on Terwilliger algebras, see
we^et L = ^EtAE^F= Sto^A^, and R = ^EfAE^^^

Proctor [10] showed that if F is isomorphic to the ri-cube, ' then th7 matrices X- = L.
X+ = R, &nd Z =Ef=o(d-2i)E^ satisfy the relations (1) (see also Go [5]) . In fact, we
may consider matrices of a slightly more general form:

X~=^-^;AE^, ^=ELI+£.-^.'L,, Z=^., E;, (5)
where a-f, a;,+, 2; are arbitrary complex scalars.

Theorem 1 Let f = (X, R) denote a distance-regular graph with diameter d > 3 and
valency k > 3. F^x x ^X, and write E; = E;[x), T - T\x). Let X-, X+, and Z be "any
matrices of the form (5). Then the following are equivalent.
(i) X~, X+, and Z generate T and satisfy (1).

(ii) F is isomorphic to the d-cube, and

= 1 (0<2<d-l),
= d-2i (O^i^d).

XTXt+i
z,
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While studying Ug{sl(2)) structures, we shall consider matrices of the form:

x~= El~o1 :rr^A^i, x+ = ^ xfE^AE^ Y = ^ y, E^ (6)

where x^~ {0 ̂ i <: d-1), x^~ (1 <i <: d), y, (0 ̂ i <: d) are arbitrary complex scalars.
Observe that Y is invertible if and only if y; ^0 (0 <, i <, d), 'm which case Y~l =

'd ",-! Ip*
. i^oVi ~^i-

Theorena 2 Let T = (X, R) denote a distance-regular graph with diameter d ^ 3 and
valency fc ^ 3. Assume that F is not isomorphic to the d-cube. Fix x E X, and write
E^ = E^(x) {0 <: i < d) and T = T(x). Let X~, X+, and Y be any matrices of the form
(6), and let q be any complex number. Then the following are equivalent.

(i) V is invertible, X-, X+, Y, Y-1 generate T, and (2)-(4) hold.

(ii) F is bipartite and 2-homogeneous, [q+q~}'}2 = cjft^ (A-2)(c2-l)-l,
e e {1, -1} such that

Vz = £9d-2t (0^?<^),
= ,q-W^+q^^+q^(q^^-2 (o<^d-l).

and there exists

X7xt+i
The factor of e appears in (ii) because the defining relations of Uq(sl(2)) are invariant under
changing the signs of any two of A", JV+, and Y.

The proofs of Theorems 1 and 2 are similar. The following combinatorial interpretations
of L and R allow us to translate the 2-homogeneous and bipartite conditions into algebraic
relations in T. This is the first step in the proof. For the moment, identify each vertex with
its characteristic column vector so that Afat^(C) acts by left multiplication. Then for all i
(Q ̂  i <: d) and all y   F^a;), Ly =Y^w, where the sum runs over all w   Fi(y) n r,_i(a;),
Fy = ^_, w, where the sum runs over all w G Fi(y) n F^a;); ^?y = S^, where the sum
runs over all w   Fi(y) n r, -i-i(a;), and E^y = Sijy. Observe that T is bipartite if and
only if F = 0. Moreover, for all i {0<i ̂  d) and for all y, z e Fi{x) (LRE^)(y, z) =
|ri(y)nri (z)nr, +i(a;)| (RLE^){y, z) = |ri(y)nri (2)nr, _i(a;)[. With this observation

it is not hard to show that a bipartite distance-regular graph is 2-homogeneous if and only
if LRE^, RLE^, and £,* are linearly dependent for all i {0<i^d).

The next step is to demonstrate a U{sl(2}) structure on the hypercubes and a Uq(sl(2))
structure on the remaining 2-homogeneous bipartite distance-regular graphs. We com-
pute the precise dependence relation for LRE^, RLE^, and £',*, after which it is easy
to verify that there is a U{sl(2)) or Ug(sl(2)) structure. To compute the coefficients of
the dependence for the hypercubes, we use the fact that the intersection numbers satisfy
c, = i, bi=d-i (0 <i < d) and Ji=l (1 < i <: d-1). 'In the case of the remaining
2-homogeneous bipartite distance-regular graphs, we use the following result.

