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ABSTRACT. Motivated by a problem in the algebraic geometry
of tone varieties, we investigate the polar polytopes of (pseudo-)
symmetric Fano polyfcopes. We show that they admit (regular)
ununodular triangulations and compute the Ehrhart series of all
their faces.

RESUME. Motives par un probleme de la geometrie algebrique des
varietes toriques nous etudions les polytopes polaires aux polyfcopes
de Fano (pseudo-)symmetriques. Nous demontrons 1'existence
de triangulations unimodulaires (regulieres) et nous calculons les
series de Ehrhart de tons les faces.

1. INTRODUCTION

1. 1. The problem. Toric geometry associates a projective toric vari-
ety Xp with any lattice polytope P C B,d. There are many fascinating
interactions between the discrete geometry of lattice polytopes (and
lattice cones) on the one hand and the algebraic geometry of toric vari-
eties on the other [5, 7, 9]. As a result there is a whole dictionary that
translates between properties on both sides. The definition of certain
invariants, the string theoretic Hodge numbers of Gorenstein toric vari-
eties, makes heavy use of this dictionary. Their actual computation for
a specific example, the pseudo-symmetric Fano varieties, poses interest-
ing geometric/combinatorial problems and at the same time provides
an example for the use of the mirror symmetry established by Batyrev
and Borisov [1].

On a smooth complex variety Y a dijfferential form is pure of type
(p, q) if in local (real) coordinates zi and Zi it involves p of the d^'s and q
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of the dzi's. This induces a decomposition of the complex cohomology
Hn(V, C;) = ®p+^nH^(r). The ranks hP'^Y) = rkHP'^V) are

the (ordinary) Hodge numbers of Y. Batyrev and Dais [2] generalize
them to the string theoretic Hodge numbers hp^. (V) in the more general
setting of toroidal Gorenstein singularities Y = Xp.

One gets a more subtle invariant if one considers a certain class
of hypersurfaces Z '-> Y and their string theoretic Hodge numbers.
In the case that P is a simple polytope that admits a unimodular
triangulation there are formulae by Danilov and Khovanskii for this
invariant, involving the ̂ -vector of the faces of P (see below). We treat
the case where P is a pseudo-symmetric Fano polytope (see section
1. 3 below). These are reflexive polytopes, and for those Batyrev and
Borisov [1] proved a mirror duality

hp^Z ̂  Xp) = hd^-p'g{Z' ̂  Xp.).
We thus can apply Danilov and Khovanskii's formulae to the (simple)
polar of our (simplicial) polytopes - provided that the latter admit
unimodular triangulations.

1. 2. Notions and notation. Let S C'Rd. Denote by afF(5) the affine
hull of 5' and set dim(5') := dim(aff(5')). A lattice polytope P is the
convex hull offinitely many integral points. If the origin 0 is an interior
point of P, the polar polytope is given by Pv= {x e Rd : (x, P) < 1}.
If both P and Pv have integral vertices then they are reflexive. A poly-
tape is simplicial if all faces are simplices; it is simple if every vertex is
incident to dimension many facets. A lattice simplex s whose vertices
form an affine lattice basis for afF(s) n rZd is called ummodular (or ba-
sic). Two sets 5 C Rd and 5" C R. are lattice equivalent if there is
an affine map afF(51 ) -» afF(5") that maps Zd n afF(iS') bijectively onto

Zd n aff(5") and which maps S to S'; e. g., all d-dimensional unimod-
ular simplices embedded in Rd' {d' ^ o?) are lattice equivalent to the
standard simplex s^ which is defined to be the convex hull of the stan-
dard unit vectors ei (l^t<d+l)in Rd+1. A subdivision of a lattice

polytope into unimodular simplices is a unimodular triangulation.
Let P be a lattice polytope. Then the number of integral points

in the dilation k P for k   Z>o is a polynomial, the Ehrhart polyno-
mial Ehr(F, k) = card(A: F n Zd) = S^SP ai(P)ki. The corresponding
generating function, the Ehrhart series

\^dimp Il,. (p\-ti
ew, t) = SEte(P, t)C = ^1%, ::;^:'

fc>0 TT^
gives rise to the ̂ -vector ('0o(-P), ... , 'IPdimp(P)) of P.
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1.3. The classification. The polytopes for which we want to carry
out the calculation are the pseudo-symmetric Fano polytopes. They
constitute the only non-trivial, infinite class of reflexive polytopes for
which a classification is available [5, 6].

A polytope P is centrally symmetric if P = -P, pseudo symmetric
if it has two facets F, F' satisfying F == -F', Fano if it is reflexive and
all its faces are unimodular simplices.

Let 1 = ^ e, denote the all-one-vector. For even d ^ 2 call
. DPd = conv(±s(d-l\±l) the del Pezzo polytope and
. preDP = conv(±s^-1^, 1) the pre del Pezzo polytope.

