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Abstract

Let MéA, 9{-)15 be a free partially commutative monoid. We give here a nec-
essary and sufficient condition on a subalphabet B C A such that the right

factor of a bisection M(A, §) = M(B,6g).T be also partially commutative free.
This extends strictly the (classical) elimination theory on partial commutations
and allows to construct new factorizations of M(A, §) and associated bases of
Lk (A,86).

Résumé

Soit M(A,6) un monoide partiellement commutatif libre. Nous donnons une
condition nécessaire et suffisante sur un sous alphabet B C A pour que le fac-
teur droit d’une bisection de la forme M(4, §) = M(B, p).T soit partiellement
commutatif libre. Ceci nous permet d’étendre strictement la théorie (classique)
de I’élimination avec commutations partielles et de construire de nouvelles fac-
torisations de M(A4, §) ainsi que les bases de Lk (A, 6) associées.

1 Introduction

A factorization of a monoid is a direct decomposition

-
M=T1]M;
el

where M and the M; are monoids and I is totally ordered. This notion is due
to SCHUTZENBERGER (see [14] and [15] where the link with the free Lie algebra is
studied). Then, in his Ph. D. [17], VIENNOT showed how combinatorial bases of
the free Lie algebra could be constructed by composition of bisections (i.e. |I| = 2)
obtained by elimination of generators (ideas initiated by LazARD [12] and SHIRSHOV
[17]). One of the authors with D. Krob found similar decompositions for the free
partially commutative monoid into free factors and studied the link with Lie algebras
and groups [8].

Here, we study the general problem of eliminating generators in these structures and
first remark that a direct decomposition

M(A,6) = M(B,05).T
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(with B C A, a subalphabet) is always monoidal. We get a criterium to characterize
the case when 7 is free partially commutative and construct bases of the associated
Lie algebras. The case of the group is also mentionned.

2 Definitions and background

We recall that the free partially commutative monoid is the monoid presented defined
by generators and relations

M(A, 8) = (Alab = ba, (a,b) € O)rron

where A is an alphabet and # C A X A is an antireflexive (i.e. without loops) and
symmetric graph on A (6 is called an independence relation). Thus, M(A4, ) is the
quotient A*/=, where =g is the congruence generated by the set {(ab, ba)|(a,d) € 6}.
If X is a subset of M(A, ), we set

6x = {(z1,22) € X*|Alph(z1) x Alph(zs) C 6}.

Note that this implies Alph(z;) N Alph(z;) = 0. Similarly, we set Oy = Oy (4,6)-

As in [9], we denote TA(t) = {z € M|t = zw} and TA(t) = {z € M|t = wz}.

In [4] and [5], Choffrut introduces the partially commutative codes as generator sets
of free partially commutative submonoids. Let X be a set, we can prove easily that
this definition is equivalent to the fact that each trace ¢t € (X) admits a unique
decomposition on X up to the commutations (i.e. (X,0x) is the independence
alphabet of (X) the submonoid generated by X).

Example 1 (i) Each subalphabet B of A is a partially commutative code.
(ii) Let (A,0) =a—b c. The set {c, cb,ca} is a code but not the set {b,a, ca,cb}.

3 Transitive bisections

3.1 Generalities

We recall the definition of a factorization in the sense of Schiitzenberger (cf. Viennot
in [18] and [19]), this notion will be reused extensively at the end of the paper.

Definition 1 (i) Let M be a monoid and (M;);cs an ordered family of submonoids
(the total ordering on J will be denoted <). The family (M;)icy will be called a
factorization of M if and only if every m € Mt = M — {1} can be written uniquely
for some n as

m=m; M ...My

n

with i1 > 12 > ... > ix and for each k € [1..n], m;, € Mgi
(ii) In the case of a free partially commutative monoid, a factorization will be denoted
by the sequence of the minimal generator sets of its components.

In the maximal case (each monoid has a unique generator), the factorization is called

complete.
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Example 2 (Complete factorizations in free and free partially commutative monoids. )
In the free monoid, it exists many complete factorizations. The most famous being
the Lyndon factorization (defined as the set of primitive words minimal in their con-
Jugacy classes) is an ezample of complete factorization. The Hall sets defined in [16]
give us a wider example.

