Distance-Regular Graphs Related to the Quantum Enveloping Algebra of sl(2)

BRIAN CURTIN (Presenting author) (Address before FPSAC'99) Section de Mathématiques Université de Genève 2-4 rue du lièvre, Case Postale 240 CH 1211, Genève 24 curtin@math.unige.ch

(Address after FPSAC'99) Department of Mathematics, University of California, Berkeley, CA 94720 curtin@math.berkeley.edu

KAZUMASA NOMURA College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Kohnodai, Ichikawa, 272 Japan nomura@tmd.ac.jp

Summary. We present a connection between distance-regular graphs and the quantum enveloping algebra $U_q(sl(2))$ of the Lie algebra sl(2). Let Γ be a distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$ which is not isomorphic to the *d*-cube. Fix a vertex x and let $\mathcal{T} = \mathcal{T}(x)$ denote the. Terwilliger algebra of Γ . Then \mathcal{T} is generated by certain matrices satisfying the defining relations of $U_q(sl(2))$ for some complex number $q \notin \{0, 1, -1\}$ if and only if Γ is bipartite and 2-homogeneous in the sense of Nomura.

Nous présentons une connexion entre des graphes distance-réguliers et l'algèbre enveloppante quantique $U_q(sl(2))$ de l'algèbre de Lie sl(2). Soit Γ un graphe distance-régulier de diamètre $d \geq 3$ et de valence $k \geq 3$ qui n'est pas isomorphe à un hypercube. Soit x un sommet de Γ et soit $\mathcal{T} = \mathcal{T}(x)$ l'algèbre de Terwilliger de Γ . Alhors \mathcal{T} est généré par certaines matrices qui satisfait les relations de la définition de $U_q(sl(2))$ pour un nombre complexe $q \notin \{0, 1, -1\}$ si et seulement si Γ est bipartite et 2-homogne dans le sens de Nomura.

Extended abstract.

This poster is based upon [4]. We present a connection between distance-regular graphs and $U_q(sl(2))$, the quantum enveloping algebra of the Lie algebra sl(2). It is well known that there is a "natural" sl(2) action on the *d*-cubes (see Proctor [10] or Go [5]). Here we describe the distance-regular graphs with a similar natural $U_q(sl(2))$ action. We show that these graphs are precisely the bipartite distance-regular graphs which are 2-homogeneous in the sense of [8, 9], excluding the *d*-cubes. To state this precisely, we recall some definitions.

Let U(sl(2)) denote the unital associative C-algebra generated by \mathcal{X}^- , \mathcal{X}^+ , and \mathcal{Z} subject to the relations

$$\mathcal{Z}\mathcal{X}^{-} - \mathcal{X}^{-}\mathcal{Z} = 2\mathcal{X}^{-}, \quad \mathcal{Z}\mathcal{X}^{+} - \mathcal{X}^{+}\mathcal{Z} = -2\mathcal{X}^{+}, \quad \mathcal{X}^{-}\mathcal{X}^{+} - \mathcal{X}^{+}\mathcal{X}^{-} = \mathcal{Z}.$$
 (1)

U(sl(2)) is called the *universal enveloping algebra of* sl(2). For any complex number q satisfying

$$q \neq 1, \qquad q \neq 0, \qquad q \neq -1, \tag{2}$$

let $U_q(sl(2))$ denote the unital associative C-algebra generated by \mathcal{X}^- , \mathcal{X}^+ , \mathcal{Y} , and \mathcal{Y}^{-1} subject to the relations

$$\mathcal{Y}\mathcal{Y}^{-1} = \mathcal{Y}^{-1}\mathcal{Y} = 1, \tag{3}$$

$$\mathcal{Y}\mathcal{X}^{-} = q^{2}\mathcal{X}^{-}\mathcal{Y}, \quad \mathcal{Y}\mathcal{X}^{+} = q^{-2}\mathcal{X}^{+}\mathcal{Y}, \quad \mathcal{X}^{-}\mathcal{X}^{+} - \mathcal{X}^{+}\mathcal{X}^{-} = \frac{\mathcal{Y} - \mathcal{Y}^{-1}}{q - q^{-1}}.$$
 (4)

 $U_q(sl(2))$ is called the quantum enveloping algebra of sl(2). For more on $U_q(sl(2))$, see [6, 7].

