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Abstract

We g-enumerate directed diagonally convex (ddc-) polyominoes by an
approach which partly goes column by column, and partly goes row by
row. In the end we obtain fairly nice formulas.

1. Introduction

Ddec-polyominoes originate from (and are, in fact, equivalent to) so-called
fully directed compact ( fdc-) lattice animals. And fdc-animals are young: physi-
cists Bhat, Bhan and Singh introduced them in 1986 [

The early publications [1] and Privman & Svrakié¢ [15] are focused on the
number (say p,) of fdc-animals with cardinality n. In [1], the authors argue
that p, is asymptotically equal to A", where A = 2.66185+0.00005. In [15], the
function D =Y,51Pnq"” isderived exactly for the first time. (This D is, in
fact, the area gf for ddc-polyominoes.)

Counting ddc-polyominoes by perimeter was first undertaken by Delest and
Fédou [5]. Let 7 be the number of ddc-polyominoes with site perimeter k+1
(that is to say, with k diagonals). One of the results of [5] is that 7% equals the

number of ternary trees with k internal nodes. That is,

1 3k+1
gt Cr ) &

By now, this nice fact about 7% has been established in several different ways:
in [5], there are the original algebraic-language proof as well as a bijective proof.
Then there are two other bijective proofs: an earlier one by Penaud [13], and
a more recent one by Svrtan and Fereti¢ [9]. (In [9], the bijection is relatively
simple, and is no longer defined recursively.) And then there is— also in [9]- a
proof based on Raney’s generalized lemma [11, p. 348].
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Further, when ddc-polyominoes with & diagonals are enumerated, then one of
the probabilistic percolation models can be solved with (a bit) greater accuracy.
Having realized this fact, Bousquet-Mélou [3] and Inui et al. [12] gave yet two
different derivations of (1).

Ddc-polyominoes have an interesting “companion”. It is the generating func-
tion (gf ) D, whose variables are the following: d = diagonals, z = horizontal
semiperimeter, and y = vertical semiperimeter. The function D is algebraic,
and satisfies the equation

D=d(D+1)(D+z)(D+y) . (2)

Equation (2) first appeared in Svrtan and Fereti¢ [9]. Then, on pp. 61-62 of
her habilitation thesis [4], Bousquet-Mélou derived (2) in a new way. Namely,
she took the approach called object grammars [6].

Let us now return to g-enumeration (that is, to enumeration by both area
and some- or none- other properties). It was shown in [9], and was integrated
with some corollaries in Fereti¢ [7], that the g-enumeration of ddc-polyominoes
may be done by applying Gessel’s g-Lagrange inversion formula [10]. The re-
sulting formula for the gf then involves both positive and negative powers of q.
In that respect, the formula in question is unique.

Moreover, in [4, pp. 66-67], Bousquet-Mélou g-enumerated ddc-polyominoes
by a certain method coming from her previous paper [2].

In the present paper we, too, shall g-enumerate ddc-polyominoes by the
method of [2]. This does not mean, however, that we are going to make a copy
of [4, pp. 66-67]. Indeed, our way of applying the method will be different, and
our final result (i.e., expression for the gf) will look simpler than those of [15]
and [4, pp. 66-67].

Incidentally, our planned enumerations might as well be performed by Svr-
tan’s method [8] for solving the Temperley recurrences (16]. In fact, although
the methods of [2] and [8] were developed independently, they are pretty close
to each other.

This paper now continues as follows. In Section 2, we state the necessary
definitions and conventions. In Sections 3 and 4, we g-enumerate so-called esca-
lier polyominoes, as well as certain close relatives of theirs; the name of those
relatives is floorsitters. We are then able to state and solve our new functional
equation for ddc-polyominoes, and we do so in Section 5.

2. Definitions and conventions
If ¢ is a closed unit square in the Cartesian plane, and if the vertices of ¢
have integer coordinates, then c¢ is called a cell.

Imagine one or more cells which all lie in the same vertical strip of width
one. If connected, the union of those cells is called a column.
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A row is a column rotated by 90 degrees.

Let Ki,...,K, (r€N) be columns. Suppose that, for i=2,...,r, the fol-
lowing holds:

_ the bottom cell of K; is the right neighbor of the bottom cell of K;_1,

— compared with K;_1, the column K; is lower by one unit, or equally high,
or higher by > 1 units.

” r . o 3
The union |J;_, K; is then an escalier polyomino.

Incidentally, the term “polyomino escalier”— coined by the Bordeaux group
[14, p. zi ]- is a bit problematical, because the English word for escalier is stair-
case, and the name staircase polyomino is commonly used for another object.

