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Abstract

Using techniques from the discrete Morse theory developed by Robin Fomian
[F], we prove that the simplicial complex A^ of not 3-connected graphs on n ver-
tices is homotopy equivalent to a wedge of (n - 3) ("g2) spheres of dimension
2n - 4, thereby verifying a conjecture by E. Babson, A. Bjomer, S. Linusson, J.
Shareshian, and V. Welker [BBLSW]. In particular, the reduced Euler characteris-
tie

^_^|£(G)|-1
G A^

is equal to (n - 3)I2^21 ; E(G) is Ae edge set of G.

1 Introduction

Given a family of graphs on a fixed vertex set, we may identify the graphs in the
family with their edge sets. If the family is closed under deletion of edges, then this
identification makes it possible to interpret the family as a simplicial complex. The
purpose of this paper is to study simplicial complexes of not 3-connected graphs.
The main tool will be the discrete Morse theory developed by Robin Forman [F].

For topological spaces X and Y,

X\/Y:=(Xx {y}) U ({x} xY)CXxY
is the wedy of X and Y (with respect to the points x ^. X and y   Y). For
an abstract simplicial complex A, let ||A|[ denote the geometric realization of A.
Let A^ be the complex of not 2-connected graphs on n vertices. E. Babson, A.
Bjomer, S. Linusson, J. Shareshian, and V. Welker [BBLSW] have proved that
|| A^ || is homotopy equivalent to

V 52"-5,
(n-2)!

that is, a wedge of (n - 2)! spheres of dimension 2n - 5. A homology version was
proved independently by V. Turchin [T]. We will verify a conjecture in [BBLSW]
about the complex A^ of not 3-connected graphs on nvertices; [|A^j| ishomotopy
equivalent to

V 52"-4.
(n-3)i^i

Each of the (n - 3) [rl^> spheres corresponds to a graph with vertex set
{ai, 02,..., an} ={!,..., n}

254



and with edge set

{a<a,+i : 1 <i ̂ n-l}U {a,a.-+2 :1 ̂ t ̂  A;}U {afca, :k+3<, i<n},

where 2 < A; <n-2, ai = 1, 02 <fl3, and On = n. An example for n = 9 is
illustrated in Figure 4. 1 .
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2 Discrete Morse theory
In this section we will discuss some consequences of Robin Forman's discrete
Morse theory in the special case of simplicial complexes. We will define the con-
cept of an acyclic matching on a family of sets and interpret some of the basic
theorems in [F]. Note that combinatorial interpretations of discrete Morse theory
have been made earlier by M. K. Chari [Ch] and by J. Shareshian [Sh].

Let Bn be the family of all subsets of a set Xn with n elements and let A be
a sub-family to Bn- A matching on A is a family P of pairs {A, B} (A, B 6 A)
such that no A   Ais contained in more than one pair in 73. We say that a matching
P on Ais an element matching if every pair in T> is of the form {A\{a;}, AU{a;}}
for some AC Xn, x   Xn. A set A £ A is critical or unmatched with respect
to P if A is not contained in any pair in T. Let U = U{A, P) be the family of
critical sets in A with respect to P.

We let D = D(A, P) be a digraph with vertex set A and with an arc (A, B)
if and only if either

{A, 5}   .PandB = AU {a;} for some x^. A

{A, B} ̂  PandA = B U {x} for some a; ̂  B.
Thus every arc in D corresponds to an edge in the Hasse diagram of A We write
A ~> B if there is a directed path from AtoB inDand V ~* B if there is some
V   V such that V-^ B.

The element matching P is an acyclic matching if D is cycle-free, that is,
A ^* B and B ~> A implies that A = B. One easily proves that if there are
cycles in a digraph D con-esponding to an element matching, then they are of the
form (Ai ,Bi,..., Ar, Br), where

Ai C Bi, Ai C B.-i (Bo = B, ), and {A,, B, } 6 P (1)

(the doubtful reader may consult [Sh]). The following two lemmas are very easy,
but they will simplify the proofs in later sections.