Let $\Gamma = (X, R)$ denote a finite, undirected, connected graph without loops or multiple edges and having vertex set X, edge set R, distance function ∂ , and diameter d. Γ is said to be distance-regular whenever for all integers ℓ , i, j $(0 \le \ell, i, j \le d)$ there exists a scalar p_{ij}^{ℓ} such that for all $x, y \in X$ with $\partial(x, y) = \ell$, $|\{z \in X \mid \partial(x, z) = i, \partial(y, z) = j\}| = p_{ij}^{\ell}$. Assume that Γ is distance-regular. Set $c_0 = 0, c_i = p_{1i-1}^i$ $(1 \le i \le d), a_i = p_{1i}^i$ $(0 \le i \le d),$ $b_i = p_{1i+1}^i$ $(0 \le i \le d-1)$, and $b_d = 0$. Γ is regular with valency $k = b_0 = p_{11}^0$, and $c_i + a_i + b_i = k$ $(0 \le i \le d)$. Γ is bipartite precisely when $a_i = 0$ $(0 \le i \le d)$. For more on distance-regular graphs, see [1, 2].

Let $\Gamma = (X, R)$ denote a bipartite distance-regular graph. Γ is said to be 2-homogeneous whenever for all integers i $(1 \le i \le d)$ there exists a scalar γ_i such that for all $x, y, z \in X$ with $\partial(x, y) = i$, $\partial(x, z) = i$, $\partial(y, z) = 2$, $|\{w \in X \mid \partial(x, w) = i, \partial(y, w) = 1, \partial(z, w) = 1\}| = \gamma_i$. The *d*-cube is the graph with vertex set $X = \{0, 1\}^d$ (the *d*-tuples with entries in $\{0, 1\}$) such that two vertices are adjacent if and only if they differ in precisely one coordinate. The *d*-cube is a 2-homogeneous bipartite distance-regular graph with $\gamma_i = 1$ $(1 \le i \le d - 1)$. In the *d*-cube, there is a unique vertex at distance *d* from any given vertex, so the *d*-cube is 2-homogeneous despite the fact that γ_d is not defined. The 2-homogeneous bipartite distance-regular graphs have been studied in [3, 4, 9, 12].

Let $Mat_X(\mathbb{C})$ denote the C-algebra of matrices with rows and columns indexed by X. Let $A \in Mat_X(\mathbb{C})$ denote the adjacency matrix of Γ . For the rest of this section fix $x \in X$. For all i $(0 \leq i \leq d)$, define $E_i^* = E_i^*(x)$ to be the diagonal matrix in $Mat_X(\mathbb{C})$ such that for all $y \in X$, E_i^* has (y, y)-entry equal to 1 if $\partial(x, y) = i$, and 0 otherwise. Let $\mathcal{T} = \mathcal{T}(x)$ denote the subalgebra of $Mat_X(\mathbb{C})$ generated by A, E_0^* , E_1^* , ..., E_d^* . \mathcal{T} is called the *Terwilliger algebra of* Γ with respect to x. For more on Terwilliger algebras, see [11]. We set $L = \sum_{i=0}^{d-1} E_i^* A E_{i+1}^*$, $F = \sum_{i=0}^{d} E_i^* A E_i^*$, and $R = \sum_{i=1}^{d} E_i^* A E_{i-1}^*$.