Let ¢y,...,¢; (jEN) be cells, and let ¢; (i =2,...,]) be the lower neighbor
of the right neighbor of ¢;_;. Further, let so be the upper neighbor of ¢1, and
let s; (i=1,...,7) be the right neighbor of ¢;. Then the union (JI_;ci isa
diagonal, and the union [}, si is the shadow of that diagonal.

Let D1, ..., Dy (k€ N) be diagonals such that D; has just one cell, and such
that D; (i = 2,...,k) lies in the shadow of D;_;. Then

— the union P:Uf=1 D; is a directed diagonally convez polyomino (a ddc-
-polyomino),

— the only cell of D; is the source cell of P,
— the cells of Dy are target cells of P,
— the diagonals Dy, Dy, ..., Dy are the first, second, ... kth diagonals of P.

See Figure 1.
By the floor of a ddc-polyomino P we mean the horizontal line containing

the lower side of P’s source cell.
Let P be a ddc-polyomino. If every diagonal of P touches the floor of P,

then P is a floorsitter *.
Let me N. An m-floorsitter is a floorsitter with exactly m target cells.

So far we have said what are an escalier polyomino and a ddc-polyomino,
but we have not said what is a polyomino. So let us say it: a polyomino is a
union of cells which is finite and possesses connected interior. It is easy to verify
that our escalier polyominoes and ddc-polyominoes are indeed polyominoes.

Finally, let us state that in this paper we again count polyominoes up to
translations.

1As a matter of fact, floorsitters are nothing but escaliers with one-cell last columns.
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Figure 1: From top: An escalier polyomino, a directed diagonally convex (ddc-)
polyomino, and a floorsitter.
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3. Escalier polyominoes

In what follows, the “position” of the gf for escaliers will be occupied by the
power series E(s), which actually has five variables: £ = horizontal semiperime-
ter, y = vertical semiperimeter, ¢ = area, s = the height of the first column,
and u = the height of the last column.

For those of us who have read [2], the following two propositions will be a
simple matter. For the rest of us, some related explanations are given in Section
5 of this paper.

Proposition 1. The gf E(s) satisfies the equation

TYqgsu zqs zqgs - (1 —y+ ygs
yosu_ | 245 gy ™8 (1-y yq)_E(qs) 3)

E(s) = T s

T T1-ygsu  1-gs
O

Proposition 2. The ¢f for escaliers is given by
= (—1)"‘r‘yq(izl)u-H:::(l—y+yq‘)
— Liz1 (@)i-1(1-yg'u) (4)
- ; (*'*“) i1
o (=1)izig\ 2 )T (1-y+yqt)

Zi:o (q)i 5

where every empty product is assumed to be one, and where (@o=1, (¢1=
=1-¢, (9)2=(1-9)(1-¢°) etc

EQ)

O

4. TFloorsitters

As we told in Section 2, a floorsitter is just an escalier with one-cell last
column. So, to find the gf for floorsitters, it is enough to read off the coefficient
of u! on the right-hand side of (4). (And that is easy.)

According to our program, however, counting all floorsitters is not the first
thing to do here. Instead, we should count the j-floorsitters (i.e., the floorsitters
with j target cells).

So, let P be an escalier with j € N cells in the last column, and let S be the
escalier produced by continuing P with j—1 new columns, whose heights are
j—=1,7—=2,..., 1 in that order.

What can we say about S? First, S is a floorsitter. Second, as witnessed
by the top and bottom creatures in Figure 1, there is no guarantee that S has
ezactly j target cells. However, S has at least j such cells. And third, S has
j—1 columns more than P, as well as @l cells more than P.

Are we now able to write down some gf for floorsitters with > j target cells?
Yes, certainly: one such gf is given by
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7140 < > BQ) (5)

where < u/ > E(1) denotes the coefficient of v/ in E(1).
And what is more, we are able to add that

[zﬁ'-lq(i) <u> E(l)] - [ziq(’f‘) <w*l> B(1) (6)

is a gf for floorsitters with exactly j target cells.

In (5) and (6), the gf’s for floorsitters have three variables: z = horizontal
semiperimeter, y = vertical semiperimeter and ¢ = area. But in what follows,
by “the gf for floorsitters with j target cells” we shall mean the power series
fi(s), which, in addition to the just mentioned variables z, y and g, also has
the variables d = diagonals and s = floor-touching diagonals.

