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Abstract

We consider the problem of enumerating combinatorial objects built on two types of basic blocks,
according to their total size and to the excess of one type of blocks. We show that the generating
functions involved can be obtained in a systematic way, and that they may be amenable to a systematic
treatment, then consider the existence of a limiting distribution for the number of components of
specified balance.

Resume Get article traite de 1'enumeration d'objets combiaatoires bicolores, selon leur taille totale,
et selon Ie desequilibre des couleurs. Nous indiquons comment la serie generatrice bivari^e peut
etre obtenue systematiquement, puis etudions la loi limite du nombre de composants de deseqiiilibre
donne.

A well-known combinatorial problem is to determine the number of components of type A of an object
of type C = B(A), when the total size of the C object is known. There are many results on this subject
for admissible constructs. Classical examples are the number of cycles in a random permutation, or the
number of non-empty subsets in the partition of a set of n objects, enumerated by Stirling numbers of
the first and second kind; see for example [13] for a recent survey.
Now assume that the combinatorial construct A is no longer built as usual on a single type of basic objects,
or atoms, but on two types : red and blue atoms. We can classify the objects of type A according to
the relative excess of red elements on blue ones : the balance, or according to the dominant color. It is
easy to determine the probability that an object of A belongs to one of these classes. A more involved
question is to study the number of ̂ l-components in a given class, for an object of C with total size n.
Our interest in this problem comes from the paper [4], where the problem we studied there (evaluation
of the generalization error in a learning framework) was modelled by introducing a sequence of sets, i. e.
an occupancy urn model, and computing the number of urns with positive balance.
We present our framework and an overview of our results in Section 1, and consider an example in
Section 2. We then show in Section 3 how generating functions for bicolored objects can be obtained in
a systematic way, before turning to the asymptotic study of the number of components with specified
balance in Section 4.

1 Overview of the model

Let us make precise the type of results we are seeking. We consider bicolored combinatorial objects of
type C = B(A); let Cn be the number of objects of C with size n, and Cn, g, fc be the number of such objects
that have fc ̂ -components of balance q. For example, we consider permutations as sets of cycles (A is a
cycle and B a set); Cn = 2"n! is the number of bicolored permutations on n elements, where each element
may be red or blue; the balance of a cycle is the difference between the number of red elements and the
number of blue elements of the cycle; and £30, 2, 5 is the number of permutations on 30 elements that have
exactly five cycles with an excess of two red atoms each, and an unspecified (possibly null) number of
cycles with different balances.
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Define a random variable Xn, g on objects of C to be equal to the number of ̂ -components that have a
specified balance q, conditioned on the total size n of the C structure. We have that

Proba (Xn,g =k)= ^n, q,k

We would like to compute the expectation and variance ofXn, y, and to determine if a limiting distribution
exists when the global size n goes to infinity and q is fixed.
The enumeration of the objects of A with a specified balance q and a given size n presents no difficulty.
Let an be the number of (non colored) objects of A that have size n; the number of such objects with
balance q is ((n_"g)/2)an for -n <, q <, n, Q otherwise. However, we want to be able to combine the
condition on the balance (or a "majority" condition, which requires that the balance of a component be
non-negative) with other, so-called "admissible" constructs (see for example [12] for an introduction to
admissible constructs and associated generating functions). To this effect, we need to be able to write
the generating functions associated with ̂ 4-components of given balance, in a way that will allow us to
inject them into other generating functions, and to do asymptotics on the resulting function.
More specifically, we begin by considering the combinatorial objects of ̂1 obtained by the following rule,
which we call the specified balance rule :

Start from a given type A, built by some combinatorial construct from basic objects, which we
call "atoms". Assume that the atoms can take two colors : blue and red. We are interested
m (Ae objects of A, such that the number of atoms of one color (say, red) differs from the
number of atoms of the other color (blue) by a specified number q '(q e Z}. ' Define Aq as the
set of such objects.