Proctor [10] showed that if Γ is isomorphic to the *d*-cube, then the matrices $X^- = L$, $X^+ = R$, and $Z = \sum_{i=0}^{d} (d-2i)E_i^*$ satisfy the relations (1) (see also Go [5]). In fact, we may consider matrices of a slightly more general form:

$$X^{-} = \sum_{i=0}^{d-1} x_{i}^{-} E_{i}^{*} A E_{i+1}^{*}, \qquad X^{+} = \sum_{i=1}^{d} x_{i}^{+} E_{i}^{*} A E_{i-1}^{*}, \qquad Z = \sum_{i=0}^{d} z_{i} E_{i}^{*}, \quad (5)$$

where x_i^- , x_i^+ , z_i are arbitrary complex scalars.

Theorem 1 Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$. Fix $x \in X$, and write $E_i^* = E_i^*(x)$, $\mathcal{T} = \mathcal{T}(x)$. Let X^- , X^+ , and Z be any matrices of the form (5). Then the following are equivalent.

(i) X^- , X^+ , and Z generate \mathcal{T} and satisfy (1).

(ii) Γ is isomorphic to the d-cube, and

$$\begin{aligned} x_i^- x_{i+1}^+ &= 1 & (0 \le i \le d-1), \\ z_i &= d-2i & (0 \le i \le d). \end{aligned}$$

While studying $U_q(sl(2))$ structures, we shall consider matrices of the form:

$$X^{-} = \sum_{i=0}^{d-1} x_{i}^{-} E_{i}^{*} A E_{i+1}^{*}, \qquad X^{+} = \sum_{i=1}^{d} x_{i}^{+} E_{i}^{*} A E_{i-1}^{*}, \qquad Y = \sum_{i=0}^{d} y_{i} E_{i}^{*}, \quad (6)$$

where $x_i^ (0 \le i \le d-1)$, x_i^+ $(1 \le i \le d)$, y_i $(0 \le i \le d)$ are arbitrary complex scalars. Observe that Y is invertible if and only if $y_i \ne 0$ $(0 \le i \le d)$, in which case $Y^{-1} = \sum_{i=0}^{d} y_i^{-1} E_i^*$.

Theorem 2 Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$. Assume that Γ is not isomorphic to the d-cube. Fix $x \in X$, and write $E_i^* = E_i^*(x)$ $(0 \leq i \leq d)$ and $\mathcal{T} = \mathcal{T}(x)$. Let X^- , X^+ , and Y be any matrices of the form (6), and let q be any complex number. Then the following are equivalent.

- (i) Y is invertible, X^- , X^+ , Y, Y^{-1} generate \mathcal{T} , and (2)-(4) hold.
- (ii) Γ is bipartite and 2-homogeneous, $(q+q^{-1})^2 = c_2^2 b_2^{-1} (k-2)(c_2-1)^{-1}$, and there exists $\epsilon \in \{1, -1\}$ such that

$$y_i = \epsilon q^{d-2i} \qquad (0 \le i \le d),$$

$$x_i^- x_{i+1}^+ = \epsilon q^{-2i+1} (q^d + q^{2i}) (q^d + q^{2i+2}) (q^d + q^2)^{-2} \qquad (0 \le i \le d-1).$$

The factor of ϵ appears in (ii) because the defining relations of $U_q(sl(2))$ are invariant under changing the signs of any two of \mathcal{X}^- , \mathcal{X}^+ , and \mathcal{Y} .

