A q-Enumeration of Directed Diagonally Convex Polyominoes

Svjetlan Feretić *

March 31, 1999

Abstract

We q-enumerate directed diagonally convex ($d d c$-) polyominoes by an approach which partly goes column by column, and partly goes row by row. In the end we obtain fairly nice formulas.

1. Introduction

Ddc-polyominoes originate from (and are, in fact, equivalent to) so-called fully directed compact (fdc-) lattice animals. And fdc-animals are young: physicists Bhat, Bhan and Singh introduced them in 1986 [1].

The early publications [1] and Privman \& Švrakić [15] are focused on the number (say p_{n}) of fdc-animals with cardinality n. In [1], the authors argue that p_{n} is asymptotically equal to λ^{n}, where $\lambda=2.66185 \pm 0.00005$. In [15], the function $D=\sum_{n \geq 1} p_{n} q^{n}$ is derived exactly for the first time. (This D is, in fact, the area gf for ddc-polyominoes.)

Counting ddc-polyominoes by perimeter was first undertaken by Delest and Fédou [5]. Let r_{k} be the number of ddc-polyominoes with site perimeter $k+1$ (that is to say, with k diagonals). One of the results of [5] is that r_{k} equals the number of ternary trees with k internal nodes. That is,

$$
\begin{equation*}
r_{k}=\frac{1}{3 k+1} \cdot\binom{3 k+1}{k} \tag{1}
\end{equation*}
$$

By now, this nice fact about r_{k} has been established in several different ways: in [5], there are the original algebraic-language proof as well as a bijective proof. Then there are two other bijective proofs: an earlier one by Penaud [13], and a more recent one by Svrtan and Feretić [9]. (In [9], the bijection is relatively simple, and is no longer defined recursively.) And then there is- also in [9]- a proof based on Raney's generalized lemma [11, p. 348].

[^0]Further, when ddc-polyominoes with k diagonals are enumerated, then one of the probabilistic percolation models can be solved with (a bit) greater accuracy. Having realized this fact, Bousquet-Mélou [3] and Inui et al. [12] gave yet two different derivations of (1).

Ddc-polyominoes have an interesting "companion". It is the generating function ($g f$) D, whose variables are the following: $d=$ diagonals, $x=$ horizontal semiperimeter, and $y=$ vertical semiperimeter. The function D is algebraic, and satisfies the equation

$$
\begin{equation*}
D=d(D+1)(D+x)(D+y) . \tag{2}
\end{equation*}
$$

Equation (2) first appeared in Svrtan and Feretić [9]. Then, on pp. 61-62 of her habilitation thesis [4], Bousquet-Mélou derived (2) in a new way. Namely, she took the approach called object grammars [6].

Let us now return to q-enumeration (that is, to enumeration by both area and some- or none- other properties). It was shown in [9], and was integrated with some corollaries in Feretic [7], that the q-enumeration of ddc-polyominoes may be done by applying Gessel's q-Lagrange inversion formula [10]. The resulting formula for the gf then involves both positive and negative powers of q. In that respect, the formula in question is unique.

Moreover, in [4, pp. 66-67], Bousquet-Mélou q-enumerated ddc-polyominoes by a certain method coming from her previous paper [2].

In the present paper we, too, shall q-enumerate ddc-polyominoes by the method of [2]. This does not mean, however, that we are going to make a copy of [4, pp. 66-67]. Indeed, our way of applying the method will be different, and our final result (i.e., expression for the gf) will look simpler than those of [15] and [4, pp. 66-67].

Incidentally, our planned enumerations might as well be performed by Svrtan's method [8] for solving the Temperley recurrences [16]. In fact, although the methods of [2] and [8] were developed independently, they are pretty close to each other.

This paper now continues as follows. In Section 2, we state the necessary definitions and conventions. In Sections 3 and 4, we q-enumerate so-called escalier polyominoes, as well as certain close relatives of theirs; the name of those relatives is floorsitters. We are then able to state and solve our new functional equation for ddc-polyominoes, and we do so in Section 5 .

2. Definitions and conventions

If c is a closed unit square in the Cartesian plane, and if the vertices of c have integer coordinates, then c is called a cell.

Imagine one or more cells which all lie in the same vertical strip of width one. If connected, the union of those cells is called a column.