Let P CRd and P' C Rdl be full-dimensional polytopes with 0 in their
interior. We define

P o P' = conv(P x {0} U {0} x P') C Rd+d' ,
and say that PoP' splits into P and P'. In the sequel we will identify
P with P x {0} and also P' with {0} x P'. The polar operation is the
Cartesian product:

(PoP/)v=PvxP?v.
If P and P' are Fano polytopes, then so is P o P'. One example for
this construction is the ri-dimensional crosspolytope

Cj = conv(±5(d-l)) = [-1, 1] o .. . o [-1, 1] (d components).
After all this notation we can finally formulate:

Theorem 1 (Ewald [5, 6]). Let P C Bd be a Fano polytope.
. If P is centrally symmetric, then it is equivalent to

C^oDPdl DPdr.
. If P is pseudo symmetric, then it is equivalent to

P' o preDPdl o ... o preDP r for some centrally symmetric Fano
Polytope P'.

2. TRIANGULATIONS

It is clear by definition that every Fano polytope has a unimodular
triangulation. The fact that the polar polytopes also admit such trian-
gulations is a special case of a slightly more general situation. The tool
we use here is the refinement of a given subdivision E of a polytope P
by pulling lattice points r e P (cf. [8]):

. pull^(S) contains all Q £ S for which v ^Q, and

. ifu eQ £ S, then pull^(S) contains all the polytopes having the
form conv(F U u), with F a facet of Q such that v ^ F,
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By pulling successively all the lattice points within a given lattice poly-
tape P one obtains a triangulation into simplices whose vertices are the
only lattice points they contain.

Proposition 2 (Pace's Lemma [10]). If P has facet width 1, i. e., for
every facet, P lies between the hyperplane spanned by this facet and
the next parallel lattice hyperplane, then every pulling triangulation is
unimodular.

Proof. By decreasing induction on the dimension one sees that every
face of P has facet width 1. Furthermore the restriction of a pulling
triangulation to a face is a pulling triangulation and thus unimodular
(by another induction). But then every simplex in the triangulation
of P is the join of two unimodular simplices in adjacent lattice hyper-
planes. D

Propositions. Let {vi,..., Vr} C 'Zd be a collection
of vectors that form a unimodular matrix, i. e., such that
{det[v^,... , v;] : 1 < ^ < r} = {-1, 0, 1}, then for any choice
of integers c, the polyhedron P== {x G Rd : (v^x) ^ c;} admits a
unimodular triangulation.

Proof. The hyperplanes Hi{k} = {x   Rd : (v,, x) = k} for integers k
form an arrangement that subdivides P (and all of Rd) into polytopes.
The vertices of these polytopes are lattice points by the determinant
condition. Moreover these polytopes have facet width 1. D

Corollary 4. The polars of the (pre) del Pezzo 's admit unimodular
triangulations.

Proof. The vertices of the (pre) del Pezzo's satisfy the condition of
Proposition 3. The polar polytope is then obtained by choosing all c[s
to be 1. D

Another application of Pace's Lemma 2 is the following.

Corollary 5. Let P and P' be lattice polytopes. If both admit a uni-
modular triangulation then so does P x P'.

Proof. The obvious subdivision of P x P' into products of unimodular
simplices also satisfies the facet width condition. D

Both corollaries together imply:

Corollary 6. Let P C'Rd be a pseudo symmetric Fano polytope. Then
its polar Pv admits a unimodular triangulation.
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3. COMPUTATIONS

3. 1. (pre)DPV. The polar polytopes of the (pre) del Pezzos have the
following description by inequalities.

(DPd)v = {x   [-l, +l]d :^x^ [-!, +!]} , respectively
(preDPdY = {x 6 [-l, +l]d-1 x (-oo, l] : ^x, e [-1, +1]}.

They are lattice equivalent to

{x   [-l, +l]d+l : ^Xi=0} , respectively
{x [-l, +l]dx(-oo, l] : ^x, =0}.

Remember that d is even, the (pre) del Pezzos are simplicial, and the
((pre)DPd)v are simple polytopes. This means, that every d- k face
of the latter is just the intersection of k facets. Consider first the case
of (DP )v. The facet defining inequalities are either of the form xi ̂  1
or Xi >^ -1. A face F fulfills some of these inequalities with equality,
say for?   J+ C {!,... , ri+ 1} the first one and for i £ /- the second
one:

F = {x e [-l, +l]d+l : ^x, =o, x, = l(i   I+), Xi = -l(z e J-)}.
We call such a face of type {d; s = card(J_), t = card(J+)). It has di-
mension d' = d- s-t and it is lattice equivalent to

F(d;s, t)={xe[-l, +l]d'+l :^Xi=s-t}.

If s, * < d/2 then there are Q,^1 4) such faces (otherwise F(d; s, t) is
empty anyway).