The proofs of Theorems 1 and 2 are similar. The following combinatorial interpretations of L and R allow us to translate the 2-homogeneous and bipartite conditions into algebraic relations in \mathcal{T} . This is the first step in the proof. For the moment, identify each vertex with its characteristic column vector so that $Mat_X(\mathbb{C})$ acts by left multiplication. Then for all i $(0 \leq i \leq d)$ and all $y \in \Gamma_i(x)$, $Ly = \sum w$, where the sum runs over all $w \in \Gamma_1(y) \cap \Gamma_{i-1}(x)$, $Fy = \sum w$, where the sum runs over all $w \in \Gamma_1(y) \cap \Gamma_i(x)$, $Ry = \sum w$, where the sum runs over all $w \in \Gamma_1(y) \cap \Gamma_{i+1}(x)$, and $E_j^* y = \delta_{ij} y$. Observe that Γ is bipartite if and only if F = 0. Moreover, for all i $(0 \leq i \leq d)$ and for all $y, z \in \Gamma_i(x)$ $(LRE_i^*)(y, z) =$ $|\Gamma_1(y) \cap \Gamma_1(z) \cap \Gamma_{i+1}(x)|$ $(RLE_i^*)(y, z) = |\Gamma_1(y) \cap \Gamma_1(z) \cap \Gamma_{i-1}(x)|$. With this observation it is not hard to show that a bipartite distance-regular graph is 2-homogeneous if and only if LRE_i^* , RLE_i^* , and E_i^* are linearly dependent for all i $(0 \leq i \leq d)$.

The next step is to demonstrate a U(sl(2)) structure on the hypercubes and a $U_q(sl(2))$ structure on the remaining 2-homogeneous bipartite distance-regular graphs. We compute the precise dependence relation for LRE_i^* , RLE_i^* , and E_i^* , after which it is easy to verify that there is a U(sl(2)) or $U_q(sl(2))$ structure. To compute the coefficients of the dependence for the hypercubes, we use the fact that the intersection numbers satisfy $c_i = i$, $b_i = d - i$ ($0 \le i \le d$) and $\gamma_i = 1$ ($1 \le i \le d - 1$). In the case of the remaining 2-homogeneous bipartite distance-regular graphs, we use the following result.

Theorem 3 ([3, Theorem 35]) Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$. Suppose Γ is not isomorphic to the d-cube. Then Γ is bipartite and 2-homogeneous if and only if there exists a complex number $q \notin \{0, 1, -1\}$ such that

$$c_i = e_i [i], \qquad b_i = e_i [d-i] \qquad (0 \le i \le d),$$

where $e_i = q^{i-1}(q^d + q^2)(q^d + q^{2i})^{-1}$ and $[n] = (q^n - q^{-n})(q - q^{-1})^{-1}$. Moreover, any such q is real, and

 $\gamma_i = e_2 e_i e_{i+1}^{-1}$ $(1 \le i \le d-1).$

Now to prove Theorems 1 and 2 (i) \Rightarrow (ii) we use a technical lemma which is applicable to both the U(sl(2)) and $U_q(sl(2))$ structures. Most of the work goes into proving the following result.

Lemma 4 Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \ge 3$ and valency $k \ge 3$. Fix $x \in X$, and write $E_i^* = E_i^*(x)$, $\mathcal{T} = \mathcal{T}(x)$. Suppose that \mathcal{T} is generated by $\{X^-, X^+, E_0^*, E_1^*, \ldots, E_d^*\}$ and $X^-X^+ - X^+X^- \in \operatorname{span}\{E_0^*, E_1^*, \ldots, E_d^*\}$, where X^- and X^+ are as in (5) or (6). Then Γ is bipartite and 2-homogeneous.

Once Lemma 4 is proved, we complete the proofs of Theorems 1 and 2 (i) \Rightarrow (ii) by comparing the previously demonstrated U(sl(2)) or $U_q(sl(2))$ structure on the 2-homogeneous bipartite distance-regular graphs to that which is assumed in (i).

The proofs of Theorems 1 and 2 (ii) \Rightarrow (i) require two steps. The first is to show that the assumptions of (ii) imply a U(sl(2)) or $U_q(sl(2))$ structure (according to which theorem we are proving). This is straight forward given the already demonstrated structures. The second step is to show that \mathcal{T} has the desired generators. First we show that $E_0^*, E_1^*, \ldots, E_d^*$ are polynomials in Z or Y, according to which case we are in. Then we express R and L, and thus A = R + L, in terms of X^-, X^+ , and the E_i^* . This shows that \mathcal{T} has the desired generators and completes the proof of Theorems 1 and 2.

