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ABSTRACT. We outline the computation of an explicit formula for the Hilbert
function of the ladder determinantal varieties defined by the vanishing of all
minors of a fixed size of a rectangular matrix with indeterminate entries such
that the indeterminates in these minors are restricted to lie in some ladder
shaped region of the rectangular array. Finding such a formula is equivalent
to enumerating the set of monomials of a fixed degree such that the support
of these monomials is a subset of a 'ladder' and satisfies a certain "index
condition".

1. INTRODUCTION

Typically, a ladder is a subset of a rectangle which looks as follows.

FIGURE 1

Given a rectangular matrbc with indeterminate entries, the algebraic variety defined
by all minors of a fixed size within a ladder shaped subset of the rectangle, is
usually called a ladder determinantal variety. These varieties are intimately related
to Schubert varieties in flag manifolds (cf. [21], [22]). Motivated partly by this
connection, the ladder determineintal varieties (and, in fact, more general varieties
of this kind) were introduced by Abhyankar [1]. It is known that such varieties are
irreducible (cf. [I], [23]), Cohen-Macaulay (cf. [12]) and normal (cf. [5], [19]). Some
of these properties can also be deduced using the connection with Schubert varieties
from the work of Ramanathan [25] (see also [3], [17], [18], [24] [26]). Using [25] or
otherwise (cf. [7], [11]) one knows also that most of these varieties have rational
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singularities. Other properties such as Gorensteinness as well as the determination
of the divisor class group have also been investigated (cf. [5], [6], [20]).

We consider in this paper the problem of finding an explicit formula for the
Hilbert function of ladder determinantal varieties. More precisely, we consider an
m(l) x m(2) matrbc X = (Jfy) whose entries are independent indeterminates over
a field K, and a subset C. of the rectangle {(i, j) : 1 $2 ̂  m(l), 1 ^ j ^ m(2)}
such that C, is like a (one-sided) ladder as in Fig. 1 or, more generally, a 'biladder'
or a two-sided ladder (See Section 2 for precise definitions). Let K[C] denote the
ring of polynomials in the indeterminates {Xy : (t, j)   £} with coefficients in AT.
Let Ip{jC.) denote the ideal of K[£,] generated by ally x p minors of X in K[£].

From a combinatorial viewpoint, the problem of finding the Hilbert function of
7p(£) is equivalent to enumerating a set of monomials in K[£] satisfying a certain
'index condition' and of a fixed degree. Indeed, from the work of Abhyankar [I], we
know that such "indexed monomials" form a IC-basis for the graded components of
the residue class ring K[C}IIp{C,). In fact, this equivalence is a basic starting point
for the arguments in [2], [15], [16] and in this paper as well. The connection with
indexed monomials is explained in details in Section 2.

The problem of finding explicitly the Hilbert function of the homogeneous ideal
Ip{£) or of the corresponding projective variety Vp(£) was first studied by Kulkarni
in his 1985 thesis [15] (see also [16]). There he obtained a nice formula in the first
nontrivial case of p = 2. It may be noted that in the degenerate case when C, is
the entire rectangle [l, m(l)] x [l, m(2)], the ideal Ip(C) reduces to the classical de-
terminantal ideal Ip(X) that arises frequently in Algebraic geometry and Invariant
Theory. In the case of Ip(X), the Hilbert function is explicitly known from the work
of Abhyankar [1]. In particular, the Hilbert function of Ip(X) coincides with the
Hilbert polynomial of Ip(X) for all nonnegative integers; ideals with this property
are called hilbertian. For a survey of Abhyankar's work, see [8] and for a short proof
of a formula for the Hilbert function of Ip(X), see [4] or [9]. Returning to ladders,
it was shown in 1989 by Abhyankar and Kulkarai [2] that the ideals Ip{C) are also
hilbertian for any p>l and any biladder £; in fact, this result is applicable to sets
more general than biladders, called generalized ladders or saturated sets (see Sec-
tion 2 for details). Ladder determinantal ideals such as Jp(£) were considered from
the viewpoint of Grobner bases and lattice paths by Herzog and Trung [12]. They
showed that one can describe the Hilbert function of 7p(£) in terms of the /-vector
of the associated simplicial complex. While this would also prove the Hilbertianness
of Ip(jC), there still remains the problem of finding explicitly the Hilbert function
ofjp(£). To this end, Conca and Herzog [4] conjectured a 'remarkable formula' for
the Hilbert series (that is, the generating function for the sequence of values of the
Hilbert function) in the case of one-sided ladders. Recently, Krattenthaler [14] has
established this Conjecture using the so called 'two-rowed arrays'.

