Distance-Regular Graphs Related to the Quantum Enveloping Algebra of $s l(2)$

Brian Curtin (Presenting author)

(Address before FPSAC'99)
Section de Mathématiques
Université de Genève
2-4 rue du lièvre, Case Postale 240
CH 1211, Genève 24
curtin@math.unige.ch
Kazumasa Nomura
College of Liberal Arts and Sciences, Tokyo Medical and Dental University,
Kohnodai, Ichikawa, 272 Japan
nomura@tmd.ac.jp

(Address after FPSAC'99)
Department of Mathematics, University of California, Berkeley, CA 94720
curtin@math.berkeley.edu

Summary. We present a connection between distance-regular graphs and the quantum enveloping algebra $U_{q}(s l(2))$ of the Lie algebra $s l(2)$. Let Γ be a distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$ which is not isomorphic to the d-cube. Fix a vertex x and let $\mathcal{T}=\mathcal{T}(x)$ denote the Terwilliger algebra of Γ. Then \mathcal{T} is generated by certain matrices satisfying the defining relations of $U_{q}(s l(2))$ for some complex number $q \notin\{0,1,-1\}$ if and only if Γ is bipartite and 2 -homogeneous in the sense of Nomura.

Nous présentons une connexion entre des graphes distance-réguliers et l'algèbre enveloppante quantique $U_{q}(s l(2))$ de l'algèbre de Lie $s l(2)$. Soit Γ un graphe distance-régulier de diamètre $d \geq 3$ et de valence $k \geq 3$ qui n'est pas isomorphe à un hypercube. Soit x un sommet de Γ et soit $\mathcal{T}=\mathcal{T}(x)$ l'algèbre de Terwilliger de Γ. Alhors \mathcal{T} est généré par certaines matrices qui satisfait les relations de la définition de $U_{q}(s l(2))$ pour un nombre complexe $q \notin\{0,1,-1\}$ si et seulement si Γ est bipartite et 2 -homogne dans le sens de Nomura.

Extended abstract.

This poster is based upon [4]. We present a connection between distance-regular graphs and $U_{q}(s l(2))$, the quantum enveloping algebra of the Lie algebra $s l(2)$. It is well known that there is a "natural" $s l(2)$ action on the d-cubes (see Proctor [10] or Go [5]). Here we describe the distance-regular graphs with a similar natural $U_{q}(s l(2))$ action. We show that these graphs are precisely the bipartite distance-regular graphs which are 2 -homogeneous in the sense of $[8,9]$, excluding the d-cubes. To state this precisely, we recall some definitions.

Let $U(s l(2))$ denote the unital associative C -algebra generated by $\mathcal{X}^{-}, \mathcal{X}^{+}$, and \mathcal{Z} subject to the relations

$$
\begin{equation*}
\mathcal{Z} \mathcal{X}^{-}-\mathcal{X}^{-} \mathcal{Z}=2 \mathcal{X}^{-}, \quad \mathcal{Z} \mathcal{X}^{+}-\mathcal{X}^{+} \mathcal{Z}=-2 \mathcal{X}^{+}, \quad \mathcal{X}^{-} \mathcal{X}^{+}-\mathcal{X}^{+} \mathcal{X}^{-}=\mathcal{Z} \tag{1}
\end{equation*}
$$

$U(s l(2))$ is called the universal enveloping algebra of $s l(2)$. For any complex number q satisfying

$$
\begin{equation*}
q \neq 1, \quad q \neq 0, \quad q \neq-1 \tag{2}
\end{equation*}
$$

let $U_{q}(s l(2))$ denote the unital associative C -algebra generated by $\mathcal{X}^{-}, \mathcal{X}^{+}, \mathcal{Y}$, and \mathcal{Y}^{-1} subject to the relations

$$
\begin{gather*}
\mathcal{Y} \mathcal{Y}^{-1}=\mathcal{Y}^{-1} \mathcal{Y}=1 \tag{3}\\
\mathcal{Y} \mathcal{X}^{-}=q^{2} \mathcal{X}^{-} \mathcal{Y}, \quad \mathcal{Y} \mathcal{X}^{+}=q^{-2} \mathcal{X}^{+} \mathcal{Y}, \quad \mathcal{X}^{-} \mathcal{X}^{+}-\mathcal{X}^{+} \mathcal{X}^{-}=\frac{\mathcal{Y}-\mathcal{Y}^{-1}}{q-q^{-1}} . \tag{4}
\end{gather*}
$$

$U_{q}(s l(2))$ is called the quantum enveloping algebra of $s l(2)$. For more on $U_{q}(s l(2))$, see [6, 7].