Proposition 3. The gf for floorsitters with j target cells is given by

s (~0i(as2) P57 IT 2 1yt
f:7(3) = = ] ] (i+£<)1)x o (7
oo (=1)'(dsz)ig\ 2 /-T2 (1-y+yq?)
Zi:O (9): .
Proof. Formula (7) can be derived by combining (4) and (6), and then
making the substitution z = dsz . The substitution works because, if P is a
floorsitter, then bottoms of P’s columns are also bottoms of P’s diagonals and

vice versa. Hence

the number of columns of P
=the number of diagonals of P
=the number of floor-touching diagonals of P
O
Our next proposition will show that the gf f;(s) admits of an interesting
factorization. But let us first prepare the ground for that.

Let D stand for the set of all ddc-polyominoes, and let F; stand for the set
of j-floorsitters. For P€D, we shall use the following notations:

di(P):= number of diagonals of P,
ft(P):= number of floor-touching diagonals of P,
h(P):= horizontal semiperimeter of P,

v(P):= vertical semiperimeter of P,
ce(P):=number of cells of P.

For j€E N, by fIU] (s) we shall mean the product fi(s)- fi(gs)--- fi(¢?~1s).
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Figure 2: A 4-floorsitter decomposed into a 1-floorsitter (white !’s), a 3-floorsit-
ter (gray !’s), and a row of cells (black !’s).

Proposition 4. For every jEN, fi(s)= P](s) .

Proof. For j=1 there is nothing to prove.

Suppose the assertion holds for j=m.

Induction step. Let a big diagonal be a diagonal consisting of at least two
cells.

Let P€ Fry1. Let D_ be the last one-celled diagonal of P, and let Dy be
the diagonal immediately following D_ . The diagonal D, is big, but is anyway
contained in the shadow of D_. Accordingly, D4 has exactly two cells.

Let S be the figure formed by those diagonals of P which occur not later
than D_. Let T be the figure formed by those diagonals of P which occur not
earlier than Dy .

The figure S is no doubt a 1-floorsitter.

Next, consider the horizontal line situated one unit above the floor of P.
That line divides the figure T into two parts. The upper part (say U) is an
element of F,,, while the lower part (say V) is just a row of cells. See Figure

2. We have di(P) = di(S) + di(U) together with similar decompositions for
ft(P), h(P) and v(P). On the other hand, since ce(V) = ft(U) , we have
ce(P) = ce(S) + ce(U) + ft(U) .

In addition, the mapping P+ (S,U) is a bijection between the set Fpn41
and the Cartesian product F; x Fp, .

Now it only remains to collect information together. Thus we obtain fy41(s)

= £1(5) - Fm(as) = fi(s) - F™(gs) = F7H(s) o

5. All ddc-polyominoes

Our gf for all ddc-polyominoes is denoted D(s). In D(s), the variables have
the same names and roles as in f;(s).

201



The next proposition is something like the heart of this paper.
Proposition 5. The gf D(s) satisfies the equation

D(S) = fl(s) =+ % . fl(s)D(l) _ A (1 -+ xqs)

1 pup -f1(s)D(gs) . (8)

Proof. For the matter of generality, no harm will be done if we only retain
the essential variables. Hence we set d=z=y=1. (What survives is s and q.)
Instead of (8), we now have the equation
1 gs

-fi(s)D(1) -

= L AGDE) . ()

D(s) = f(s) +

Consider the right-hand side (rhs) of (8-). The first term being self-explana-
tory, we proceed to the second term. Now it is handy to write down an algo-
rithm.

Algorithm A. Input an ordered triple (L, P, R) such that L lies in F;, P
lies in D, and R is either the empty set or a finite row of cells. Then:

1. place P so that its source cell be the upper neighbor of the target cell of
L, and

2. if R is not empty, place R so that its leftmost cell be the right neighbor
of the target cell of L.

Finally output the union LU PUR.

See Figure 3.

Suppose that Algorithm A transforms an ordered triple (L, P, R) into a figure
V. The last diagonal of L can then be recognized as the last among those
diagonals of V' which are (at the same time) one-celled, floor-touching, and
neighbored from above by a cell which also belongs to V. And R is, of course,
the part of the bottom row of V which is not contained in L.

Further, we have ft(V)=ft(L)+ft(R) and ce(V)=ce(L)+ce(P)+ce(R) .

The remarks just made amount to the following: Algorithm A is an injection
and the gf for its image is nothing but the second term on the rhs of (8-).

Now, what is the image of Algorithm A? It is a set composed of two blocks:
one block is D\ Fi, the set of ddc-polyominoes which are not 1-floorsitters,
and the second block is made up of certain— so to speak— useless objects. (To
be specific, a part of those useless objects are 1-floorsitters, and the other part
are not even ddc-polyominoes.)