A row is a column rotated by 90 degrees.
Let $K_{1}, \ldots, K_{r}(r \in N)$ be columns. Suppose that, for $i=2, \ldots, r$, the following holds:

- the bottom cell of K_{i} is the right neighbor of the bottom cell of K_{i-1},
- compared with K_{i-1}, the column K_{i} is lower by one unit, or equally high, or higher by ≥ 1 units.

The union $\bigcup_{i=1}^{r} K_{i}$ is then an escalier polyomino.
Incidentally, the term "polyomino escalier" - coined by the Bordeaux group [14, p. xi]- is a bit problematical, because the English word for escalier is staircase, and the name staircase polyomino is commonly used for another object.

Let $c_{1}, \ldots, c_{j}(j \in N)$ be cells, and let $c_{i}(i=2, \ldots, j)$ be the lower neighbor of the right neighbor of c_{i-1}. Further, let s_{0} be the upper neighbor of c_{1}, and let $s_{i}(i=1, \ldots, j)$ be the right neighbor of c_{i}. Then the union $\bigcup_{i=1}^{j} c_{i}$ is a diagonal, and the union $\bigcup_{i=0}^{j} s_{i}$ is the shadow of that diagonal.

Let $D_{1}, \ldots, D_{k}(k \in N)$ be diagonals such that D_{1} has just one cell, and such that $D_{i}(i=2, \ldots, k)$ lies in the shadow of D_{i-1}. Then

- the union $P=\bigcup_{i=1}^{k} D_{i}$ is a directed diagonally convex polyomino (a ddc--polyomino),
- the only cell of D_{1} is the source cell of P,
- the cells of D_{k} are target cells of P,
- the diagonals $D_{1}, D_{2}, \ldots, D_{k}$ are the first, second, $\ldots, k t h$ diagonals of P.

See Figure 1.
By the floor of a ddc-polyomino P we mean the horizontal line containing the lower side of P 's source cell.

Let P be a ddc-polyomino. If every diagonal of P touches the floor of P, then P is a floorsitter ${ }^{1}$.

Let $m \in N$. An m-floorsitter is a floorsitter with exactly m target cells.
So far we have said what are an escalier polyomino and a ddc-polyomino, but we have not said what is a polyomino. So let us say it: a polyomino is a union of cells which is finite and possesses connected interior. It is easy to verify that our escalier polyominoes and ddc-polyominoes are indeed polyominoes.

Finally, let us state that in this paper we again count polyominoes up to translations.

[^1]

Figure 1: From top: An escalier polyomino, a directed diagonally convex ($d d c-$) polyomino, and a floorsitter.

3. Escalier polyominoes

In what follows, the "position" of the gf for escaliers will be occupied by the power series $E(s)$, which actually has five variables: $x=$ horizontal semiperimeter, $y=$ vertical semiperimeter, $q=$ area, $s=$ the height of the first column, and $u=$ the height of the last column.

For those of us who have read [2], the following two propositions will be a simple matter. For the rest of us, some related explanations are given in Section 5 of this paper.

Proposition 1. The gf $E(s)$ satisfies the equation

$$
\begin{equation*}
E(s)=\frac{x y q s u}{1-y q s u}+\frac{x q s}{1-q s} \cdot E(1)-\frac{x q s \cdot(1-y+y q s)}{1-q s} \cdot E(q s) \tag{3}
\end{equation*}
$$

Proposition 2. The gf for escaliers is given by

$$
\begin{equation*}
\left.E(1)=\frac{\sum_{i=1}^{\infty} \frac{(-1)^{i-1} x^{i} y q}{}\binom{i+1}{2} u \cdot \prod_{i=1}^{i-1}\left(1-y+y q^{\ell}\right)}{(q)_{i-1}\left(1-y q^{2} u\right)}\right) \tag{4}
\end{equation*}
$$

where every empty product is assumed to be one, and where $(q)_{0}=1, \quad(q)_{1}=$ $=1-q, \quad(q)_{2}=(1-q)\left(1-q^{2}\right) \quad$ etc.

4. Floorsitters

As we told in Section 2, a floorsitter is just an escalier with one-cell last column. So, to find the gf for floorsitters, it is enough to read off the coefficient of u^{1} on the right-hand side of (4). (And that is easy.)

According to our program, however, counting all floorsitters is not the first thing to do here. Instead, we should count the j-floorsitters (i.e., the floorsitters with j target cells).

