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Abstract

We survey some old and some new characterizations of distance-regular graphs,
which depend on information retrieved from their adjacency matrix.

Distance-regular graphs were introduced by Biggs around 1970, by changing a symmetry-
type requirement, that of distance-transitivity, by a regularity-type condition concerning
the cardinality of some vertex subsets. Thus, one common way of looking at distance-
regularity is to “hang” the graph from a given vertex and observe the resulting different
layers; that is, the subsets of vertices at a given distance from the root. Then, if vertices in
the same layer are “indistinguishable” from each other, and the whole configuration does
not depend on the chosen vertex, the graph is said to be distance-regular. More precisely,
a (connected) graph G = (V, E) with diameter D is distance-regular if and only if, for any
two vertices u,v € V at distance dist(u,v) = k, 0 < k < D, the numbers ¢, a, b, of
vertices which are adjacent to v, and at distance k—1, k, k+1 respectively from u, do not
depend on the chosen vertices u and v, but only on their distance k.

Since their introduction, distance-regular graphs and their main generalization, the as-
sociation schemes, have proved to be a key concept in algebraic combinatorics, having
important connections with other branches of mathematics, such as geometry, coding the-
ory, group theory, design theory, as well as to other areas of graph theory. As stated in the
preface of the comprehensive textbook of Brouwer, Cohen and Neumaier [2], this is because
most finite objects bearing “enough regularity” are closely related to certain distance-
regular graphs. Apart from the above definition, there are other well-known combinatorial
characterizations of distance-regular, such as the following:

(a) A graph G with diameter D is distance-regular if and only if, for any pair of vertices
u,v € V and integers 0 < 4,7 < D, the number of vertices which are at distance
from u and at distance j from v only depends on dist(u,v).
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(b) A graph G is distance-regular if and only if for any integer k& > 0, the number of walks
of length k between two vertices u,v € V only depends on dist(u, v).

In this work, we aim to survey some characterizations of distance-regular graphs which
are of an algebraic nature. Such characterizations rely mainly on the adjacency matrix A
of the graph and/or some of its invariants, such as its spectrum

spG :=sp A= {7, A", ..., A%}

where the eigenvalues A;, 0 < I < d are in decreasing order and the superscripts denote
multiplicities, or their corresponding eigenspaces

& = Ker(A — N I) (0<i<d).

Thus, as the number ak, of walks of length k between vertices u, v is no more than the
uv-entry of the k-th power of A, we can see (b) as a simple characterization in terms of the
adjacency matrix of G. In fact, it can be easily proved that we do not need to impose the
invariance condition on all such numbers of walks. For instance, if G is regular we have the
following result:

(c) A regular graph G with diameter D is distance-regular if and only if for any two
vertices u,v € V' at distance dist(u,v) =k, 1 < k < D, the numbers of walks ak, and
ak+1 only depend on k.

Another characterization involving adjacency matrices states that a graph G with di-
ameter D is distance-regular if and only if, for any k, the distance-k matriz Ay —whose
wv-entry is 1 if dist(u,v) = k and 0 otherwise— is a polynomial of degree k in A; that is:

Ar=p(4) (0<k<D) 1)

(Notice that the existence of such py and p; is always guaranteed since Ay = I and 4; = A.
Moreover, note also that, if G is regular of degree 4, say, then Ay = A2 — §I .) In general,
the polynomial py, is referred to as the distance-k polynomial of the graph. See, for instance,
Biggs [1] or Brouwer et.al. [2]. In fact, if every vertex u € V has the maximum possible
eccentricity “allowed by the spectrum”; that is, the number of distinct eigenvalues minus
one: ecc(u) = d, the existence of the highest degree distance polynomial suffices, and hence
we need only to require that

Ap =pp(A). (2)

This was proved in the context of pseudo-distance-regularity —a generalization of distance-

regularity that makes sense even for non-regular graphs— by Garriga, Yebra and the author
in [11].