The set of Lyndon traces (i.e. the generalization of Lyndon words to the partially
commutative case, defined by Lalonde in [11]) endowed with the lezicographic order-
ing is a complete factorization of the free partially commutative monoid.

In the smallest case (|J| = 2), the factorization is called bisection. Let M be a
monoid, then (M, Ma) is a bisection of M if and only if the mapping

My x My - M

(mh mz) — MMy

is one to one.

Remark 1 Not every submonoid is a left (right) factor of a bisection. If M =
My M, is a bisection then M, satisfies (u,uv € M) = (v € M;) (see [7]), however,
this condition is not sufficient as shown by My = 2Z C Z = M.

In case M = M(A, ), one prove the following property.

Proposition 2 Let (4, 6) be an independence relation and B C A. Then M(B, 6g)
is the left (resp. right) factor of a bisection of M(A, ).

Proof It suffices to prove that M(B,f5)™"M(A, §) (resp. M(A,6).M(B,05)7") is
the characteristic series of a monoid.

O

In the left case, the right submonoid above has a minimal generating subset
Bz(B) ={2w/z € Z,w € M(B, 0p), [A(zw) = {z}}
where TA(t) = {b€ A/t = buw}.

Remark 2 The monoid (8z(B)) may not be free partially commutative. For ezam-

ple, if A= {a,b,c},
f:a—-b c

and B = {c} then a,b,ac,bc € Bz(B) and a.bc = b.ac.

3.2 Transitively factorizing subalphabet

Here we discuss a criterium for the complement (87(B)) to be a free partially com-
mutative submonoid.
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Definition 3 Let B C A, we say that B is a transitively factorizing subalphabet
(TFSA) if and only if for each 2y # z2 € Z and wy, wa, wy, wh € M(A,8) such that
TA(zyw1) = TA(z1w}) = {z1} and TA(zyw;) = TA(22w)) = {22} we have

Z1W1 ZoWy = ZpWh21 W) => Wy = Wi, W = Wh.
We prove the following theorem.
Theorem 4 Let B C A. The following assertions are equivalent.

(i) The monoid (fz(B)) is free partially commutative
(i1) The subalphabet B is TFSA.
(i1i) For each (z,2') € Z*N8, the dependence' graph has no partial graph?
like
2~by—...=b,—2.
with by,...,b, € B.
(iv) For each (z,2z') € Z* we have

(2,2') € 0 & B,(B) x B,/(B) C u
Proof It is easy to see that (i)=>(ii) : by contraposition, if B is not a TFSA we can

find z w1, zowa, 21w}, 22wh € Bz(B) such that zywy.2pwy = zowy.zyw) With wy # w]
and wy # w) and this implies that 8z(B) is not a partially commutative code.

Let us proof that (ii)=-(iii). Suppose that
2—by—u..—b-n-2

is a partial graph of the dependance graph, then it exists a subgraph of the depen-
dence graph under the form

Z—Cl—...—Cp— 2

with ¢; € B. Consider the smallest integer k such that (cg41,2’) € 6. Then we have
2¢y...Ck.2'Chg1 ... Cm = 2'.2€1 .. .Crm, Which proves that B is not a TFSA.

Conversely, suppose that zw;.z'we = 2'wh.2w} with zwy, 2'w,, 2w}, 2wy € Bz(B)
and wh # wy , w} # w;. Using Levi’s lemma it exists w’ € M(B, 6p) — {1} such that
w} = wyw' and wy = whw'. Furthermore, if zw € fz(B) and b € Alph(w), it exists
a partial graph of the dependence graph under the form

Z—bl—...-—bn—b.