Lemma 2.1 Let AC Bn and x G Xn. Put

T>^A)={{A\{x}, AU{x}}:A\{x}, Au{x}eA}
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and

Ar={A:A\{x}, Au{x}eA}.
Let PQ be an acyclic matching on Ao := A\ Ax. Then T> := 'Px(A) U 'Po " an
acyclic matching on A.

Proof. Let (Ai, Bi,..., Ar, Br) be a cycle in Z? = D(A, V) satisfying (1).
Since "Po is an acyclic matching on «4o, there must be some pair {A,, Bi}  
Px(,A), .where Bi = Ai D {a;}); we may assume that» = 1. (Ai, Br) is not an arc
in D, which implies that x ^. Br. Thus there is aj > 1 such that x ^ Aj but x  
Bj-i. However, this means thatBj-i = A, U {a;} and {Aj, Bj-i}   Px(A),
which is certainly a contradiction. D

Lemma2. 2 (Concatenation Lemma) Let A C Bn and A = U<=i-4> (disjoint
union). Let'Pi,... , Pr be acyclic matchings onAi,..., Ar, respectively, and put

-P=UP,.
i=l

Define the relation -f on {A\,... , Ar} by

Ai -I A, <^=^ A C B for some Ae. Ai, B 6 ^tj.

Suppose that -\ gives a partial order on {Ai,... , Ar}, that is, ifAi -1 Aj and
Aj -I Ai, then i = j. Then T is an acyclic matching.

Proof. By assumption, a cycle in D = D(A, P) cannot be completely con-
tained in any Ar If a set in A] is followed by a set in Ai, then Ai -I Aj. Thus
each time we go from one family to another, we go down in the poset defined by
-\; hence we cannot find a cycle in D. a

For the rest of this section, A is a simplicial complex, that is, A ̂  {</>} and A is
closed under deletion of elements. Given an acyclic matching P on A, there is no
loss of generality assuming that the empty set is contained in a pair in V. Namely,
if all 1-sets are matched with larger sets, then there is a cycle in D{A, 77). Unless
otherwise stated, we will always assume that {(f>, {x}} £ P for some x ^ Xn. The
following two results are interpretations of two of the basic theorems in discrete
Morse theory.

Theorem 2.3 ([F], Theorem 3J) Let'P be an acyclic matching on the complex
A IfAo is a subcomplex of A such that Ao"^ A\Ao andU(A, P) C Ao, then
I A and .4o | flre homotopy equivalent. D

Theorem2.4 ([F], Theorem 3.4) IfU{A,P) consists of one single set of size
P+^-, (P>. 0), then II.AII " homotopy equivalent to a sphere of dimension p. D

Example. Consider the simplicial complex S on the set {1, 2, 3, 4, 5, 6} con-
sisting of all subsets of 124, 245, 23, 35, and 36; 124 denotes the set {1, 2, 4}, and
so on. In Figure 2. 1, a geometric realization of S is illustrated. The figure indicates
an acyclic matching on S with the only critical set 35; an arrow from the set A to
the set B means that A and B are matched. We also match 2 and the empty set;
however, since the empty set has no obvious geometric interpretation, it is custom-
ary to consider 2 as a critical point in the geometric realization. Note that ||S[[ is
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homotopy equivalent to a CW complex consisting of a 1-cell corresponding to 35
and a 0-cell corresponding to 2. D

I ' 2 '3

Figure 2. 1: ||S|[ is homotopy equivalent to a circle.

For a (possibly empty) family V CU, put

Av={AeA:V^A}U{^>, {x}},
where {x} is the set matched with the empty set in "P; if V is nonempty, then
Av = {Ae ̂ 4: V~> A}. The next result implies that

U(Av, Pv)=Avnii(A, P),
where Pv is the restriction of P to Ay.

Lemma 2.5 Av is a subcomplex of A.