Let $\Gamma=(X, R)$ denote a finite, undirected, connected graph without loops or multiple edges and having vertex set X, edge set R, distance function ∂, and diameter d. Γ is said to be distance-regular whenever for all integers $\ell, i, j(0 \leq \ell, i, j \leq d)$ there exists a scalar $p_{i j}^{\ell}$ such that for all $x, y \in X$ with $\partial(x, y)=\ell,|\{z \in X \mid \partial(x, z)=i, \partial(y, z)=j\}|=p_{i j}^{\ell}$. Assume that Γ is distance-regular. Set $c_{0}=0, c_{i}=p_{1 i-1}^{i}(1 \leq i \leq d), a_{i}=p_{1 i}^{i}(0 \leq i \leq d)$, $b_{i}=p_{1 i+1}^{i}(0 \leq i \leq d-1)$, and $b_{d}=0$. Γ is regular with valency $k=b_{0}=p_{11}^{0}$, and $c_{i}+a_{i}+b_{i}=k(0 \leq i \leq d)$. Γ is bipartite precisely when $a_{i}=0(0 \leq i \leq d)$. For more on distance-regular graphs, see [1, 2].

Let $\Gamma=(X, R)$ denote a bipartite distance-regular graph. Γ is said to be 2 -homogeneous whenever for all integers $i(1 \leq i \leq d)$ there exists a scalar γ_{i} such that for all $x, y, z \in X$ with $\partial(x, y)=i, \partial(x, z)=i, \partial(y, z)=2, \mid\{w \in X \mid \partial(x, w)=i, \partial(y, w)=1, \partial(z, w)=$ $1\} \mid=\gamma_{i}$. The d-cube is the graph with vertex set $X=\{0,1\}^{d}$ (the d-tuples with entries in $\{0,1\}$) such that two vertices are adjacent if and only if they differ in precisely one coordinate. The d-cube is a 2 -homogeneous bipartite distance-regular graph with $\gamma_{i}=1$ ($1 \leq i \leq d-1$). In the d-cube, there is a unique vertex at distance d from any given vertex, so the d-cube is 2 -homogeneous despite the fact that γ_{d} is not defined. The 2 -homogeneous bipartite distance-regular graphs have been studied in $[3,4,9,12]$.

Let $\operatorname{Mat}_{X}(\mathbf{C})$ denote the \mathbf{C}-algebra of matrices with rows and columns indexed by X. Let $A \in \operatorname{Mat} t_{X}(\mathbf{C})$ denote the adjacency matrix of Γ. For the rest of this section fix $x \in X$. For all $i(0 \leq i \leq d)$, define $E_{i}^{*}=E_{i}^{*}(x)$ to be the diagonal matrix in $\operatorname{Mat}_{X}(\mathbf{C})$ such that for all $y \in X, E_{i}^{*}$ has (y, y)-entry equal to 1 if $\partial(x, y)=i$, and 0 otherwise. Let $\mathcal{T}=\mathcal{T}(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(\mathbf{C})$ generated by $A, E_{0}^{*}, E_{1}^{*}, \ldots, E_{d}^{*} . \mathcal{T}$ is called the Terwilliger algebra of Γ with respect to x. For more on Terwilliger algebras, see [11]. We set $L=\sum_{i=0}^{d-1} E_{i}^{*} A E_{i+1}^{*}, F=\sum_{i=0}^{d} E_{i}^{*} A E_{i}^{*}$, and $R=\sum_{i=1}^{d} E_{i}^{*} A E_{i-1}^{*}$.