Remark 5 The intersection numbers of 2-homogeneous bipartite distance-regular graphs are determined in [9] as follows. Excluding the hypercubes, there are three infinite families with $d \ge 3$ and $k \ge 3$. Their intersection arrays $\{b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d\}$ are

- (i) $\{k, k-1, 1; 1, k-1, k\}, k \ge 3.$
- (ii) $\{4\gamma, 4\gamma 1, 2\gamma, 1; 1, 2\gamma, 4\gamma 1, 4\gamma\}$ for γ a positive integer.
- (iii) $\{k, k-1, k-\mu, \mu, 1; 1, \mu, k-\mu, k-1, k\}$, with $k = \gamma(\gamma^2 + 3\gamma + 1), \mu = \gamma(\gamma + 1)$ for $\gamma \ge 2$, an integer.

These arrays are realized by the following graphs: (i) complement of the $2 \times (k+1)$ -grid; (ii) Hadamard graphs of order 4γ ; (iii) antipodal 2-cover of the Higman-Sims graph when $\gamma = 2$. No examples of (iii) with $\gamma \geq 3$ are known.

Remark 6 We know of a few other distance-regular graphs related to $U_q(sl(2))$ and U(sl(2)). Suppose Γ is a 2*d*-cycle $(d \ge 2)$. Observe that Γ is vacuously 2-homogeneous. Let q be a primitive $2d^{\text{th}}$ root of unity, and set $X^- = \sum_{i=0}^{d-1} [d-i]E_i^*AE_{i+1}^*$, $X^+ = \sum_{i=1}^{d} [i]E_i^*AE_{i-1}^*$, and $Y = \sum_{i=0}^{d} q^{d-2i}E_i^*$. Then X^- , X^+ , and Y satisfy (4). However, these matrices do not generate \mathcal{T} . In addition to the U(sl(2)) structure of Theorem 1, the 4-cycle has the $U_q(sl(2))$ structure of Theorem 2 whenever $q^4 \ne 1$.

Suppose Γ is the Hamming graph $H(d, n), n \geq 3$. The results of [11, p. 202] can be used to show that $X^- = L, X^+ = R$, and Z = LR - RL satisfy (1). However, these matrices do not generate \mathcal{T} and Z is not of the form (5).

References

[1] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park, 1984.

- [2] A.E. Brouwer, A.M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer, New York, 1989.
- [3] B. Curtin, "2-homogeneous bipartite distance-regular graphs," Discrete Math. 187 (1998), 39-70.
- [4] B. Curtin and K. Nomura, "Distance-Regular Graphs Related to the Quantum Enveloping Algebra of sl(2)," submitted.
- [5] J. Go, "Hamming cubes," preprint.
- [6] M. Jimbo, "Topics from representations of Uq(g)-an introductory guide to physicists," 1-61; Quantum group and quantum integrable systems, Nankai Lectures Math. Phys., World Sci. Publishing, River Edge, NJ, 1992.
- [7] C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995.
- [8] K. Nomura, Homogeneous graphs and regular near polygons, J. Combin. Theory Ser. B 60 (1994) 63-71.
- K. Nomura, "Spin models on bipartite distance-regular graphs," J. Combin. Th. (B) 64 (1995), 300-313.
- [10] R. A. Proctor, "Representations of sl(2, C) on posets and the Sperner property," SIAM J. Algebraic Discrete Methods 3 (1982), no. 2, 275-280.
- [11] P. Terwilliger, "The subconstituent algebra of an association scheme," J. Algebraic Combin. 1 (1992), 363-388; 2 (1993), 73-103; 2 (1993), 177-210.
- [12] N. Yamazaki, Bipartite distance-regular graphs with an eigenvalue of multiplicity k, J. Combin. Theory Ser. B 66 (1995) 34-37.