Proof. Assume the opposite and let A be a largest set such that A f Av but
there is any 6 -^"n such that AU {y} £ Av. Since there is aV 6 V such that
V ~> A U {y}, {A, A U {y}} £ P. In particular, A U {y} ^ ^(^t, .P). This
implies that there must be an arc (B, AU {y}) in D such that B e Av- Clearly
A U {y} C B; thus there isa ,z 7^ y such thatB = A U {y, z}. By the maximality
of A among sets below Ay, A U {«} £ Av. However, (A U {z}. A} is an arc in
jD, and a contradiction is obtained. D

Theorem 2.6 Suppose that V <^U = U{A, P) has the property that U\V^V
and V ^ U\V. Then \\A\\ is homotopy equivalent to

ll^v||v||^v|[.
In particular, if V = {V}, then A is homotopy equivalent to

5PV||^m||, (2)
where p = \V\ - 1; hence Hp(A} is nontrivial.

Proof. Theorem 2.3 implies that A is homotopy equivalent to A<; thus we may
assume thatA= A/ = Ay U ^\u\v Put/V = Ay n ^M\V. By assumption, X
contains no critical cells and is nonempty (<f>, {x} 6 X). Thus X is a sub-complex
of A satisfying Theorem 2.3, which impUes that \\X\\ is contractible to a point.
By the Conbractible Subcomplex Lemma (see [Bj]), ||A|j is homotopy equivalent
to the quotient ||A|| / \\X\\. By the same Lemma, \\Av\\ V ||-4M\v|] is homotopy
equivalent to (||Av|| / \\X\\] V (||^«\v|| / \W\). Since clearly

||A|| / 11^11 =. (ll^vll / IWI) V (||^\v|| / IWI),
the proof is finished. D
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CoroUary 2.7 LerV C U == U(A, P) be such that U\{V} ^ V andV -^
U \ {V}fore\'ery V £ V. Then \\A\\ is homotopy equivalent to

V s}v}-
vev

v ][^ \v\.

3 Graph-theoretical concepts
Let G = (V, E) be agraph; V is the set ofvertices and f; C (^) is the set of edges
in G. The edge between a and b will be denoted ab or {a, b}. We will identify the
graphs with their edge sets; e 6 G means that e e E. PutG\e = (V, E\ {e})
and G +e = (V, £U {e}). For W CV, let G(W) =(W, E^ (^)).

A monotone graph property A is a nonempty family of graphs on a fixed vertex
set such that the family is closed under deletion of edges and under permutations
of the vertices. In particular, A is a simplicial complex on the set of edges.

ForO <k < \V\, say1hatGisk-connectedifG(V\W) is connected for every
W CV such that \W\<k. W CV separates G if G(V \ W) is not connected.
The property of being not fc-connected is clearly a monotone graph property for
each k>l. For 0 <fc < n, let A^ be the complex of not A-connected graphs on
the vertex set {!,..., n}.

4 Not 3-connected graphs
We will consider the complex A^ of not 3-connected graphs on the vertex set
V ={!,... , n}. Our purpose is to verify a conjecture in [BBLSW]:
Theorem 4. 1 j| A^ |] is homotopy equivalent to a wedge of (n - 3) ~^ spheres
of dimension 2n - 4.

We will find an acyclic matching on A^ such that there are (n - 3) ̂n~^Y' critical
graphs with 2n - 3 edges. The graphs are easily described: For{ai,... , an} =
{!,... , n}and 2 ^ A ^ n- 2, letGr)c(ai,..., On) be the graph with edge set

{a,a,+i :l<. i<, n-l}U {a.ttz+2 :Ki<k}U {akai :k+3^i<, n}.
Put

Figure4.1: G5(l, 2, 3, 4, 5, 6, 7, 8, 9)

Uk = {G'jt(l, a2,..., an-i, n) : {a2,..., an-i} = {2,... ,n - l}, a2 < 03}.
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We wiU find an acyclic matching on A^ such that the family of critical graphs is
n-2

u=u^-
k=2

Since \U\ = (n - 3) y2v' and since all graphs in U have the same number 2n - 3
of edges, Theorem4. 1 follows immediately from Corollary 2.7.

Proof of Theorem 4.1. We proceed in several steps.

Step 1. Begin by considering the edge In. Take the matching Pin (A^), and
let En be the family of critical graphs with respect to this matching. One readily
verifies that £4 consists of the graph G2(l, 2, 3, 4) and nothing more. Hence from
now on we may assume that n ^ 5. By the way, note that any acyclic matching
on £n will also be an acyclic matching on the family £{n) obtained from f" by
adding the edge In to every member of £n. In particular, our acyclic matching
can be translated into an acyclic matching on the complex A3(n) of 3-connected
graphs (notations as in [Sh]).