Hence, if we take ¢ € Alph(w’) the dependence graph admits a partial graph under

the form
z2—by—...=bp—c—=0b, —...—b] -2

IThe dependence graph is defined by A x A — A — 6 where A = {(a,a)/a € A}.
2We repeat here the notion of partial graph. A graph G’ = (S§’, A’) is a partial graph of
G = (S, A)if and only if S' C Sand A’ C ANS’ xS’ (G’ is a subgraph of G when equality occurs).
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Which implies (iii)= (i).

Let us proof that (iii) = (iv). Suppose (iii) occurs. If 3,(B) x 8./(B) C by
then easily (z,2') € 6. Conversely, suppose that (z,2’) € 6 and let zw € §,(B)
and z'w’ € B (B). If (2w,2’) &€ Oy, as z # 2’ and |w|z = 0, we have necessarily
zw.z' # z'.zw. Hence, it exists a partial graph of the dependence graph under the
form

z2=by—...=b, -2

with b; € Alph(w) C B which contradicts our hypothesis. If (z/,zw) € 6y and
(z'w', 2w) & Oy, we can write zw.z'w’ = z’'u.zwv where w’ = wv and u is the great
prefix of w’ such that (u, zw) € 6. Which implies that zwv, 2’u € 8z(B) and then
B is not a TFSA which contradicts our hypothesis and proof the assertion.

Finally, we prove that (iv)= (i). Consider the mapping u from Z into K ((A4, 6))
defined by u(z) = fz(B). As (5,7) € 07 = [u(), u(<)] = [8.(B), B, (B)] = 0
and (u(z),1) = 0, we can extend u as a continuous morphism from K ((Z,8z)) in
K((A,0)). Let s be the morphism from (8,(B)) in M(Z, 8z) defined by s(zw) = z

for each zw € Bz(B). We have

(B:(B)) = s (M(Z,67)) = EweM(Z,OZ)S—l(w)
= Duwem(zoy) b(w) = pw(M(Z,6z))

Let P(6z) be the polynomial such that

M(Z, 0z) =

P(6z)

As p is a continuous morphism, we have

1 1
Bz(B)) = w(P(67)) — P(0s,(5))

which is the characteristic series of M(6z(B), 03,(p))-
a

Remark 3 (i) Elimination in [9] deals with the particular case when A— B is totally
non commutative, in this case B is a TFSA of A.
(ii) As an example of other case, consider the independance alphabet given by the
graph

f=a—-b-c.
The monoid (B,(c)) is free partially commutative, its alphabet is B,(c) = {b} U
{ac™/n > 0} and its independance graph is

[ pp—
| .

Uan(c) =

ac
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4 TFactorizations and bases of free partially commutative
Lie algebra

4.1 Transitive factorizations

We recall some definitions given by Viennot in [18].

Definition 5 Let M be a monoid, M a submonoid of M and F = (M; );cs a factor-
ization of M. We denote Fly: = (M, )rex where K = {k/inJ /M, C M} (in the
general case it is not a factorization).

Definition 6 Let < be the partial order on the set of all the factorizations of a
monoid M defined by F = (M; )ieg < F' = (M.);eyr (F is finer than F) if and only
if J' admits a decomposition J' =3 ;c;J; as an ordered sum of intervals such that
for each i € J, (M) e, is a factorization of M.

The following property is straightforward.

Proposition 7 Let F = (M;);er be a factorization and F' be a factorization such
that F<F then for each i € I, F'|y, is a factorization of M.

Definition 8 Let B = (By, By) be a bisection and F = (Y;):es a factorization. We
say that Y; is cut by B if and only if L;(B) = (B1) N (Y:) and Ry(B) = (Bz) N (Y) are
not trivial.

We need the following lemma.

Lemma 9 Let B = (By, B) be a bisection of M(A, ) and F = (Y:)ien1,n) @ factor-
ization with n > 1, such that it exists a factorization G = (Gk)rek Such that B, F<XG
then B<F if and only if no Y; is cut by B.

Proof We use the decomposition of K as an ordered sum of intervals K = J1+J; =
Y ie[1,n) Ii as in definition 6. The assertion (i) implies the existence of an integer
k € [1,n] such that J1 = Yienpdi and J2 = Yieyr,n) Li- This allows us to

conclude.
O

In the sequel, we use the notion of composition of factorizations as it is defined
by Viennot in [18]. We recall it here.