Proctor [10] showed that if Γ is isomorphic to the d-cube, then the matrices $X^{-}=L$, $X^{+}=R$, and $Z=\sum_{i=0}^{d}(d-2 i) E_{i}^{*}$ satisfy the relations (1) (see also Go [5]). In fact, we may consider matrices of a slightly more general form:

$$
\begin{equation*}
X^{-}=\sum_{i=0}^{d-1} x_{i}^{-} E_{i}^{*} A E_{i+1}^{*}, \quad X^{+}=\sum_{i=1}^{d} x_{i}^{+} E_{i}^{*} A E_{i-1}^{*}, \quad Z=\sum_{i=0}^{d} z_{i} E_{i}^{*} \tag{5}
\end{equation*}
$$

where $x_{i}^{-}, x_{i}^{+}, z_{i}$ are arbitrary complex scalars.
Theorem 1 Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$. Fix $x \in X$, and write $E_{i}^{*}=E_{i}^{*}(x), \mathcal{T}=\mathcal{T}(x)$. Let X^{-}, X^{+}, and Z be any matrices of the form (5). Then the following are equivalent.
(i) X^{-}, X^{+}, and Z generate \mathcal{T} and satisfy (1).
(ii) Γ is isomorphic to the d-cube, and

$$
\begin{aligned}
x_{i}^{-} x_{i+1}^{+} & =1 \quad(0 \leq i \leq d-1) \\
z_{i} & =d-2 i \quad(0 \leq i \leq d)
\end{aligned}
$$

While studying $U_{q}(s l(2))$ structures, we shall consider matrices of the form:

$$
\begin{equation*}
X^{-}=\sum_{i=0}^{d-1} x_{i}^{-} E_{i}^{*} A E_{i+1}^{*}, \quad X^{+}=\sum_{i=1}^{d} x_{i}^{+} E_{i}^{*} A E_{i-1}^{*}, \quad Y=\sum_{i=0}^{d} y_{i} E_{i}^{*} \tag{6}
\end{equation*}
$$

where $x_{i}^{-}(0 \leq i \leq d-1), x_{i}^{+}(1 \leq i \leq d), y_{i}(0 \leq i \leq d)$ are arbitrary complex scalars. Observe that Y is invertible if and only if $y_{i} \neq 0(0 \leq i \leq d)$, in which case $Y^{-1}=$ $\sum_{i=0}^{d} y_{i}^{-1} E_{i}^{*}$.
Theorem 2 Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$. Assume that Γ is not isomorphic to the d-cube. Fix $x \in X$, and write $E_{i}^{*}=E_{i}^{*}(x)(0 \leq i \leq d)$ and $\mathcal{T}=\mathcal{T}(x)$. Let X^{-}, X^{+}, and Y be any matrices of the form (6), and let q be any complex number. Then the following are equivalent.
(i) Y is invertible, X^{-}, X^{+}, Y, Y^{-1} generate \mathcal{T}, and (2)-(4) hold.
(ii) Γ is bipartite and 2 -homogeneous, $\left(q+q^{-1}\right)^{2}=c_{2}^{2} b_{2}^{-1}(k-2)\left(c_{2}-1\right)^{-1}$, and there exists $\epsilon \in\{1,-1\}$ such that

$$
\begin{aligned}
y_{i} & =\epsilon q^{d-2 i} & (0 \leq i \leq d), \\
x_{i}^{-} x_{i+1}^{+} & =\epsilon q^{-2 i+1}\left(q^{d}+q^{2 i}\right)\left(q^{d}+q^{2 i+2}\right)\left(q^{d}+q^{2}\right)^{-2} & (0 \leq i \leq d-1) .
\end{aligned}
$$

The factor of ϵ appears in (ii) because the defining relations of $U_{q}(s l(2))$ are invariant under changing the signs of any two of $\mathcal{X}^{-}, \mathcal{X}^{+}$, and \mathcal{Y}.