Step 2. Let G 6 £n. Let X(G) be the set of pairs {x,y} such that G(V \
{x, y}) is disconnected. Since G + In is 3-connected, the set X(G + In) is
empty. This implies that any x, y such that {x, y} £ X(G) separates 1 and n
(any path from 1 to n must pass either x or y) and that for allfc   V we have
{l, A;}, {fe, n} i X{G). For any S= {a, 6}   X(G), let Mi (5) be the set of
vertices in the same component as 1 in G(V \ S); 1 6 Mi (5). Put M-i(S) =
V \ (5 U Mi(5)). Since G + In is 3-connected, n £ Ma(5).

Let Sa 6 X(G) be such that the component in G(V \ So) containing 1 is
as small as possible. We have to show that SG is uniquely determined, which is
trae if for any distinct Si = {a, b} and 5s = {c, d} 6 X(G), either Mi (S'i) ^
Mi(52), Mi(5z) ^ Mi(5i), or there is an 5s such that Mi(5s) ^ Mi (5, ) for
»= 1, 2.

First suppose that (say) a = candfc ̂  d. Since Gf + In is 3-connected, G
is 2-connected. Hence if d 6 M^Si), then Mi{St) 3 Mi(S'i) U {&}, while
if d   Mi(Si), then M^S-i) 3 M^tSi) U {&}, which implies that Mi(5'2) C
Mi(Si)\{d}.

Now suppose that a, b, c, d are all different. If 5'2 C M'i(Si), then clearly
Mi(52) 3 Mi(5i) U5i, whileif52 C Mi (5i), then Mi (52) C Mi(Si) \52.
It remains to consider the case (say) a £ Mi (52), 6   Mz^Si), c   Mi (5i), and
d 6 M2(5i). Since there are no edges between Ati (5i)n Mi (Sz) and Af2(5i)U
Mi(Si), it is clear that {a, c}   X(G). Note that Mi ({a, c}) = Mi(5i) n
Mi (52) is properly included in Mi(Si) for t = 1, 2 (a, c ^ Mi ({a, c})). It
follows that 5'c is uniquely determined.

For any M CV and x, y ^ M, put

£'t{M, x, y) ={G £n:SG= {x, y}, M = Mi(Sc)}.
VG C H, then it is clear that Mi(Sc) C Mi (5s). Moreover, if G C H
and Sc ^ SH, then Mi(Sa) ^ Mi(Ss) (consider the discussion above). In
particular,

{£n(M, x,y):McV,x<y}
satisfies the conditions in Concatenation Lemma 2. 2.
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Step 3. The foUowing lemma will imply Theorem 4. 1 :
Lemma 4.2 Lelx, y G {2,.. ., n - 1}, x < y. There is an acyclic matching on
£n({l}, x, y) such that the unmatched graphs are

Gk(l, x, y, at,..., an-i, n)

ft <, k<. n-2, {a4,..., an-i} = {1,..., n - \}\{x, y}). For M ^ {1},
Vxy{£n(M, x, y)) is a complete acyclic matching on £rt(M, x, y).

Proof of Lemma 4.2. The lemma is certainly tme for n = 4. We will use
induction over n to prove the lemma. Let £S(M, x, y) be the family of critical
graphs in Sn(M, x, y) with respect to the matching Pry {Sn(M, x, y)). We want
toshowthat^(M, a;, y) is empty unless At = {1}. Note that^ol(A^, a;, 2/) is the
family of all G   £n(M, x, y) containing the edge xy and having the property
thatG := G\a;y+In is not 3-connected. Furthermore, for any {c, d} e X(G'},
{c, d}n{x, y}=<t>.