Our mcdn result is an explicit (albeit, complicated!) formula for the Hilbert
function of Jp(^) for any biladder C. and any p ^ 1. This may be viewed as a
natural extension of the results of Kulkami [16] and a refinement of the technique
used by Abhyankar and Kulkarm [2] to prove that 7p(£) is hilbertian. A detailed
proof of this result shall appear in a forthcoming paper [10]. In this paper, we
shall only try to outline some of the main ideas involved in the proof and give the
statements of the main lemmas and theorems. It is hoped that this would make
[10], which appears to be a rather long and technical paper, a little more accessible.

This paper is organized as follows. The next section sets up some notation and
preliminary notions that we shall use. We consider the case of ,2 (-C) in Section 3
and the general case in Section 4.
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2. PRELIMINARIES

By Z N, and N+ we denote the sets of all integers, nonnegative integers, and
positive integers respectively. Given any a, & e Z, we define the closed and semi-
closed integral intervals [a, b], [a, b), (a, 6] in the obvious way; for example,

[a, &)=={c6Z:a<c<6}.

Fbc a pair m - (m(l), m(2)) of positive integers, a field K and an m(l) x m(2)
matrbc X = (^fy) whose entries are independent indeterminates over K. Given
any subset Y of the rectangle

[l, m(l)j x [l, m(2)j - {(i, j) :l^i^ m(l), l^j< m(2)},
let ̂ ^ ,den0^ t^e polynomial nng i" the indeterminates {Xy : {i, j) e V} with
coefficieats in K. Given^any p  N, we let Ip(Y) denote the ideal" of A'[y] generated
by all pxp minors of X in K[Y].

Given any ̂  e N+, by a ladder generating bisequence (LGB) of length h, we
mean a map S : [1, 2] x [0, A] -> N such that

and

1 = 5(1, 0) ̂  5(1, 1) < 5(1, 2) < ... < 5(1, h) = m(l)

m(2) = 5(2, 0) > 5(2, 1) > ... > 5(2, A - 1) ̂  5(2, h) = 1.
The positive integer h may be denoted by len(5). We shall find it convenient to also
consider the empty bisequence, which we declare to be the unique LGB of length
0. Given any LGB S of length h, we define

Ien(S)

and

L(S)= (J [5(l, fc-l), 5(l, fc)]x[l, 5(2, jk-l)],
Jfc=l

len(S')
L[S)°= (J [5(l^-l), 5(l^))x[l, 5(2, fc-l)).

A=l

We^callL(S) to be the ladder corresponding to 5 and L(S)° to be the interior of
£(5). Note that if /i > 0, then

2. (5)°cL(5)C[l, m(l)]x[l, m(2)].
In case^h = 0, we have L(S) = £(5)° = 0, whereas if /i = 1, then L{S} =
P, m(l)]xJl, m(2)^We_shall denote by 9S or by 9L(S) the toundary o72(5),
which^is defined by OS =_L(S)\L(S)°. Points (5(1, k), S^k-)), whereT< k^l',
are called the nodes of S or of the ladder L(S) and we denote by ̂ (S) the set of
all nodes of S.