The proofs of Theorems 1 and 2 are similar. The following combinatorial interpretations of L and R allow us to translate the 2 -homogeneous and bipartite conditions into algebraic relations in \mathcal{T}. This is the first step in the proof. For the moment, identify each vertex with its characteristic column vector so that $\operatorname{Mat}_{X}(\mathrm{C})$ acts by left multiplication. Then for all i $(0 \leq i \leq d)$ and all $y \in \Gamma_{i}(x), L y=\sum w$, where the sum runs over all $w \in \Gamma_{1}(y) \cap \Gamma_{i-1}(x)$, $F y=\sum w$, where the sum runs over all $w \in \Gamma_{1}(y) \cap \Gamma_{i}(x), R y=\sum w$, where the sum runs over all $w \in \Gamma_{1}(y) \cap \Gamma_{i+1}(x)$, and $E_{j}^{*} y=\delta_{i j} y$. Observe that Γ is bipartite if and only if $F=0$. Moreover, for all $i(0 \leq i \leq d)$ and for all $y, z \in \Gamma_{i}(x)\left(L R E_{i}^{*}\right)(y, z)=$ $\left|\Gamma_{1}(y) \cap \Gamma_{1}(z) \cap \Gamma_{i+1}(x)\right|\left(R L E_{i}^{*}\right)(y, z)=\left|\Gamma_{1}(y) \cap \Gamma_{1}(z) \cap \Gamma_{i-1}(x)\right|$. With this observation it is not hard to show that a bipartite distance-regular graph is 2 -homogeneous if and only if $L R E_{i}^{*}, R L E_{i}^{*}$, and E_{i}^{*} are linearly dependent for all $i(0 \leq i \leq d)$.

The next step is to demonstrate a $U(s l(2))$ structure on the hypercubes and a $U_{q}(s l(2))$ structure on the remaining 2 -homogeneous bipartite distance-regular graphs. We compute the precise dependence relation for $L R E_{i}^{*}, R L E_{i}^{*}$, and E_{i}^{*}, after which it is easy to verify that there is a $U(s l(2))$ or $U_{q}(s l(2))$ structure. To compute the coefficients of the dependence for the hypercubes, we use the fact that the intersection numbers satisfy $c_{i}=i, b_{i}=d-i(0 \leq i \leq d)$ and $\gamma_{i}=1(1 \leq i \leq d-1)$. In the case of the remaining 2 -homogeneous bipartite distance-regular graphs, we use the following result.
Theorem 3 ([3, Theorem 35]) Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$. Suppose Γ is not isomorphic to the d-cube. Then Γ is bipartite and 2-homogeneous if and only if there exists a complex number $q \notin\{0,1,-1\}$ such that

$$
c_{i}=e_{i}[i], \quad b_{i}=e_{i}[d-i] \quad(0 \leq i \leq d),
$$

where $e_{i}=q^{i-1}\left(q^{d}+q^{2}\right)\left(q^{d}+q^{2 i}\right)^{-1}$ and $[n]=\left(q^{n}-q^{-n}\right)\left(q-q^{-1}\right)^{-1}$. Moreover, any such q is real, and

$$
\gamma_{i}=e_{2} e_{i} e_{i+1}^{-1} \quad(1 \leq i \leq d-1) .
$$

Now to prove Theorems 1 and 2 (i) \Rightarrow (ii) we use a technical lemma which is applicable to both the $U(s l(2))$ and $U_{q}(s l(2))$ structures. Most of the work goes into proving the following result.

Lemma 4 Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$. Fix $x \in X$, and write $E_{i}^{*}=E_{i}^{*}(x), \mathcal{T}=\mathcal{T}(x)$. Suppose that \mathcal{T} is generated by $\left\{X^{-}, X^{+}, E_{0}^{*}, E_{1}^{*}, \ldots, E_{d}^{*}\right\}$ and $X^{-} X^{+}-X^{+} X^{-} \in \operatorname{span}\left\{E_{0}^{*}, E_{1}^{*}, \ldots, E_{d}^{*}\right\}$, where X^{-}and X^{+}are as in (5) or (6). Then Γ is bipartite and 2-homogeneous.

Once Lemma 4 is proved, we complete the proofs of Theorems 1 and 2 (i) \Rightarrow (ii) by comparing the previously demonstrated $U(s l(2))$ or $U_{q}(s l(2))$ structure on the 2-homogeneous bipartite distance-regular graphs to that which is assumed in (i).