We next consider the majority rule, \. e. the rule that builds the set A of combinatorial objects with null
or positive balance, starting from a basic type A :

A=^A,ig.
<?>0

For example, if A is a. set, the elements ofAq are sets of p blue atoms and p+g red atoms, for any p > 0,
and the elements of A are the sets with a number of red atoms equal to or greater than the numbeT of
blue atoms If A is a cycle, the elements of Ay are cycles with p blue atoms and p + 9 red atoms (the
relative order of appearance counts), and the elements of A are the cycles with more red atoms than blue
atoms.

We shall see in Section 3 that the generating functions enumerating the objects of A with a specified
excess of red elements, or the objects of A with a majority of red elements, can be written as Hadamard
products of the generating function enumerating A and of some functions related to Dyck paths, and
give a combinatorial explanation of this result.

Throughout the paper, we shall use consistently the variables y, z and u as follows : y denotes the (total)
size of thecombinatonal object currently under study; z marks the balance of the global object, i. e. the
relative difference between the numbers of red and blue atoms; for a composed object, u is the number of
its components that have a specified balance.

2 Bicolored Permutations

A permutation is a set of cycles, i.e. a construct P = B(A), with A a cycle and B a set. The exponential
generating functions are respectively A(y) = log(l/(l -y)), B(y} = et/, and P(y} = 1/(1 - y).

2. 1 Enumeration of bicolored permutations by size and balance on the num-
ber of balls

Let fnqbe the number of permutations on n elements with balance g, i. e. built on [n+q)/2 red balls and
(n - q)/2 blue balls; we have that /n, g = n\{^_n^^), and the bivanate generating function enume7atmg
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the permutations by their size and balance is

F(y, z) :=^fn, ^g = exp (l°S F-y^:
n,q

y(z+l/2)y ~ l-y(z+!A)'

The sum ^3 fn,q 
= n'-[yn}F(y, 1) is equal to the number n! 2" ofbicolored permutations. The exponential

generating function for the cycles of balance q is ̂ (y) := [z^F(y, z) = En ̂ n^n ln'- FOT Positive g,

^(y) - E
1

2r+g
'12T+q\y^T.

From [15, p. 201-203], we have that

^ ^f2r^)r. ^(^,^. ^r+Q\ r }~ 9
r:2r+?>0

(1)

with B^(t) = (1 - Vl - 4<)/(2<) the generating function for Catalan numbers; hence the expression of
^ (q > 0) as (1/g) (^(y2 ))9 = (I/?) (lz^i^-) . For balanced cycles [q = 0), we get yo(y) =

^ (2^ ^: ^ loglrVl^! = logB2(y2 ). The function <I>(y) describing the predominantly red cycles

is $(y) = E^o^(y) = logi^&y = logi_2^i-4^- we have simple closed-form exPressions
for the numbers $n := [y"/n!]$(y), according to their parity : $2p = (2p - 1)! (22P-1 + ^(^)) and
$2p+i=(2p)!22P.

2. 2 Number of permutations on cycles with specified balance
Define Tq as the set ofpermutations whose cycles all have the same balance g . ^g= >$er(Cg), with Cq the
cycles of balance?, i.e. with any number p of blue balls and p+g red balls {p^ N, q   Z andp+g ̂ 0).
The generating function for Tq is

;"

pi(y} ..= U^.n^T = exp^y^'
n

with p^n the number ofbicolored permutations on n elements, with an unspecified number of cycles, and
such that each cycle has balance q.

The generating function enumerating the permutations on balanced cycles is Po(y) = exp(<po(y) = 52^),
and po, 2n+i = 0, po, 2n = (2n)' Cn. Such a permutation can be seen as the product of a standard
permutation on 2n elements and of a Dyck path of length 2n, where each return to 0 corresponds to the
end of a cycle.