So, let P be an escalier with $j \in N$ cells in the last column, and let S be the escalier produced by continuing P with $j-1$ new columns, whose heights are $j-1, j-2, \ldots, 1$ in that order.

What can we say about S ? First, S is a floorsitter. Second, as witnessed by the top and bottom creatures in Figure 1, there is no guarantee that S has exactly j target cells. However, S has at least j such cells. And third, S has $j-1$ columns more than P, as well as $\frac{(j-1) j}{2}$ cells more than P.

Are we now able to write down some gf for floorsitters with $\geq j$ target cells? Yes, certainly: one such gf is given by

$$
\begin{equation*}
x^{j-1} q^{\left(\frac{j}{2}\right)}<u^{j}>E(1) \tag{5}
\end{equation*}
$$

where $<u^{j}>E(1)$ denotes the coefficient of u^{j} in $E(1)$.
And what is more, we are able to add that

$$
\begin{equation*}
\left[x^{j-1} q^{\binom{j}{2}}<u^{j}>E(1)\right]-\left[x^{j} q^{\binom{i+1}{2}}<u^{j+1}>E(1)\right] \tag{6}
\end{equation*}
$$

is a gf for floorsitters with exactly j target cells.
In (5) and (6), the gf's for floorsitters have three variables: $x=$ horizontal semiperimeter, $y=$ vertical semiperimeter and $q=$ area. But in what follows, by "the gf for floorsitters with j target cells" we shall mean the power series $f_{j}(s)$, which, in addition to the just mentioned variables x, y and q, also has the variables $d=$ diagonals and $s=$ floor-touching diagonals.

Proposition 3. The gf for floorsitters with j target cells is given by

$$
\begin{equation*}
f_{j}(s)=\frac{\sum_{i=0}^{\infty} \frac{(-1)^{i}(d s x)^{i+j} y^{j} q\left({ }^{i+j+1}{ }^{i+1}\right) \prod_{\ell=1}^{i-1}\left(1-y+y q^{\ell}\right)}{(q)_{i}}}{\sum_{i=0}^{\infty} \frac{(-1)^{i}(d s x)^{i} q\binom{i+1}{2} \cdot \prod_{\ell=1}^{i-1}\left(1-y+y q^{\ell}\right)}{(q)_{i}}} \tag{7}
\end{equation*}
$$

Proof. Formula (7) can be derived by combining (4) and (6), and then making the substitution $x=d s x$. The substitution works because, if P is a floorsitter, then bottoms of P 's columns are also bottoms of P 's diagonals and vice versa. Hence

> the number of columns of P $=$ the number of diagonals of P $=$ the number of floor-touching diagonals of P

Our next proposition will show that the gf $f_{j}(s)$ admits of an interesting factorization. But let us first prepare the ground for that.

Let \mathcal{D} stand for the set of all ddc-polyominoes, and let \mathcal{F}_{j} stand for the set of j-floorsitters. For $P \in \mathcal{D}$, we shall use the following notations:

$$
\begin{aligned}
d i(P) & :=\text { number of diagonals of } P \\
f t(P) & :=\text { number of floor-touching diagonals of } P, \\
h(P) & :=\text { horizontal semiperimeter of } P \\
v(P) & :=\text { vertical semiperimeter of } P, \\
c e(P) & :=\text { number of cells of } P .
\end{aligned}
$$

For $j \in N$, by $f_{1}^{[j]}(s)$ we shall mean the product $f_{1}(s) \cdot f_{1}(q s) \cdots f_{1}\left(q^{j-1} s\right)$.

Figure 2: A 4-floorsitter decomposed into a 1-floorsitter (white !'s), a 3-floorsitter (gray !'s), and a row of cells (black !'s).

Proposition 4. For every $j \in N, \quad f_{j}(s)=f_{1}^{[j]}(s)$.
Proof. For $j=1$ there is nothing to prove.
Suppose the assertion holds for $j=m$.
Induction step. Let a big diagonal be a diagonal consisting of at least two cells.

Let $P \in \mathcal{F}_{m+1}$. Let D_{-}be the last one-celled diagonal of P, and let D_{+}be the diagonal immediately following D_{-}. The diagonal D_{+}is big, but is anyway contained in the shadow of D_{-}. Accordingly, D_{+}has exactly two cells.