Definition 10 Let F = (M;);cs be a factorization of a monoid M and for some
k € I, F = (M)icr a factorization of M. The composition of F and F' is the
factorization F' oF = (M );er» where I" = I UI' — {k} is ordered by i < j if and
only if

(i) i,j€l andi<yj) or (i,j€I' and i<y j))
(if)iel,i<rkandjel
(iii)iel',j>rkandjel
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and
) My ifeeld
By = { M ifiel
Definition 11 We call transitive factorization a factorization which is composed of

transitive bisections.

Lemma 12 Let F = (Y;)ic(1,5) be a transitive factorization and Let B = (B, 37(B))
be a transitive bisection such that it exists a factorization G finer that B and F. Then
it exists at most one Y; cut by B and for a such i we have

(i) The subset T = Y;NM(B, 0g) is a TFSA of Y; and R;(B) is the right
monoid of the associated bisection.

(i) The sequence (Yp, ..., Yiy1,T) is a transitive factorization of M(B, ).
(ii1) The sequence (By,-1(T),Yi-1,...,Y1) is a transitive factorization of
M(Bz (B), 05,(5))

Sketch of the proof First it suffices to remark that if i > j are two indices such
that ¥; and Y; are cut by B then L;(B) C M(B,6p) N M(Bz(B),0z(B)) = {1} and
this contradicts our hypothesis, hence i = j.
Let us prove assertion (i).
1) First, we remark that

M(Y:, 0y;) = Li(B) .Ri(B)

and using the equality L;(B) = M(T, 61) we prove that R;(B) = (By._r(Y;)).

2) We show that if T is not a TFSA of ¥; then B is not a TFSA of A and this implies
the result.

Let us prove (ii) and (iii) by induction on p. If p = 1 the result is trivial otherwise we
can write F under the form F = F; oF, o B’ where B' = (B’, 32:(B’)) is a transitive
bisection, F; = (Y,,...,Ykt+1) a transitive factorization of M(B’,6p/) and F, =
(Yk,..., Y1) a transitive factorization of the monoid M(Bz (B'), 052,(3;)). fB=08
the result is trivial otherwise we have necessarily B C B’ or B’ C B. We suppose
that B’ C B (the other case is symmetric), and we consider the transitive trisection
(B',8p-p/(B'),8z(B)). Using the induction hypothesis we find that (Yi,...,Y;, T)
and (By;-1(T),Yi-1,..., Y1) are transitive factorizations (respectively of the monoid
M(Bg-p/,03,_,,(8)) and M(6z (B),85,(B)))- And then

(Yp,'~~7}/;+lyT) =Fo (Yk, ---7}/;'+1yT)o (B/,,BB_B/(B))

is a transitive factorization.
O

Lemma 13 Let B = (B,[(z(B)) be a transitive bisection and F = (Yie,n) e
a transitive factorization such that B<F. Then the factorizations IF|M(B’93) and
FlM(ﬁZ(B)19/SZ(B)) are transitive.

Proof We can prove the result by induction on n.
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Proposition 14 Let F = (Yi)ics and F' = (Y])jey be two finite transitive factor-
izations such that it ezists a factorization G with F,F'<G then it exists a transitive

finite factorization G' such that

(i) F,F <G <G
(ii) For each j € J, G |y, y.) i a transitive finite factorization.
¥
(i1i) For each j € J', GIIM(yj{’gyl) is a transitive finite factorization.
J

Sketch of the proof We set J = [1,n], J' = [1,7/] and we prove the result by
induction on n. If n = 1 the result is trivial. If » = 2, lemmas 9, 12 and 13 give us the
proof. If n > 2, we set F = F; o F o B where B = (B, 8z(B)) is a transitive bisection
of M(A, ), F, a transitive factorization of M(B, fg) and F; a transitive factorization
of M(8z (B),03,(p))- Using lemmas 9, 12 and 13 we define a factorization