Given any LGB's 5" and 5 such that lea(5) 9^ 0 and £(5') C L(S), we define
£(S', S)=L{S)\L{S') and £(S', S)° = L(S)° \ L(S').

We call £(5", S)tobethebiladder corresponding to 5" and 5 while £(5", 5)° to be
the interior o!L{S', S}. Note that since we allow L(S') = 0, a ladder" is a'spedal
case of a biladder. Pictorially, a ladder looks as in Fig. 1 above and a biladder
looks as in Fig. 2 (a) or, more generally, as in Fig. 2 (b) below.
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FIGURE 2 (a) FIGURE 2 (b)

It may be remarked that in these pictures, we adopt the 'matrbc notation' rather
than that of Coordinate Geometry to represent points. Thus in Fig. 1, the bullet
on the top left hand comer indicates the point (1, 1) while the other bullets indicate
the 'nodes' (5(l, fe), S(2, fc)) , 1< fe< fa. In Fig. 2 (a) and Fig. 2 (b), we have only
marked the points (l, m(2)) and (m(l), l) correspondmg to /t = 0 and /i = 1.

Given any biladder /; = jC(5", 5), we shall denote by A(5", Sf) the intersection

of the boundaries of L(S) and £(6"), and by At (S', S) the set of common nodes of
Af{S') and A^(5), -that is,

^(SI, S)=9S'^9S and Af(S', S) = ^(S')H^S).
It may be noted that A(5', S)=QSr\ L(S').

Observe that ladders as well as biladders are subsets Y of [l, m(l)] x [l, m(2)j
with the property that whenever (ii, 1-2), (jiij'2)   Y with it < tz and ji < j^, we
have that (t'l, ^)   Y and (ji, ^)   Y. Sets Y with this property may be called
generalized ladders or saturated sets. Some authors simply refer to them as ladders.
It is not difficult to see that if a generalized ladder is 'connected', then it must be
a biladder.

Given any Y C [l, m(l)] x [l, m(2)], we let mon(Y) denote the set of all maps of
Y -^ N. Given any Q   mon(y), we let

supp(0)={(t, j)cr:0(z, j)^o}
denote the support of 0 and

xe= ]^ xff'j)
('j)ey

denote the corresponding monomial in JC[y]. Following Abhyankar [I], we define
the index of any subset At C [l, m(l)] x [l, m(2)] by

ind(M) = max {p   N : 3 (?'i, 7i), (!2, ^2), ..., (tpjp) in M with
ii <i2 < ... <ip and ji <J2 <... < jp}-

For a monomial 0   mon(F), the index is defined by putting
ind(0) = ind(supp(0)).

For every p   N we let
mon(Y, p) = {0   mon(y) : ind(0) ̂  p}

and, restricting attention to monomials of a specified degree, for every p   N and
y   N we let

mon(Y, p, V) = {0   mon(y, p) : ^ @(y) = V}.
yer
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We now recaU a basic result ofAbhyankar [1, Thm. 20. 10] (see also [8, Thm. 6. 7]),
which was alluded to in the Introduction.

2.1. Theorem. Let Y C [l, m(l)] x [l, m(2)] be any generalized ladder and let
p   N. Given any V 6 N, the set{Xe :Q   mon(y, p, V)} forms a free K-basis
of the V-th homogeneous component K\Y}v /1 ?+.[. {¥) v of the residue class ring
K[Y]/Ip+-i(Y). Consequently, the Hilbert function of Ip+i{Y) is given by

n(V)=\mon(Y, p, V)\, (V   N).
Following Kulkarni [15], we consider the so called radicals and skeletons, which

are defined as follows. Fix some Y C [1, m(l)] x [1, m(2)]. A subset RCY is called
a radical if md(JZ) < 1, and it is called a skeleton if for any two distinct elements
(ti, ?2) and (jijs) of R, we have

either: ?i < ji and 12 > j'2 or: t'i > ji and t'2 < J2-

The set of all radicals (resp: skeletons) in Y is denoted by rad(V) (resp: skel(Y)).
Note that skel(V) C rad(Y). More generally, given any p e N, we let radp{Y)
denote the set of all R CY such that md(R) <, p. Elements of radp(V) may be
called p-fold radicals. Finally, we set for any p   N and d   N,

Tadp(Y, c[)={R^radp(Y):\R\=d} and skel(y, d) = {Ji 6 skel(V) : |JZ| - d}.