For each eigenvalue \;, 0 < I < d, let U; be the matrix whose columns form an or-

thonormal basis of its eigenspace &. The (principal) idempotents of A are the matrices

E; = UlU,T representing the orthogonal projections onto £. Accordingly, such matrices
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satisfy Eg+ E1+--- + Eqg=1I (as expected, since the sum of all orthogonal projections
gives the original vector), and the so-called spectral decomposition theorem

d
Z NE =A
=0

(see for instance, Godsil [14]). Since both {I, Ay, A%} and {Eq, E,,...,Eg} are basis
of A(A), the adjacency or Bose-Mesner algebra of matrices which are polynomials in A,
it is not strange to have characterizations of distance-regularity in terms of the entries
of the above idempotents. These numbers are called the crossed uv-local multiplicities of
N\, and denoted by myy (). Notice that, if z,; represents the orthogonal projection of
the u-canonical vector e, on &, the crossed local multiplicities correspond to the scalar
products:

muv(Al) = (El)uv = (Eleua ev) = (Eleua Elev) = (zulyz'vl> (u,v S V)

For instance, if the graph is regular, then the eigenvector of )\ is the all-1 vector 7, and the
above gives My, (Ao) = (14, 14) = 1/n for any u,v € V. Moreover, Godsil [13] proved that,
if @ is distance-regular, then for any given eigenvalue A, 0 <1 < d, the crossed uv-local
multiplicity may,();) depends only on the distance dist(u, v), and it is not difficult to realize
that the converse is also true. In fact, in the spirit of characterization (c), we can prove the
following result (see [7]):

(d) A regular graph G, with eigenvalues Ag > Ay > --- > g and diameter D, is distance-
regular if and only if the crossed uv-local multiplicities Mauw(A1) and myy(Ag) depend
only on the distance dist(u,v) = k, for any 0 < k < D.

Of course, we may also ask for some characterizations involving only the spectrum.
Then, the question would now be: Can we see from the spectrum of a graph whether it
is distance-reqular? In this context, it has been known for a long time that the answer
is ‘yes’ when D < 2 and ‘not’ if D > 4, whereas the case D = 3 was undecided until
recently, when Haemers [15] gave also a negative answer. Thus, in general the spectrum is
not sufficient to assure distance-regularity and, if we want to go further, we must require
the graph to satisfy some additional conditions. In this direction, Van Dam and Haemers
[4] showed that, in the case D = 3, such a condition could be the number ng(u) of vertices
at “extremal distance” D = d from each vertex u € V. Then, Garriga and the author
[8] solved the general case, characterizing distance-regular graphs as those regular graphs
whose number of vertices at distance d from each vertex is what it should be (a number
that depends only on the spectrum of the graph). To be more precise, they proved that a
(connected) regular graph G with n vertices and spectrum spG = {20, A™M,..., A"} is
distance-regular if and only if the number of vertices at distance d from each vertex u is

d 7r2 -1
i) = (z i 12) )

=0
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where the 7;s are moment-like parameters defined by m; = Hg=0’k¢l A=A, 0< 1< d.
In fact, since the right-hand expression in (3) is the value at A of a degree-d polynomial,
the characterization (2) can now be seen as a corollary.

Notice that he cases d = 1,2 of the above result are trivial, in the sense that every
(connected) regular graph G with two or three different eigenvalues is distance-regular
(G=Kp,ifd+1=2and G is strongly regular when d + 1 = 3 —see, for instance,
Godsil [14]). As we have already mentioned, the first “non-trivial” case d — 3 is due to
Haemers and Van Dam [4], while the case ng(u) = 1 (that is, 2-antipodal graphs) was also
studied by Garriga, Yebra and the author in a previous paper [12]. In fact, in this case
only the distinct eigenvalues matter, as their multiplicities can be deduced from them by
the formulae m; = my/m, 0 <1 < d. Furthermore, in this case we do not need to require
regularity since it is inferred by condition (3)- Then it turns out that a graph G with
eigenvalues A9 > A; > --- > ); is a 2-antipodal distance-regular graph if and only if

d -1
ng(u) =n Z — = (4)

=0 =5

for each u € V. The graphs satisfying the second equality of (4), that is Y% o(mo /7)) =n,
are called boundary graphs since they satisfy an extremal property that arises from a bound
for the diameter of a graph in terms of its distinct eigenvalues. Namely, it was proved in
[10] that, if G is regular and 3°¢ ,(mo/m) < n, then D < d — 1.