Theorem 3 ([3, Theorem 35]) Let T = [X, R) denote a distance-regular graph with di-
ameter d ^ 3 and valency k ~^ 3. Suppose T is not isomorphic to the d-cube. Then Y is
bipartite and ̂ -homogeneous if and only if there exists a complex number q ^ {0, 1, -1}
such that

c, = e, [z], 6, = e, [ri - i] (0 ̂  z ^ d),
where ei= qi~l(qd+q2 ){gd+q2 i)~'i and [n]= {qn - q~n)(q - q~l)~1. Moreover, any such

q is real, and
7, = e2e, et'+\ (1 ̂  »^ri- 1).
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Now to prove Theorems 1 and 2 (i)=^(ii) we use a technical lemma which is applicable
to both the U{sl(2)) and Uq(sl(2)) structures. Most of the work goes into proving the
following result.

Leinma 4 Let V = [X^ R) denote a distance-regular graph with diameter d >^ 3 and valency
fc ^ 3. Fix x ^ X, and write £',* = £';*(a-), T = T(a-). Suppose that T is generated by
{X-, X+, E^E!,..., E^} andX-X+-X+X-   span{£o*, ^,..., ̂ }, where X- and
X+ are as in (5) or (6). Then T is bipartite and 2-homogeneous.

Once Lemma 4 is proved, we complete the proofs ofTheorems 1 and 2 (i)=?>(ii) by com-
paring the previously demonstrated [/(s/(2)) or [/g(s/(2)) structure on the 2-homogeneous
bipartite distance-regular graphs to that which is assumed in (i).

The proofs of Theorems 1 and 2 (ii)=>(i) require two steps. The first is to show that
the assumptions of (ii) imply a U{sl(2}) or Ug(sl(2)) structure (according to which theorem
we are proving). This is straight forward given the already demonstrated structures. The
second step is to show that T has the desired generators. First we show that E^, E^, ...,
E^ are polynomials in Z or V, according to which case we are in. Then we express R and
Z-, and thus A =: R+ L, 'm terms of X~, X+, and the E^. This shows that T has the
desired generators and completes the proof of Theorems 1 and 2.

Remark 5 The intersection numbers of 2-homogeneous bipartite distance-regular graphs
are determined in [9] as follows. Excluding the hypercubes, there are three infinite families
with d ^ 3 and k > 3. Their intersection arrays {bo, &i,..., &d_i; Ci, C2,..., Cd} are

(i) {k, k-l, l;l, k- l, k}, k^ 3.

(h) {47, 47- 1, 27, 1; 1, 27, 47- 1, 47} for 7 a positive integer.

(iii) {k, k- l, fc-^, ^, l;l, //, fc-^, A-- \, k}, with fc = 7(72+37+1), ^ =7(7+1) for
7 >: 2, an integer.

These arrays are realized by the following graphs: (i) complement of the 2 x (k + l)-grid;
(ii) Hadamard graphs of order 47; (iii) antipodal 2-cover of the Higman-Sims graph when
7=2. No examples of (iii) with 7 ^ 3 are known.

Remark 6 We know of a few other distance-regular graphs related to [/g(s/(2)) and
U(sl{2)}. Suppose F is a 2d-cycle (d > 2). Observe that F is vacuously 2-homogeneous.
Let 9 be a primitive 2cfth root of unity, and set X- == Ef=ol[d- i]E^AE^, X+ =
Zf=,[i}E^AE^ and Y = E^o9d-22^. Then Z-, X+, and V satisfy (4). 'However,
these matrices do not generate T. In addition to the U{sl(2)) structure of Theorem 1, the
4-cycle has the Ug(sl(2)) structure of Theorem 2 whenever q4 ^ 1.

Suppose F is the Hamming graph H{d, n), n ^ 3. The results of [11, p. 202] can be used
to show that X~ = I, X+ = R, and Z = LR- RL satisfy (1). However, these matrices
do not generate T and Z is not of the form (5).
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