From what triples does Algorithm A produce useless objects? As a look at
Figure 3 reveals, the answer is: from precisely those triples (L, P, R) in which
ce(R) is strictly greater than ft(P). And thence it quickly follows that the gf,
say UL(s), for useless objects is f1(s)D(gs) - 72~ . In other words, the third

1-gs
term on the rhs of (8-) is —UL(s).
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Figure 3: A fruit of Algorithm A. The corresponding input triple is unique,
and is indicated as follows: the 1-floorsitter is sprinkled with white !’s, the
ddc-polyomino with gray !’s, and the row of cells with black !’s.

Putting the pieces together, we now find that after f(s), the gf for 1-floor--
sitters, on the rhs of (8-) we have the gf for useful objects, ¢.e., for ddc-poly--
ominoes which are not 1-floorsitters. Equation (8-) is thus justified.

O
Let D(d, z,y, gq) be another name for D(1).
Theorem 1. The gf for all ddc-polyominoes is given by
D(d,z,y, q) =
dzry - 220(—1)idiq(i;2) E;':o xl_j[ = $+I(Z),).],[(£I;_; : — 9)
T2 (~1)idig(F) T, == [[[2 a- x+:(q .)_],[l_)l,; (1-y+yq*)]y?

Proof. We first iterate (8) in the usual way. For wider audience, this
essentially means that we make a copy, say (C), of equation (8),

then we replace the term D(gs), which equation (8) involves, with the case
s = gs of the rhs of (C),

then we replace the term D(g%s), which the equation obtained in the previous
step involves, with the case s = g%s of the rhs of (C), and so on.

The iteration leaves us with

s | AT A

j=0 ();
D(ly=—2 . (10)
1)i-1z-37. (1-z+z ) i
1-72, & [Losomtea) | iy
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But, owing to Propositions 3 and 4, we know that flm(s) is equal to f;(s),
and we have a formula for f;(s). Substituting that formula (with s set to 1)
into (10), we ipso facto obtain an expression for D(1). However, to put this
latter expression in simpler form, we then multiply both its numerator and
its denominator by the denominator of f;(1). (This can be done because-
fortunately- the denominator of f;(1) does not depend on j.) At this stage, the
formula for D(1) has a denominator of the form (the denominator of f;(1) )
minus (a certain double sum) . But those two items readily merge into one.
In fact, in the denominator of (9), the denominator of f;(1) is just the part
with j=0. -

We knew it all along (because it is geometrically obvious) that the function
D is symmetricin z and y. But the following fact is nevertheless worth pointing
out.

Fact 1. The relation D(d,z,y,q) = D(d,y,z,q) may readily be seen from
formula (9).

Proof. Here it is profitable to remark that, in the numerator of (9), the
sum over j can be written as

ixi—j[ £=1(1—x+qu)][ni;{(1—y+y9£)]yj+

— (9)i-j(a);

ST, (-2 + 2" [T 0 - v+ ve9)]y
(9)i-j-1(g);

+ry -
j=0

Let (11) be the version of (9) produced by the above rewrite. The swap of
z and y converts (11) into a certain different-looking formula (12). But (12)
may be obtained from (11) in yet one way, viz. by letting each sum over j pass
through the following procedure: redefine the index j (e.g., newj =i —oldj),
swap the indices k and /, and commute factors as situation requires. Now, being
reachable from (11) both by this procedure and by the swap of z and y, (12) is
at the same time a formula for D(d, z,y,¢) and a formula for D(d,y,z,q). 5

With z and y set equal to 1, formula (9) looks a good deal simpler.

Corollary 2. We have

(=2 +(i+1)(5+1)

0 1\i i g L ol il © s
Zi:o( 1)'d Zj=0 (9)i-;(9);

D(d,l,l,q)=d 1 q )2 +ij
00 i i (i=7)2+i5
Zi:o(_l) d Zj=0 (9)i-5(a);

(13)
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The less standard the derivation, the more important it is to check the
answer (cf. [11, p. 175]). Hence we checked (and found to be correct) formula
(9) up to the terms in d®, and formula (13) up to the terms in d'°. To do so,
we resorted to Maple and BASIC, and we also recalled our [9] bijection between
ddc-polyominoes and %-good paths.

Note. The referees gave us several hints on how to make this a better paper.
Being in a hurry, here we took just a part of those hints (and taking the others
is continuing in real time). However, the benefit from this first round of revisal
seems us rather visible.
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