Assume now that q is strictly positive. Then ipg(y) = (l/g)(2/B2(y2 ))?, which gives Pg(y) = En Pg, "y"/nl =
exp[(l/q)(yB'2(y'2))c'}- What is the asymptotic number of these bicolored permutations? We shall evaluate
it by singularity analysis applied to the function y, (y) or to related functions [11]. To proceed further,
we have to take into account the parity of g :

. For q even, q = 2p, we have that ?2p(y) = -Pp(4y2 ), with

'(l_^T^7)2P'
Pp(z) :=exp 2pzf

Hence p2 p,2n+i = 0 and p2p, 2n = {2n)Un[zn}Pp(z). Th^function Pp has an algebraic singularity
at z =-1; near this singularity Pp(z) ~ e1/2? (l - ^T^~I+ 0(1 - ^)), which gives, by a transfer
lemma ^ ^^^

^w ~ ^.
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. For q odd, gr = 2p+ 1, the function J°2p+i(y) is equal to P2p+i(2y), with

, 2p+l
P2p+i(z) := erp (2p+l)z2p+i

and p2p+i, n 
= "!2"[2-"]P2p+i(z). Computing the asymptotic value of the coefficient [z"]^2p+i(z)

requires us to take into account the two algebraic singularities of Ap+i at ±1. Again a transfer
lemma gives us the result :

[^]-P2p+l(^ gl/(2p+l) ̂ _ ̂ _^n+lg-l/(2p+l)
n-^lvn

For example, we get pi^ ~ n!2"(e + (-l)"+le-l)/^^^/2^n, which depends on the parity of n.

To sum up, we have that p2p, 2n+i = 0 and

ei/2p
P2p, 2n

P2p+l,n

2n^/7m
22"(2n)!

2"n!el/(2p+l) + (-l)"+le-l/(2p+l)
n^lvn

As a consequence, the proportion of permutations whose cycles all have a specified balance q is either 0
(if q is even and n is odd) or of order n~312.

2. 3 Number of cycles with specified balance in a random permutation
Assume now that we are interested in the number X of cycles with specified balance in a random
permutation (for example cycles of balance 0, or of positive balance). Let gn, i be the number ofbicolored
permutations on n elements with exactly ; cycles of the desired balance, and an unspecified number
of cycles of different balance; and define /(y) as the function enumerating the bicolored cycles with the
desired balance. Then the enumerating function, exponential in the total size and ordinary in the number
of cycles, is :

^;y» e(u-l)/('/)G(u, y):=^g^ul^=
^7 "; 1- 2y

The average number of cycles with specified balance is

^[yn}9G/Qu^y) ^ 1 ^ f /(y)
[yn]G(l, y) -- 2^

withA(y)=/(y/2)/(l-y).

[yn]G(l, yJ l-2y = [y"]A(y),

. For cycles with balance 0, /(y) = ^o(y) = log ̂ (y2 ). The function A(y) := ^- log 2(l-/l-y2)
has algebraic singularities at ±1; the main contribution comes from the singulan^y at +1, ̂ nd we
get

E[X} = [yn}\{y) = log 2 - ^277m+0(n-3/2);
the average number of balanced cycles has a limit equal to log 2 = 0. 6931....

. For cycles with a strictly positive balance q > 0, the enumerating function is f(y) = Vq(y), and the
average number of cycles with balance q is

^'=H^i
Singularity analysis gives E[X] = 1/q + 0(1/^/n).
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. For cycles with positive balance, f(y) = 6(y) and \(y) = 1/(1 - y) log2/(1, - 2, + V/l - y2 ); The

singuiarities of X are y = ±1. The contribution from the singularity +1 is (1/2) logn(l + o(l)), and

the singularity -1 gives a smaller order term : As could be expected, the average number of cycles
with a positive balance is equal to half the average total number of cycles.