Let S be the figure formed by those diagonals of P which occur not later than D_{-}. Let T be the figure formed by those diagonals of P which occur not earlier than D_{+}.

The figure S is no doubt a 1 -floorsitter.
Next, consider the horizontal line situated one unit above the floor of P. That line divides the figure T into two parts. The upper part (say U) is an element of \mathcal{F}_{m}, while the lower part (say V) is just a row of cells. See Figure 2. We have $d i(P)=d i(S)+d i(U)$ together with similar decompositions for $f t(P), h(P)$ and $v(P)$. On the other hand, since $c e(V)=f t(U)$, we have $c e(P)=c e(S)+c e(U)+f t(U)$.

In addition, the mapping $P \mapsto(S, U)$ is a bijection between the set \mathcal{F}_{m+1} and the Cartesian product $\mathcal{F}_{1} \times \mathcal{F}_{m}$.

Now it only remains to collect information together. Thus we obtain $f_{m+1}(s)$ $=f_{1}(s) \cdot f_{m}(q s)=f_{1}(s) \cdot f_{1}^{[m]}(q s)=f_{1}^{[m+1]}(s)$.

5. All ddc-polyominoes

Our gf for all ddc-polyominoes is denoted $D(s)$. In $D(s)$, the variables have the same names and roles as in $f_{j}(s)$.

The next proposition is something like the heart of this paper.
Proposition 5. The gf $D(s)$ satisfies the equation

$$
\begin{equation*}
D(s)=f_{1}(s)+\frac{x^{-1}}{1-q s} \cdot f_{1}(s) D(1)-\frac{x^{-1}(1-x+x q s)}{1-q s} \cdot f_{1}(s) D(q s) \tag{8}
\end{equation*}
$$

Proof. For the matter of generality, no harm will be done if we only retain the essential variables. Hence we set $d=x=y=1$. (What survives is s and q.) Instead of (8), we now have the equation

$$
\begin{equation*}
D(s)=f_{1}(s)+\frac{1}{1-q s} \cdot f_{1}(s) D(1)-\frac{q s}{1-q s} \cdot f_{1}(s) D(q s) \tag{8-}
\end{equation*}
$$

Consider the right-hand side (rhs) of (8-). The first term being self-explanatory, we proceed to the second term. Now it is handy to write down an algorithm.

Algorithm A. Input an ordered triple (L, P, R) such that L lies in \mathcal{F}_{1}, P lies in \mathcal{D}, and R is either the empty set or a finite row of cells. Then:

1. place P so that its source cell be the upper neighbor of the target cell of L, and
2. if R is not empty, place R so that its leftmost cell be the right neighbor of the target cell of L.

Finally output the union $L \cup P \cup R$.

See Figure 3.

Suppose that Algorithm A transforms an ordered triple (L, P, R) into a figure V. The last diagonal of L can then be recognized as the last among those diagonals of V which are (at the same time) one-celled, floor-touching, and neighbored from above by a cell which also belongs to V. And R is, of course, the part of the bottom row of V which is not contained in L.

Further, we have $f t(V)=f t(L)+f t(R)$ and $c e(V)=c e(L)+c e(P)+c e(R)$.
The remarks just made amount to the following: Algorithm A is an injection and the gf for its image is nothing but the second term on the rhs of ($8-$).

Now, what is the image of Algorithm A? It is a set composed of two blocks: one block is $\mathcal{D} \backslash \mathcal{F}_{1}$, the set of ddc-polyominoes which are not 1-floorsitters, and the second block is made up of certain- so to speak- useless objects. (To be specific, a part of those useless objects are 1 -floorsitters, and the other part are not even ddc-polyominoes.)

From what triples does Algorithm A produce useless objects? As a look at Figure 3 reveals, the answer is: from precisely those triples (L, P, R) in which $c e(R)$ is strictly greater than $f t(P)$. And thence it quickly follows that the gf, say $U L(s)$, for useless objects is $f_{1}(s) D(q s) \cdot \frac{q s}{1-q s}$. In other words, the third term on the rhs of ($8-$) is $-U L(s)$.

Figure 3: A fruit of Algorithm A. The corresponding input triple is unique, and is indicated as follows: the 1-floorsitter is sprinkled with white !'s, the ddc-polyomino with gray !'s, and the row of cells with black !'s.