(Y., Y, T,B2(T), Y, _,,...,1) Otherwise

n'’

o { F If B<F

such that F', BXF"'<G, F'[y(y 4,,) Is transitive for each j € [1,n] (in fact this factor-
1’ £

J
ization is trivial for all j € [1, n] but at least one where it is a transitive bisection),
F’|m(B,65) and ]FHIM(ﬁz(B),%Z(B)) are transitive. Using the induction hypothesis we
can construct two factorizations F{ and Fj such that

F1, ' m(B,05)<F2 <Clu (B,65)

and
Fa, ¥l (85(B) 05,5 <F2XCl M(52(B).65,5))
and satisfying (ii) and (iii). We set G’ = F{ o Fj o B, then F,FF<G' <G and the
g 1 2

induction hypothesis, the construction of F” and lemma 13 allow us to conclude.
O

Corollary 15 Let F = (Y;);c1<F be two transitive finite factorizations then for
each i € I,F |y, 1y,) is a transitive finite factorization.

Proof It suffices to use proposition 14 with F,F'<F'.
O

The following definition is an adaptation to partial commutations of a definition
given by Viennot in [18].

Definition 16 A factorization (Y;)icr of M(A,0) has locally the property B if and
only if for each finite subalphabet B C A and n > 0 it ezists a factorization (Y)ier
with the property P such that there is an strictly increasing mapping ¢ : I' -1
satisfying

Y/ NBS" =Yy, NBS" and Y;N B=" =0 if j ¢ ¢(I')

Definition 17 We denote CLTF(A,6) the set of the complete locally transitive
finite factorizations.
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Example 3 Consider the following independance graph
a—b—-c—d.

We construct a complete locally transitive finite factorization as follow. We eliminate
successively the traces c,ac?, b,d, ac and a. So we have

M(A,6) = c*.(ac®)*.b*.d".(ac)*.a*. M

where M 1is a (non-commutative) free monoid. It suffices to take a Lazard factoriza-
tion on M to construct a complete locally transitive finite factorization of M(A,6).
Furthermore, one can prove that we can not obtain this factorization using only
transitive bisections with a non commutative right member.

4.2 Transitive elimination in Lg(A,0)

The following theorem proves that elimination in L k (A, 0) and transitive factoriza-
tion of M(A, #) occur under the same condition.

Theorem 18 Let (B, Z) be a partition of A

(i) We have the decomposition
Lx(A,6) = Lg(B,65) @ J
where J is a Lie ideal with generating set
z(B) =A{[...[2,b1],...b5) | =2b1...b, € Bz(B)}.

(it) The subalgebra J is a free partially commutative Lie algebra if B is
a TFSA of A.
(iii) Conversely if T7(B) is a basic family of J then B is TFSA.

Proof (i) We have the classical Lazard bisection
Lk (A) = Lk (B) @ Lk (Tz(B))

where Tz(B) = {[...[z,b1],.. J,b—n] | z € Z,by,...,b, € B}. Then using the
natural mapping Lx (A) — Lk (A,0) (as [...[z,b1),..],b,] maps to 0 if zb; ...b, ¢
Bz(B)) we get the claim.

(22) The proof goes as in [9], we sketch it here. We define a mapping 0, from Gz (B)

to Lg (,Bz(B), 952(3)) by

9, 2{ zwb if zwb € Bz(B),

0 otherwise.

a) We prove that if B is TFSA, 0, can be extended as a derivation of the Lie algebra
Lk (Bz(B), 05, (B))-

b) We define 9 a mapping from B to Der(Lx(8z(B),0s,(p))) by 0(b) = 85 and we
prove that it exists a Lie morphism from Lk (B, 6g) into Der(LK(ﬂZ(B),HﬁZ(B)))
which extends 8.
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c) We prove that the semi-direct product Lx (B, 0B) xa Lx(6z(B), 952(3)) and the
Lie algebra Lx (A, 6) are isomorphic. Hence, J is a free partially commutative Lie
algebra isomorphic to Lx (8z(B),05,(B))-

(i) If the dependence graph admits the following subgraph

g=l—...—by—2
with b; € B and z, 2’ € Z we have the identity
[2,[[... [, bn] - ., b2, al] = [ - [2/,b,] . . .b2), [2, bi]]-

This implies that 7z(B) is not a basic family of J.