The variance is obtained from the generating function by

2(X) - M^^) + Ew - Ew= ̂  \^\+ Em -Ews-[yn]G(l, y) l1^.
We do not discuss its asymptotics, which could be obtained in a similiar vein, as it is more interesting to
turn at once to the limiting distribution for cycles of specified balance : The existence and form of this
distribution are direct applications of a former study by Drmota and Soria [8, 22]; see the discussion in
Section 4. 1. We sum up the asymptotic results in

Theorem 2. 1 The number of balanced cycles in a random bicolored permutation has average value and
mnance~[og2-. It has a discrete limiting distribution : for each k, Pr{k) ~ (l/2)(log2)fc/fc!. The number
of cycles of balance q> 0 in a random bicolored permutation has average value and variance equal to 1/q.
Its limiting dzstribution zs given by Pr(k) ~ e-l/«(l/g)fc/fc!. The number of cycles with positzve balance
follows asymptotically a Gaussian hmzting distribution, of mean (1/2) log n and variance y'logn.

3 Generating functions for bicolored objects
3. 1 How do we obtain them?
The balance of an element a of ̂  is defined as the difference between the number of red balls and the
number of blue balls in a; itis a relative integer. Let us assume that the ordinary function enumerating
the objects of type ^ is A(y) = Ep>o ap2/p (later on we shall see that exponential generatingfunctk)ns

behave in the same way). We introduce the variable z to keep track of the balance. The number of
objects of size n and balance q is ar, (^^y^), and we obtain the bivariate generating function describing
the objects of A, enumerated w. r. t. the size (y) and their balance (z) as

A(y
1z+^)= ^ an(^)^yn=:^^y)zq,

n^O,qeZ v 2 g6Z

with the functions ipq[y) enumerating the objects of A with balance q. We shall also wish to use the
generating function associated with the set A of objects that have a majority of red atoms; this function
is $(y) :== ^^>g y7g(y). Computing the functions y?g(y) gives :

^(y)--= E ap(r)yp= ^ ^ a^2r
0<r<p

p-2r=g
0<r<g+2r

'q + 2r
r

y,9+2r (2)

The summation is on r such thatO ^ r^ g+ 2r, i. e. r^ Oforg^ 0, and r^ -g = \q\ for g < 0. _For
q = o, yo(y) = £o<r a2r(2rr) ^ . For negative 9 = -p, we have the obvious relation y-p = y>p, and we
can express the function $ in a simple form :

2$(y)=yo(y)+^(2y).

3. 2 Hadamard products
It is interesting to see the functions y>g and $ as Hadamard products of the enumeration function A{y)
and of another function. The Hadamard product of two power series f(t) = ^ fn tn and g(t) = En5n<'
is defined as

[fQ9)(t):=^fn gntn.
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For positive g, and according to Equation (2), the function fq can be written as a variation of the
Hadamard product of A(y) and of the function y>->^ (q+2r')yr = Bi{t')q 1^/\ -4t. Define

^+2r\^^ (y52(y2 ))g .
^-.-^^ , JV

- 

:=i-2,2B^)-

then y>g(y) = (AQ fq)(y). The expression (1) holds for all real r, and we get for g = 0
1 1My) = ^^y2

- 

l-2y2 B2(y2 )'
Now, by linearity of the Hadamard product,

^(y) = E^(y) = E(A®A)(y) = (A®EA)(y) = (-4o^)(y),
g^O q>0

with F(y) := Y^^Q fy(y). Simplifying, we obtain :

'z^-
<3>0

F(y)= (l-2y2 52(y2 ))(l-y52(y2 )) ~2

If the objects of A are best enumerated by the exponential generating function A(z) = ^ apZP/p\ (this
happens for example with labelled objects), the bivariate function enumerating them w.rT. their size and
balance is ̂ gg^ ̂ g(y) z?, with

^+2r\ y<i+2r.. (ri=E«^(':^^'+2r)!'