Putting the pieces together, we now find that after $f_{1}(s)$, the gf for 1-floor-sitters, on the rhs of (8-) we have the gf for useful objects, i.e., for ddc-poly-ominoes which are not 1 -floorsitters. Equation (8-) is thus justified.

Let $D(d, x, y, q)$ be another name for $D(1)$.
Theorem 1. The gf for all ddc-polyominoes is given by

$$
\begin{gather*}
D(d, x, y, q)= \\
d x y \cdot \frac{\sum_{i=0}^{\infty}(-1)^{i} d^{i} q^{\binom{i+2}{2}} \sum_{j=0}^{i} \frac{x^{i-j}\left[\prod_{k=1}^{j}\left(1-x+x q^{k}\right)\right]\left[\prod_{\ell=1}^{i-j-1}\left(1-y+y q^{\ell}\right)\right] y^{j}}{(q)_{i-j}(q)_{j}}}{\sum_{i=0}^{\infty}(-1)^{i} d^{i} q^{\binom{i+1}{2}} \sum_{j=0}^{i} \frac{x^{i-j}\left[\prod_{k=1}^{j-1}\left(1-x+x q^{k}\right)\right]\left[\prod_{\ell=1}^{i-j-1}\left(1-y+y q^{\ell}\right)\right] y^{j}}{(q)_{i-j}(q)_{j}}} \tag{9}
\end{gather*}
$$

Proof. We first iterate (8) in the usual way. For wider audience, this essentially means that we make a copy, say (C), of equation (8),
then we replace the term $D(q s)$, which equation (8) involves, with the case $s=q s$ of the rhs of (C),
then we replace the term $D\left(q^{2} s\right)$, which the equation obtained in the previous step involves, with the case $s=q^{2} s$ of the rhs of (C), and so on.

The iteration leaves us with

$$
\begin{equation*}
D(1)=\frac{\sum_{j=0}^{\infty} \frac{(-1)^{j} x^{-j} \cdot \prod_{k=1}^{j}\left(1-x+x q^{k}\right)}{(q)_{j}} \cdot f_{1}^{[j+1]}(1)}{1-\sum_{j=1}^{\infty} \frac{(-1)^{j-1} x^{-j} \cdot \prod_{k=1}^{j-1}\left(1-x+x q^{k}\right)}{(q)_{j}} \cdot f_{1}^{[j]}(1)} \tag{10}
\end{equation*}
$$

But, owing to Propositions 3 and 4, we know that $f_{1}^{[j]}(s)$ is equal to $f_{j}(s)$, and we have a formula for $f_{j}(s)$. Substituting that formula (with s set to 1) into (10), we ipso facto obtain an expression for $D(1)$. However, to put this latter expression in simpler form, we then multiply both its numerator and its denominator by the denominator of $f_{j}(1)$. (This can be done because-fortunately- the denominator of $f_{j}(1)$ does not depend on j.) At this stage, the formula for $D(1)$ has a denominator of the form (the denominator of $f_{j}(1)$) minus (a certain double sum) . But those two items readily merge into one. In fact, in the denominator of (9), the denominator of $f_{j}(1)$ is just the part with $j=0$.

We knew it all along (because it is geometrically obvious) that the function D is symmetric in x and y. But the following fact is nevertheless worth pointing out.

Fact 1. The relation $D(d, x, y, q)=D(d, y, x, q)$ may readily be seen from formula (9).

Proof. Here it is profitable to remark that, in the numerator of (9), the sum over j can be written as

$$
\begin{gathered}
\sum_{j=0}^{i} \frac{x^{i-j}\left[\prod_{k=1}^{j}\left(1-x+x q^{k}\right)\right]\left[\prod_{\ell=1}^{i-j}\left(1-y+y q^{\ell}\right)\right] y^{j}}{(q)_{i-j}(q)_{j}}+ \\
+x y \cdot \sum_{j=0}^{i-1} \frac{x^{i-j-1}\left[\prod_{k=1}^{j}\left(1-x+x q^{k}\right)\right]\left[\prod_{\ell=1}^{i-j-1}\left(1-y+y q^{\ell}\right)\right] y^{j}}{(q)_{i-j-1}(q)_{j}}
\end{gathered}
$$

Let (11) be the version of (9) produced by the above rewrite. The swap of x and y converts (11) into a certain different-looking formula (12). But (12) may be obtained from (11) in yet one way, viz. by letting each sum over j pass through the following procedure: redefine the index j (e.g., new $j=i$ - old j), swap the indices k and l, and commute factors as situation requires. Now, being reachable from (11) both by this procedure and by the swap of x and $y,(12)$ is at the same time a formula for $D(d, x, y, q)$ and a formula for $D(d, y, x, q)$.