4.3 Construction of bases of Lx(A,0)

In this section, we define a class of bases which contains the bases found by Duchamp
and Krob in [8], [9] and [5] using chromatic partitions and the partially commutative
Lyndon bases found by Lalonde (see Lalonde [11], Krob and Lalonde [10]).

pA
Definition 19 LetF = (Y;)icq1,n+1] be a finite transitive factorization. We denote F,
the set of the n-uplets (By, ..., B, ) of transitive bisections such that F = B,o0...0B;.
Let F be a transitive factorization and f = (Bi,...,B,) € F, we denote fB;' =

(]Bla"-1IBn—1)-

Definition 20 LetF = (Y;)ic[1,n+1) be a finite transitive factorization. A bracketing
of F along f € F is a mapping II; from Uiepint) Yi to Ly (A, ) inductively defined
as follows. If n = 1, then f is a sequence of length I under the form ((B,8z(B)))

and
_ ) wifwe B,
Hy(w) ‘{ [...[z,01])...bk] if w=2by...bx € Bz(B) and z € Z.

Ifn>1,letf= (By,...,Bs) € F. We setB,_10...0B; = (Y{)ienm and j € (1, n]
such that B, = (}fj!’,ﬁ}g,_),],,(}/}”)). And

(Mg (w) fwe |J ¥,
1€[1,n]—J
[ Mg (), ngx(vl)], oo I (vg)] if w=y1v1 ...k,
w € Bx,(Y{),
y1 € X;
and vy ...vx € Yj”.

I (w) =

\

Using theorem 18 in an induction on n we prove the following proposition.

Proposition 21 LetF = (Y);e[1,n) be a transitive factorization. For each f € F, we
have the following decomposition

Lk(A,0) = @ LK(HF(Yi)’ei)
i€l,n-1]

where

8; = {(I(y1), s (y2)) | (y1, y2) € bua}-
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Definition 22 Let F = (Yi)ics be a locally transitive finite factorization, a brack-
eting of F is a mapping I from J;c;Y; to Lk (A,8) such that for each finite sub-
alphabet B C A and each integer n > 0, it exists a transitive finite factorization
By m = (Y‘n’B)ie.]an and f, B € ﬁn,B such that for each t € UieJn,B Yi”’B A B=",

1

() = I, 5 ().

Lemma 23 Let F = (Y;);cg<F be two finite transitive factorizations. Then, for
each § € F, it ezists f € F such that for each t € ;e  Y:, ;(t) = My (2).

Proof It is a direct consequence of corollary 15.
a

Theorem 24 Let (A, 6) be an independence alphabet. Each locally finite transitive
factorization of M(A, 6) admits a bracketing.

Proof Omitted.

We have easily the following result.

Proposition 25 Let F = ({l;})ic; € CLTF(A,6) and 11 be a bracketing of F then
the family (I1(1;))ie1 is a basis of Lk (A, 8) as K-module.

Example 4 We set A = {a,b,c,d} and @ =a—b—c—d. We construct locally (for
n < 3) the following basis.

[[a,d],b], [a,d].d], [[a.d];al, [a.d], [afasc]], a, [ac], [[asc)ic], [fasd],c], [b,d], [[b,d[b],
([b,d],d], b, ¢, d.

5 The case of the group

The following result extends the classical partially commutative Lazard’s elimina-
tion ([9]) in the free partially commutative group to the elimination with partially
commutative complement.

Proposition 26 If B is TFSA, it exists a morphism o of group from F(B,6p)
into Aut(IF(ﬂZ(B),HBZ(B))) such that F(A, ) and F(B,6p) x, F(Bz(B), oﬁZ(B)) are
naturally isomorphic.

Proof The proof goes as in theorem 18 replacing derivations by automorphisms.
O
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