Hence <py = AQ fg, where the function fy is the same as for ordinary generating functions. We sum up
our results so far in

Theorem 3. 1 The ordinary generating functions tpq and $ and the exponential generating functions if q
and $ enumerating the objects of Ag and A, i. e. the objects with a specified balance q or with a positive
or null balance, can be obtained from the ordinary or exponential generating functions A(y) or A(y) by
taking their Hadamard product with suitable functions, as follows :

fq=AQfq\ yy=AQfg; <E>=.4©F; $=A®F,
with f_y = fg and, for q ~^ 0 :

q

f^y) ..=

F(y) .. = j
The functions $ and ̂  can also be expressed as

$(y)=J(A(2y)+^o(2/)); $(y)=^(A(2y)+^o(y)).

More generally, the function associated with the set Uggf^g of objects such that their balance q belongs
to a set ^ is obtained as the Hadamard product of A(y) or A(y) and of ̂ g^ fg. An important
consequence of recognizing Hadamard products is that, as the functions /g and'F are algebraic, with
singularities at ±1/2, we have some a-priori information on the location of the singularities of their
Hadamard product, and can sometimes decide their types [7, 21] : The singularities of ipq and $ are
among the points ±o'/2, where a is a singularity of A(y), and their radius of convergence is half the
radius of convergence of A(y) If A(y) is entire, then so is <py; if A(y) is a rational function, then ̂ g is
algebraic; however ifA(y) is itself an algebraic function, then the Hadamard product of A and fq maybe
a transcendental function. We shall see examples of this when considering some common combinatorial
constructs A.
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3.3 Basic constructs

The case where A zs a set, or equivalently an infinite urn, was treated in the paper [4]. It was proved
there that the function if>q(y) is (almost) a Bessel coefficient. We can derive easily this result by taking
the exponential generating function A(y) =et/ : Op= 1, and we get

^(y) = E -(^y9 +2r 
= ^^ wth w = S ̂ ^. (q^z)-

The sequence of balances is a random walk, and the apparition of Bessel functions was already noted
in [10, p. 59-60]. Now the function associated with predominantly red sets is

$(y)=E^(2y)=:E$"^T'
g^O n^O

and we have simple expressions for the $n, according to the parity of n : 2$(y) = e2y + /o(2y).
When A is a sequence, we start from the ordinary generating function for A: A(y) = l/(l-y) = £p>o yp .
This is the neutral element for the Hadamard product : (A ©/)(?/) = f(y). Hence yq is equal to fq, and
$ is equal to F (see Theorem 3. 1 for the definition of these functions).
When A is a cycle, we use exponential generating functions : A(y) = logl/(l - y) = Sp^iyp/P- we
have already seen in Section 2 that

A(») = ^ (»'))'-fl -<1.;'"'')2y (?>0);

ipo{y) = logB2(y2 );

^ = ilogTT2, +ilogB2(y2)=logl-2^0-4^'
Finally, let's consider the case of Catalan trees. The generating function for A is an ordinary one :
A(y} = B^y) = (1 - ^T^4y)/(2y). We get

^ + 2^ ̂ ^,, _ v- ̂ 2? + 4r^ ̂  + 2r^ ^+2r
^(V)=^C^[- l, ~ )y^T=2.. [g+^)[' r. )q+2r+l-

For example,
^r\.. 2r_^f^\^~\ V2T

^o(y) =^C^^ Jv- = ^ [^)[, )^^-
We also have an expression of the function enumerating predominantly red trees :

$(y) = J(^o(y)+B2(2z/)) = ^ EC^(2,7')y2r+EC-2ryr) .
The functions y?g are transcendental series, as well as $(y) = (l/2)(^(2y) + y?o(2/)) [1]. We can write
these functions as hypergeometric functions, following the method outlined in [15, p. 207-208]. Let us
see what happens for ^o(y) : Define tk := C2k{^)y2 k; to = 1 and the ratio of two consecutive terms is a

rational fraction in k :
tk 4y2 (4A + 1) [1k + 1) (4A + 3) _ , ^ ,2, (fc + 1/4) (fe + 1/2) (fe + 3/4),
^ 

= 
' 