3. RADICALS AND SKELETONS

It is easy to see that the problem of counting the desired set of monomials can
be reduced to the problem of enamerating the p-fold radicals of a given size.

3. 1. Lemma. Given any Y C [l, m(l)] x [l, m(2)j, p^N andV  N, we have

|mon(y, p, V)\=^(v^ |radP(y, d)[,
d>0

where the summation on the right is essentially finite (that is, all except finitely
many summands are zero).

Fbc any biladder C, = C{S', S>), and let £° denote its interior. Let h = len(5)
and h' =len(5'). Also let

<?=|A(5', 5)| and t/= |^(5', 5)|.
Given any (k, k')   [l, h] x [l, h'], we let

^(fc, k') = card([5(l, fc - 1), 5(1, fc)) n [5'(1, fc' - 1), 5'(1, fc')))
and

^(k, k') = card([5(2, k), S(2, A - 1)) n (5'(2, fc'), 5'(2, fc' - 1)]).
Note that these numbers are completely (and easily) determined by /..

As a preliminary step towards calculating |radp(/;, d)|, we shall restrict our at-
tention to the case ofp= 1 soas to determine |rad(£, d)|. To this end, we use
techniques similar to [16] except that now instead of ladders we consider the more
general biladders, and so one has to be a little more careful, especially since we are
allowing overlaps (as in Fig. 2 (b)) of smaller ladder I.(S") with the bigger ladder
L(S). As in Kulkarni [15], we reduce the problem to skeletons by constructing two
maps

A : rad(£) -^ skel(r°) and ^ : skel(£°) -». rad(£)
such that A is surjective, /f is injective and moreover, /x is the inverse of the restric-
tion of A to maxima! subsets of rad(^). This leads to the following.
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3.2. Theorein. Let At = m(l) + m(2) -1-6. Given any d   N, we have

|rad(£, d)| - ^ (^) |skel(r°^)|,
t>0

where the summation on the right is essentially finite (that is, all except finitely
many summands are zero).

To describe an explicit formula for the number of skeletons in the interior of a
biladder, we need some notation.

Given any ̂    N, let Mh,h' (N, i) denote the set of all /i x h' matrices with integral
entries such that the sum of all the entries is i. Note that this is a finite set. Given
any a = (akk') £ Mft, ^(N, ^) and any (i, j)   [l, /i] x [l, h'], we let

i h' h h'

o-«(o') = ^ Z^ akk' and Tj-(Q') = ^ ̂  C(fcfc'.
k=l k'=l fc=l k'=j

Given any^e N and a, /3 £ Mh, /i'(N, ^), we define

0'W < o'(a) to mean that o-, (/3) <, o-i(a) for all i   [1, /i]
and

rW <: r(a) to mean that Tj(/3) <: r, (a) for all j   [1, h'].
Finally, for any ̂    N, we define

f^{k, k')\ f^k, k'^
^ Qftfc' A 0kk'S{£,°, i)= n

a, /36Mhh, (N, l) Kk<h
"W ̂  o'(a), -rW <. T(") 1 <k' <h'

3.3. Theorena. Given any ̂    N, we have

|skel(£o, ^)|=<?(£0^).
As a coiisequence of the above results, we obtain the following formula, which

may be viewed as an extension of Kulkarni's formula [16, Thm. 11]
3.4. Theorein. The Hilbert function as well as the Hilbert polynomial of I'z{£.) in
K[£] is given by

^>=E(V+^_-, 1-<)^. '>
t>0

where M = m(l) + m(2) -1-6 and S[£°, i) is given by the formula above.