With x and y set equal to 1 , formula (9) looks a good deal simpler.
Corollary 2. We have

$$
\begin{equation*}
D(d, 1,1, q)=d \cdot \frac{\sum_{i=0}^{\infty}(-1)^{i} d^{i} \sum_{j=0}^{i} \frac{q^{(i-j)^{2}+(i+1)(j+1)}}{(q)_{i-j}(q)_{j}}}{\sum_{i=0}^{\infty}(-1)^{i} d^{i} \sum_{j=0}^{i} \frac{q^{(i-j)^{2}+i j}}{(q)_{i-j}(q)_{j}}} \tag{13}
\end{equation*}
$$

The less standard the derivation, the more important it is to check the answer (cf. [11, p. 175]). Hence we checked (and found to be correct) formula (9) up to the terms in d^{8}, and formula (13) up to the terms in d^{10}. To do so, we resorted to Maple and BASIC, and we also recalled our [9] bijection between ddc-polyominoes and $\frac{1}{2}$-good paths.

Note. The referees gave us several hints on how to make this a better paper. Being in a hurry, here we took just a part of those hints (and taking the others is continuing in real time). However, the benefit from this first round of revisal seems us rather visible.

References

[1] V.K. Bhat, H.L. Bhan, and Y. Singh, Enumeration of directed compact site animals in two dimensions, J. Phys. A: Math. Gen. 19 (1986), 3261-3265.
[2] M. Bousquet-Mélou, A method for the enumeration of various classes of column-convex polygons, Discrete Math. 154 (1996), 1-25.
[3] M. Bousquet-Mélou, Percolation models and animals, Europ. J. Combin. 17 (1996), 343-369.
[4] M. Bousquet-Mélou, Mémoire d'Habilitation, report no. 1154-96 (1996), LaBRI, Université Bordeaux I.
[5] M.-P. Delest and J.-M. Fédou, Exact formulas for fully diagonal compact animals, report no. 89-06, LaBRI, Université Bordeaux I, 1989.
[6] I. Dutour, Grammaires d'objets: énumération, bijections et génération aléatoire, Ph. D. Thesis, LaBRI, Université Bordeaux I, 1996.
[7] S. Feretić, Novi rezultati u prebrojavanju poliomina, Ph. D. Thesis, University of Zagreb, 1998.
[8] S. Feretić and D. Svrtan, On the number of column-convex polyominoes with given perimeter and number of columns, in: A. Barlotti, M. Delest, and R. Pinzani (Eds.), $5^{\text {th }}$ FPSAC proceedings, Firenze 1993, 201-214.
[9] S. Feretić and D. Svrtan, Combinatorics of diagonally convex directed polyominoes, Discrete Math. 157 (1996), 147-168.
[10] I. Gessel, A noncommutative generalization and q-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc. 257 (1980), 455-482.
[11] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science (Addison-Wesley, Reading, MA, 1989).
[12] N. Inui, M. Katori, G. Komatsu, and K. Kameoka, The number of directed compact site animals and extrapolation formula of directed percolation probability, J. Phys. Soc. Japan 66 (1997), 1306-1309.
[13] J.-G. Penaud, Animaux dirigés diagonalement convexes et arbres ternaires, report no. 90-62, LaBRI, Université Bordeaux I, 1990.
[14] J.-G. Penaud, Arbres et animaux, Mémoire d'Habilitation, LaBRI, Université Bordeaux I, 1990.
[15] V. Privman and N.M. Švrakić, Exact generating function for fully directed compact lattice animals, Phys. Rev. Lett. 60 (1988), 1107-1109.
[16] H.N.V. Temperley, Combinatorial problems suggested by the statistical mechanics of domains and of rubber-like molecules, Phys. Rev. 103 (1956), 1-16.

[^0]: *Address: Šetalište Joakima Rakovca 17, 51000 Rijeka, Croatia.

[^1]: ${ }^{1}$ As a matter of fact, floorsitters are nothing but escaliers with one-cell last columns.