(2fc+3)(fc+l)2 
= (otiy~) (^+3/4)(A. +1)2 '

hence <po[y) can be expressed in terms of an hypergeometric function :
'2k\ n, " / l. i.S

^o(y)=E^(';)y2 fc=F
k>0

41234
' 5

64y;

In the same vein, we have that

y?(y) =yqF
l+2g 1+q 3+2c

^T'y 64y2
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3.4 Hypergeometric functions

We have seen that the functions enumerating Catalan trees with specified balance are expressible using
hypergeometric functions. This is a general property of most, if not all, of these functions. Let us define
hq, r := ag+2r(9+. ) and ,15(2') := ^ Ag, rZr; then yy(y) = yihq[y1 }. Can we characterize the constructs

leading to hypergeometric functions?

We recall (see for example [15, p. 205]) that an hypergeometric function is a series whose coefBcients can
be expressed in terms of rising factorial powers a" = a(a+ 1) ... (a+n - 1), as follows ;

ai,..., am |''.... am ! ^ =v-aL_^r=. v-f^"^^,.. :, b; izj=^^-^^=:^/n2n-
In such a case, the first coeflRcient is equal to 1, and the ratio of two consecutive coefficients is a rational
function of the index n :

/n+i _ (n+ai) ... (n+am)
fn 

~ 

(n+b, )... (n+bp)(n+iy
The reverse of (3) is also true, and we shall use it as a characterization of hypergeometric functions (see
again [15, p. 207-208]) : Let f(z) = ^ f^zn; if the ratio fn+^/fn can be written as

/,Fn+1

/.
=A (n+ai)... (n+am)

'n+bi)... (n+bp)(n+l)' (4)

and if fo = 1, then

f(z)=F( ^'... 'am
'1) . . . Iyp

\z

For fixed q, the ratio of two consecutive coefficients of hq is :

Ag, r+l _ ag+2r+2 (9+-+rl+ ) _ 4 a^+2r+2 (r+1 + 9/2)(r + (1 + ?)/2)
hq, r Ug+2r (^2r) ?. + 1 ' a,+2r ' r+9+1

K the ratio a9+2'-+2/a?+2r for fixed g is a rational function of r, then so is the ratio Ag, r+i//tg, r and,
by (4), hq is an hypergeometric function. More precisely, we can prove the
Theorem 3. 2 The functions tpq(y) can be written as <pg(y) = yghq(y2 ), where hy is an hypergeometrzc
function in the following cases :

1. If the function A{y~) = ^ any" 25 such that the ratio of two consecutive coefficients of the same
parity is a rational function of n :

then

hy(t) = agF

"n+2 ̂  (n+ai) ... (n+am
an ' (n+A)... ("+/?p)

di+q Q'm+g 1 i <? 1+g
^-,..., ^, -I. -T 5, -2-

^,..., ^, 1+9
2m-P+2Af

2. If the function A{y) is itself an hypergeometric function :

then

h, {t) = a,F

Aw-F[7:::::^
Q'l+<?
2 '

Um+1? Ul+g+1
~2~ -2-'

0'^+f
2- '

+i, ^±2,..., ^±a.., -^-, . . ., -2-,
[+9+1

2 - '
, +g+l

2

4"-P+2<
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3. 5 Bessel generating functions
The Bessel generating function of a sequence {an} is Z;n Un 2"/("'); it was used by Camion and Sole
[5], and later by Fedou and Rawlings [9]; it is related to the enumeration of pairs of objects. The
function yo{t) = £r a2r(2r'')^2r/(2r)! = Er a2r<27'/(r!)2 can be seen as the Bessel generating function of
the sequence agr. Anticipating on the combinatorial explanation given below, we can say that we are
enumerating simultaneously two objects, both of size n, one of them being built on red atoms and the
other being built on blue atoms, from which we obtain the final object of size 2n and balance 0.
When working with unbalanced objects, we are considering a generalization ofBessel generating functions,
where the pairs of objects (the one on blue atoms and the other on red atoms) can have diiTerent sizes.