In the case of (preDP )v there are other faces showing up. The facet
defining inequalities are the same as in the case of (DP )v, but the
inequalitiy x^+i ^ -1 is missing. So, if d + 1 6 I+, the considered
face is of type (d; 5, () and there are {ct'+ids,t-i) such faces» provided
s, t <, d/2. But if the d + 1st coordinate is not fixed, we get a new kind
of faces. They are equivalent to

F/(d;s, t)={x6[-l, +l]d'x(-oo, l] : ^x,

IS s <, d/2, then there are Q/g ̂) faces of that kind.

t}.
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Proposition 7. The Ehrhart polynomial of F(d; s, t) respectively
F'{d; s, t) are the following.

^, ^, fd'+l\({d-'2t-2r+l}k+dl -r'\

r ]\ d'

d±l //7/
Ehr(F(d;., <)^)-^(-l)r(u^

r=0
e

Ehr(F'(d;., <)^)=^(-l)r(^
r=0

, fd'\ ({d -2t-2r+ l)k + d'- r^
d'

Proof. The polytope F(d; 5, i) + 1 is a subset of the dilated stan-
dard simplex (c? - 2t)s(-d'\ We want to count the integral points
in kF(d;s, t) + kl. If we denote by Mj the set of those points of
k . (d-2t) . s^d^ whose jth coordinate exceeds 2k +1:

M,-= {x   [0, oo)df+l : ^Xi=k-(d-2t+l), Xj^2k+l},
then these are the same as the integral points in

d'+l

k-(d-2t+l)-s(d')\ |j Mj.
J=l

Thus we have to count integral points in Afj-,...^ = M,-; n ... n Mj^.
But up to a translation by -(2k + l)^ej; this is just the simplex
[k-(d-2t-2r+l)- r] .s^d'\ The Ehrhart polynomial of a simplex is a
binomial coefficient Ehr(s(d'), fc) = ( ^ ) and hence the formula follows
by inclusion/exclusion. The argument for F'(d; 5, t) is analogous. D

hi order to deduce the Ehrhart series we have to compute the following
kind of sums:

£
k>0

.n _\n t]^
(Ph+q}^^^i=o[P ?JT'

(1 - 7-)"+1 '

The coefficients [^ ̂  := E?=o(-l)J("^)(PI-?+9) are the
central Eulerian numbers [3]. So that we finally obtain
Proposition 8.

d'

non-

d'+l
^(F(d;5, ^))=^(-l)'

r=0

^(F'(d;s, t))=^{-iy
r=0

, (d! +1^ F d' k
r ) \d-2t-2r+l d'- r

d' /.
\d-2t-2r+

"*
1 d'-r\-
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3. 2. Cartesian products. For a complete treatment of the polytopes
we had in mind, we have to observe how our combinatorial data behave
with respect to products. The faces of P x P' are the sets of the form
FxF' for faces F, F' of P, P'. Clearly

Ehr(F x F', n) = Ehr(F, n) . Ehr(F', n),
and thus

a, (FxF/)= ^ a, (F)a, (F/).
i+j=k

In order to calculate the Hodge numbers in the general case

F = C'J x F(di; si, *i) x ... x F(dp; Sp, tp)
xF'(d[, s[, t[)x... xFI(d',, s'^

one determines the coefficients of the Ehrhart polynomial

a, (p) = E2aof/l) n^(^(^^. ^))n^^(^«;4, ^))
<Q'°^ ,, =1 I/=l

(Qi   Z^9+l, |Q;[ = Q;o+- . -+0:p+g) and then applies the following linear
transformation to get the ̂ -vector:

^(F) = M a(F) M. j = E /dim F + 1
f-i\i/=0

v )(^-^.
For example, the faces of (DP6)V have the following ̂ -vectors:

^(F(6; 0, 0) = (DP6)V) = (1, 386, 5405, 11964, 5405, 386, 1)
^(F(6;1, 0)=F(6;0, 1)) = (0, 90, 706, 765, 120, 1)
^(F(6; 1, 1) = (DP4)V) = (1, 46, 136, 46, 1)
^(F(6;2, 0)=F(6;0, 2)) = (0, 5, 45, 25, 1)
^(F(6;2, 1)=F(6;1, 2)) - (0, 10, 12, 1)
^(F(6;3, 0)=F(6;0, 3)) = (0, 0, 0, 1)
^(F(6;3, 1)=F(6;1, 3)) = (0, 0, 1)
^(F(6;2, 2)=(DP2)V) = (1, 4, 1)
^(F(6;3, 2)=F(6;2, 3)) = (0, 1)
^(F(6;3, 3)) = (1)

(All the faces of (DP2)V and (DP4)V appear in this list, e. g.,
F(2;1, 0)=F(4;2, 1)=F(6;3, 2).)
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