4. GENERAL CASE

As m Section 3, we fix a biladder C, = £. {S', S}, and let £. ° denote its interior.
Let h, h', 6 and i/ be as defined in Section 3.

Given any LGB 5*, we shall write S* <: S to mean that L(S*) C L(S). Further,
given any LGB's 5i, 5s such that Si <, S for i = 1, 2, we shall write 5i < S-i to
mean that L(5i) C £(52), len(52) 7^ 0 and A(5i, 52) = A(5'i, 5).

The following basic result allows us to tackle the general case recursively by
applying the results of Section 3. The map T mentioned in the theorem below can
be described quite explicitly and it yields a decomposition of rad(jC), which may be
viewed as a refinement of the superskeleton decomposition of [2, Thm. 10].
4. 1. Theoreni. Let p   N+ and C be as above. Then there exists a LGB S* such
that S' < S* <:S and there exists an injective map

r : radp(r) ->. rad(r) x radp-1 (/;. ),
where C," denotes the biladder £(S*, S).
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This leads to the following enumerative result.

4. 2. Theorein. Given any d   N and any p   N+, we ftaue

|rad^(£, d)|= ^ ^
S'<S'<S di+d2=d

^^|rad^-l(r, d2)|,M-v*
di

where the first sum is taken over all LGB's S* such that S' <S* < S and the
second sum is over all nonnegative integer pairs (^1, ^2) such that di +d2 = d, and
where M = m(l) +m(2) - 1-5, i/* = |A^(5) n^(51 *)], and £* denote5 the biladder

r(5*, 5).
Successive applications of the above result yields the following.

4.3. Theorein. Given any d 6 N and any p G N+, we have

|rad^(/:, d)|= ^ ^
s'<s-i<-<Sp-i<,s e>o

<Mp -i/i - ... - i/p_i - ^7-.;-... -^-^5(rp-1'^
where the first sum is taken over all (p - l)-tuples (5i,... ,5p_i) of LGB's such
that S'=So<Si<S'2<---< 5p_i ^ 5, and

Mp = p(m(l) + m(2) - 1) -^ - ... -jp_i,

where 5. = |5S',_i n 9S\ and i/, = |A/"(5i) \ (Ar(Si) n A/"(5'))| /or 1 <z ̂ p-1, and
rp-i=£(5p_i, 5).

If for a given (5'i,..., 5p_i) as in Theorem 4.3, and any nonnegative integers u
and ̂ , we let

FnW = t/1 + ... + I/c-l + .
5(^-1^),

where y, and jC-p-i are as in Theorem 4.3, then we can state the main result as
follows.

4.4. Theorem. Let p 6 N and £ be as above. The Hilbert function as well as the
Hilbert polynomial of Jp+i (£) is given by

^(^) - E E /-l^. lO ('/^,-_l:u
u>0 S'<Si<-<Sp-i^S

where Mp is as in Theorem 4-3. In particular, Jp+i(/;) is a Hilbertian ideal.

4. 5. Remarks. 1. The first two theorems in this section may motivate the use
of biladders although one may only be interested in (one-sided) ladders. Indeed,
even if £ were a ladder to begin with, the £, * that one obtains in Theorem 4. 1 is
necessarily a biladder. Thus it makes sense to have the results of Section 3 in the
general case of biladders.

2. The formulae in Theorem 4.3 and Theorem 4.4 are no doubt complicated
and perhaps they may seem unworthy of being called 'explicit', in view of the
rather unwieldy summation over the tuples (5i,..., S'p_i). Nevertheless, they can
be used to deduce some interesting information about the variety associated to
Jp+i(£). For example, one can derive fairly simple expressions for the degree of the
Hilbert polynomial. Also, as Krattenthaler [14, Sec. 7] seems to suggest, it appears
unlikely that an elegant and simple formula for the Hilbert function of Jp-i-i (£) can
be found.
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