3. 6 Combinatorial interpretation

It is interesting to notice that the functions fq(y) and F(y) are related only to the balance or to the
dominant color of a set, not to the construct A that operates on the elements of this set, nor to the type
(ordinary or exponential) of the generating function for A. The functions fy and F involve the function
B-i(t), enumerating classical objects : binary trees, Dyck paths,..., and it is only natural to try and seek
a combinatorial explanation.

The Hadamard product corresponds to building a combinatorial object of Aq of size n from a combi-
natorial object of A and one of the objects enumerated by /g, both of the same size n, so a natural
question is : What are the objects enumerated by fq ? The answer is simple : They are the sequence of
the n successive balances obtained when we build an object of A by adding red or blue atoms one at a
time. This sequence, which can have integer positive or negative values, and ends at the value g, can be
enumerated by considering the points at which it takes for the last time the values 0, 1,..., 9 in this order,
if q is positive, or symmetrically the points 0, -1, ..., ? if g is negative.

T

last passage at 0

T

last passage at 1
\7-

We give below a bijection for the sequence of balances when q is positive. We shall use a for the addition
of a red ball, which increases the balance and which we can represent by an up step, and b for a blue ball,
or similarly a down step.

. The addition of red and blue atoms (one at a time) gives a balance that can be positive or negative,
and that at some point takes for the last time the value 0. This corresponds to a generalized Dyck
path, on up and down steps, that can pass under 0, and that ends at 0.

. Then we take an up step, which gives a balance (height of the path) 1. Afterwards, the balance
stays at least equal to 1. Its behaviour between this point and the point of last passage to 1 is
described by a Dyck path. This point is followed by an up step, then again by a Dyck path until
the point of last passage to 2, and so on until the path ends at height q. This behaviour can be
summarized as (a. Dyck)9.

To sum up, the sequence of balances is given as a generalized Dyck path, followed by the prefix of a Dyck
path, ending at height q.

The case of negative q can be treated in the same way, by a symmetry after the end of the generalized
Dyck path : The combinatorial explanation for the function F(y) related to components with non-negative
balance follows the same lines : A sequence of balances either ends at level 0, i.e. is a generalized Dyck
path, or is a generalized Dyck path, followed by the prefix of a (standard) Dyck path : The path ends at
an unspecified, but (strictly) positive level.
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We can sum up this section very simply : To build a combinatorial object with balance q, we just build
it while keeping track of the balance, and mix the two phenomena "term by term", as implied by the
Hadamard product.

4 Number of components of specified balance
Many results are known on the number of components of a decomposable combinatorial structure, and
we can expect similar results for the number of components with a specified balance : See [2, 6, 3, 14,
16, 8, 18, 19] for various results, and [13] for a global presentation and summary.

For bicolored objects, the (ordinary or exponential) generating function enumerating the objects of B(A)
according to their size and to the number of components whose balance is in a given set S is

C(y, u)=B(A(2y)+(u-l)f(y)),
with f(y) enumerating the objects of ̂ 4 with balance in £. The asymptotic study of the number of such
Acomponents in a random C object requires knowledge of the singularities of the function C, which are
in part determined by those of the functions A(y) and f(y), and in part by the type of the function B.

4. 1 B is a set

In this case,
C(y, u)=eA^-f^euf^.

This is a product scheme according to the definition of Drmota and Soria [22]. Define r as the radius of
convergence of f(y); then r is also the radius of convergence of y i-»- eA(2y)-/(!/) and is half the radius of
convergence of A(y). The number X of components of specified balance can behave in only one of the
following two ways (see the discussion in [22]) :

. If the function / has a finite limit /(r) for y ->. r~, then the r.v. X has a discrete limiting
distribution, with Pr(X = k) ̂  f(r}k e-f(r) / k\.

. If f(y) -> oo for y ->. r-, then the limiting distribution is Gaussian, with mean f(p), where p is the
saddle point, defined by the equation 2yA (2y) - yf (y) = n.