The proofs of Theorems 1 and 2 (ii) \Rightarrow (i) require two steps. The first is to show that the assumptions of (ii) imply a $U(s l(2))$ or $U_{q}(s l(2))$ structure (according to which theorem we are proving). This is straight forward given the already demonstrated structures. The second step is to show that \mathcal{T} has the desired generators. First we show that $E_{0}^{*}, E_{1}^{*}, \ldots$, E_{d}^{*} are polynomials in Z or Y, according to which case we are in. Then we express R and L, and thus $A=R+L$, in terms of X^{-}, X^{+}, and the E_{i}^{*}. This shows that \mathcal{T} has the desired generators and completes the proof of Theorems 1 and 2.

Remark 5 The intersection numbers of 2-homogeneous bipartite distance-regular graphs are determined in [9] as follows. Excluding the hypercubes, there are three infinite families with $d \geq 3$ and $k \geq 3$. Their intersection arrays $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\}$ are
(i) $\{k, k-1,1 ; 1, k-1, k\}, k \geq 3$.
(ii) $\{4 \gamma, 4 \gamma-1,2 \gamma, 1 ; 1,2 \gamma, 4 \gamma-1,4 \gamma\}$ for γ a positive integer.
(iii) $\{k, k-1, k-\mu, \mu, 1 ; 1, \mu, k-\mu, k-1, k\}$, with $k=\gamma\left(\gamma^{2}+3 \gamma+1\right), \mu=\gamma(\gamma+1)$ for $\gamma \geq 2$, an integer.

These arrays are realized by the following graphs: (i) complement of the $2 \times(k+1)$-grid; (ii) Hadamard graphs of order 4γ; (iii) antipodal 2-cover of the Higman-Sims graph when $\gamma=2$. No examples of (iii) with $\gamma \geq 3$ are known.

Remark 6 We know of a few other distance-regular graphs related to $U_{q}(s l(2))$ and $U(s l(2))$. Suppose Γ is a $2 d$-cycle $(d \geq 2)$. Observe that Γ is vacuously 2 -homogeneous. Let q be a primitive $2 d^{\text {th }}$ root of unity, and set $X^{-}=\sum_{i=0}^{d-1}[d-i] E_{i}^{*} A E_{i+1}^{*}, X^{+}=$ $\sum_{i=1}^{d}[i] E_{i}^{*} A E_{i-1}^{*}$, and $Y=\sum_{i=0}^{d} q^{d-2 i} E_{i}^{*}$. Then X^{-}, X^{+}, and Y satisfy (4). However, these matrices do not generate \mathcal{T}. In addition to the $U(s l(2))$ structure of Theorem 1 , the 4 -cycle has the $U_{q}(s l(2))$ structure of Theorem 2 whenever $q^{4} \neq 1$.

Suppose Γ is the Hamming graph $H(d, n), n \geq 3$. The results of [11, p. 202] can be used to show that $X^{-}=L, X^{+}=R$, and $Z=L R-R L$ satisfy (1). However, these matrices do not generate \mathcal{T} and Z is not of the form (5).

References

[1] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park, 1984.
[2] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer, New York, 1989.
[3] B. Curtin, "2-homogeneous bipartite distance-regular graphs," Discrete Math. 187 (1998), 39-70.
[4] B. Curtin and K. Nomura, "Distance-Regular Graphs Related to the Quantum Enveloping Algebra of $s l(2), "$ submitted.
[5] J. Go, "Hamming cubes," preprint.
[6] M. Jimbo, "Topics from representations of $U_{q}(g)$-an introductory guide to physicists," 161; Quantum group and quantum integrable systems, Nankai Lectures Math. Phys., World Sci. Publishing, River Edge, NJ, 1992.
[7] C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995.
[8] K. Nomura, Homogeneous graphs and regular near polygons, J. Combin. Theory Ser. B 60 (1994) 63-71.
[9] K. Nomura, "Spin models on bipartite distance-regular graphs," J. Combin. Th. (B) 64 (1995), 300-313.
[10] R. A. Proctor, "Representations of $s l(2, C)$ on posets and the Sperner property," SIAM J. Algebraic Discrete Methods 3 (1982), no. 2, 275-280.
[11] P. Terwilliger, "The subconstituent algebra of an association scheme," J. Algebraic Combin. 1 (1992), 363-388; 2 (1993), 73-103; 2 (1993), 177-210.
[12] N. Yamazaki, Bipartite distance-regular graphs with an eigenvalue of multiplicity k, J. Combin. Theory Ser. B 66 (1995) 34-37.