From the result in (3), some other spectral characterizations have been given for special
classes of distance-regular graphs. Thus, as a generalization of the above 2-antipodal case,
it was proved in [5] that a regular graph G, with eigenvalues A\g > A\; > --- > )y, is an
r-antipodal distance-regular graph if and only if the distance graph Gy (that is, the graph
whose adjacency matrix is Ag) is constituted by disjoint copies of the complete graph K.,
with r satisfying an expression in terms of n and the distinct eigenvalues. Namely,

d -1
r=2n (Z :—‘;) . (5)

=0

Note that the case r = 2 corresponds to (4).

Recall that a d-regular graph G on n vertices is called (n, 8; a, c)-strongly regular if every
pair of adjacent (respectively, nonadjacent) vertices u,v have a (respectively c) common
neighbours. Thus, if connected, a strongly regular graph G is the same as a distance-
regular graph (with diameter two). Otherwise, it is known that G is constituted by several
copies of K,. Furthermore, a graph G with diameter D = d is called (n, d; a, c)-strongly
distance-regular if G is distance-regular and its distance-d graph G is strongly regular with
the indicated parameters. Some known examples of such graphs are the connected strongly
regular graphs, with G4 = G (the complement of G), and the r-antipodal distance-regular
graphs with G4 = mK, so that they are (n,8;r — 1, 0)-strongly distance-regular graphs).
Hence, some spectral conditions for a (regular or distance-regular) graph to be strongly
distance-regular have been already given above. In particular, notice that 2-antipodal
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distance-regular graphs characterized in (4) correspond to the case a = ¢ = 0. In this
context, the more general case a = ¢ Was dealt with in [9], where one can find the following
result. Let G be a regular graph on n vertices, with distinct eigenvalues Ag > A1 > - -+ > Ad,
d> 1. Then G is (n, §;c, c)-strongly distance-regular if and only if

n(n—1)
2
T, ) +n-1

for every vertex u € V. Moreover, in such a case, the above parameters are § = ng := ng(u),
¢ = ng(ng — 1)/(n — 1), and the multiplicity of eigenvalue A; 1s

mo [(n—1)ng = .
, = g . — Y <1 <d).
m= Tt =D (i< ™

The necessity of condition (6) was proved by Van Dam (3] using the Laplace matrix of G
and Haemers’ method of eigenvalue interlacing [16]. He also proved that (6) is sufficient to
assure the strong regularity of G4 and that, in the case d = 3, it also implies the distance-
regularity of G. In such a case, Van Dam also offered examples of graphs satisfying the
result. Namely, the odd graph O (4-regular, n = 35, n3 = 18), and the generalized
hexagons GH(g,q), with g a prime power, ((g + 1)-regular, n = 2(q + )(¢* +¢®+1),
ng = ¢°); for a description of these graphs, see for instance [1, 2]. On the other hand, notice
that for the case ng(u) = 1, studied in [12], the values in (3) and (6) coincide since, in both
cases, G must be a 2-antipodal distance-regular graph.

Finally, for general values of a and ¢, and d = 3, the following characterization has
been recently given in [6]. A regular (connected) graph G, with n vertices and distinct
eigenvalues Mg > A1 > A2 > As, is strongly distance-regular if and only if A, = —1, and

nafu) = ©)
(

(n—2Xo— 1)[’/T0/(>\0 +1) - n(Ao + >\1A3)]

mo — (Ao + A1A3) '
for every vertex u € V. (In this case, a and c satisfy also expressions in terms of the
eigenvalues.)

Although, up to now, we are not aware of any generalization of the above theorem
for d > 3, we neither know, if fact, of any example of strongly distance-regular graph
with diameter greater than three (apart from the r-antipodal ones). This suggests to end
with the following conjecture: A (connected) regular graph G, with n vertices and distinct
eigenvalues Ag > Ay > -+ > Ag, 18 strongly distance-regular if and only if one of the three
following conditions holds.

(®)

n3(u) =

1. G is strongly regular (d = 2);
2. d =3, Ao = —1, and G3 is k-regular with degree k satisfying (8);

3. G, is constituted by disjoint copies of K with r satisfying (5) (that is, G is an
antipodal distance-regular graph).
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