Now the behaviour of / depends on the exact balance condition, i.e. on the set S.. For example, for
permutations, A(y) = logl/(l - y); the radius of convergence is r = 1/2, and

. for components with balance equal to q, f (1/2) = ^g(l/2) is finite and we get a discrete limiting
distribution;

. for components with positive balance, f{y) = <^(y) ^ oo for y
limiting distribution with mean (1/2) log n.

1/2 and we get a Gaussian

4. 2 B is a sequence

Now B(y) = 1/(1 - y) and
G(y, u)= 1 - A(2y) -(u- l)/(y) .

This is a meromorphic scheme of the type studied by Bender [2]. Following the presentation given in [13,
p. 54-55], we see that the limiting distribution is Gaussian, provided that the equation A(2y) = 1 has a
single solution of modulus smaller than half the radius of convergence of A and that some "variability
condition" is satisfied. Assume from now on that there exists a solution p to the equation A(2y) = 1; the
variability condition can be written as

Var > 0, with Var:= f{p) f(p)
2M'(2p) \^pA'{2p) +1- f[p) f_(p}A'w

A'(2p) A'(2p)2 (5)
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If this holds, the limiting distribution has for average value nf(p}/1pA (2p), and for variance nVar.
For example, let us take non-empty sets as components : A(y) = ey - 1 and G(y, 1) has a single pole at
p = (l/2)log2. For a fixed balance equal to g, the condition (5) becomes

^-l)^(log2)+2-/, (log2)>0
and it is easy to check that it is satisfied for allg > 0 : The number of sets with balance q follows
asymptotically a Gaussian limiting distribution with an average value nJ, (log2)/2 log2, and a variance
also of order n.

4. 3 B is a finite sequence, or urn models
When B is a, finite sequence of m elements, and A is a. set, we are in fact considering urn models, where
a combinatorial object is simply a random allocation of ra balls into a sequence of m urns. This is a
classical problem of discrete probability, for which many results are known in the non-colored case; see
for example the book of Johnson and Kotz [20]. We have B(y) = ym, A[y} = et/, and the generating
function for the allocation of bicolored balls is

G(u, y)= e2t/+ ("-i)/(y))'
where /(y) = Jg(2y) for urns with fixed balance q and f(y) = ^g>o Iq{2y) for urns with non-negative
balance. What is the probability that there are k urns with a specified (equal to some q or positive)
balance? The relevant generating function is either f(y) = $(y) or f(y) = ^g(2y); then

Proba(kfn) = (T)
n! (2m)"

[yn]{fk(y)(e2t'-f(y))m-k}.

When the number m of urns and the number n of balls have the same growth rate, the number Xn,m
of urns with a specified balance, either positive of equal to some q, can be analyzed in the quasi-powers
framework of Hwang [17], and follows a limiting Gaussian distribution. Its average value is obtained by a
saddle point approximation; here the saddle point is p = n/2m, and E[Xn, m] ~ irif(p)e~". The variance
is also of order m.

We may extend this approach to consider more general "urns" with different ^l-components. If the
saddle-point equation 2yA'(2y)/A(2y) = n/m has a solution smaller than half the radius of convergence
of A, then we expect a limiting Gaussian distribution; otherwise the singularity of smallest modulus of A
will determine the asymptotic behaviour.

5 Possible extensions

We have presented in this paper results on the enumeration of bicolored composed objects of the type
B(A), and on the number of their components when the construct 5 is a finite or infinite sequence, or
a set. We should be able to extend this approach to take into account other classical combinatorial
constructs. We might also consider iterating the majority rule, i. e. define colors on the B components of
objects C(B(A)), according to the majority of their A components; what kind of results can be expected?
Interesting extensions might also take into account unequal probabilities for the two colors, and three or
more colors.

Acknowledgements are due to J.P. Allouche, P. Flajolet and D. Gouyou-Beauchamps for helpful dis-
cussions about various aspects of this work.
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