Put Mi = Mi ({a;, y}) 9 1 andAf2 = M2({x, y}) 3 n. Moreover, for an
arbitrarily chosen {c, d}   X(G"), let N1 and N2 be the components in G'(V \
{c, d}). Since G is not 3-connected, 1 and n must be in the same component;
assume that l, n £ M U {c, d}. Furthemiore, assume that d6 Mi andc 6 Mz.
Let a, 6 be such that {a, b} = {x, y}, 6 £ M, anda   N2. The situation for G is
as in Figure 4.2. Namely, there is no edge between Af< P N, and Ms-, U Ns-j.

Mtl^N-i Mi n7Vi

Figure 4.2: A graph in £o(M, x, y); ab = xy and l, n   M U {c, d}.

Examining Figure 4.2, one may deduce that Mi n N-s = M^ D N2 = </),
because otherwise {a, c} or {a, d} separates G + In. Note that ifl   Mi nM,
then Mi({b, d}) = Mi nM ^ Mi, which is a contradiction to the fact that
Sa = {a, b}; hence d = 1. Moreover, since {1, 6} ^ X(G), we must have
Mi n M = <f>- In particular, £S(M, x, y) is nonempty if and only if At = {1}.
If c = n, then we have M2 D M = <^, which implies that n = 4. This is a
contradiction; hence c^n. The situation is illustrated in Figure 4.3.

For v eV, put Nc(,v) ={w £V\{v} : vw 6 £;} and degv = |M?(v)|.
When M = {1}, there are two cases; either degy = 3 (which is true ify = a or
ifdeg&=3)ordegy > 3. For ̂ ^ l, a;, y, n, put

and

^!(x, y, z)={G:Na(y)={l, x, z}}n£S{{l}, x, y)

F!(x^z) = {G: degy > \Nc{x) = {l, y, ^}} n fon({l}, a;, y).
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Figure 4.3: A graph in fol ({l}>x' v)'' a& = ayandn   Ms nM.

The partition
{3^(x, y, z), 7?(x, y, z) :z^l, x, y, n}

of £S({l}, x, y) satisfies the conditions in Concatenation Lemma 2.2. We will
show that there is an acyclic matching on J~!(x,y, z) with critical graphs

G2(l, x, y, z, as,..., an-i, n)

and an acyclic matching on J~?(x, y, z) with critical graphs

Gk(. l, x, y, z, a5,..., an-i, n), 3<k<, n-2

({fl5,..., a^-i} = {2,... ,n - 1} \ {a:, y, ̂ }).

Case 1 Consider a graph (? 6 ^7 (a, y, z). One readily verifies that there is a
unique maximal path

PG= (X!, X2,... -, Xt)
with xi = 1, xi = y, and xs = z such that Nc(xk) = {xk-i, Xk+i, x} for
all fe   {2, ..., t - 1}. Note that if k < t, then Xk ^ n (because otherwise
G!+ In 6 A^; remove x and n). If a;( = n, then (by the same reason) all vertices
mV\ {x} are contained in the path; thus t = n and G = G^txi,... , Xn)- For
the other graphs mj~f(x, y, z), put

r?(x, y, z, Xt,..., Xt)=J~?(x, y, z)ri{G:PG=(l,y, z, x^,..., Xt)}.

By the maximality property of PG, Xt is adjacent to x implies that Xt is adjacent ei-
ther to exactly 2 vertices or to more than 3 vertices. However, by the 3-connectivity
oiG + In, the first case implies that Xt = n. Thus Xt is adjacent to more than 3
vertices. In particular, the families 7]l'(x, y, z, X4,,... , Xt) satisfy the conditions
in Concatenation Lemma 2.2, since t cannot increase if we add an edge.

Suppose that K = G+ln\ xXt is not 3-connected and that p, q G V have the
property that K = K{V \ {p, q}) is disconnected. Obviously Xt and x belong to
different components in K . This means that, say, p = Xt-\- Since dega;t > 3
in K, the component in K containing Xf must contain something more than Xf,
and it does not contain n. Therefore, K(V \ {a;t, q}) is disconnected, which is a
contradiction to the fact that G + In is 3-connected. Ifxi is not adjacent to a;, then
ceTtsrdyG+xXieJ:7(x, y, z, Xt,..., Xt). Tbus'P^(y]l(x, y, z, X4,..., Xt))
is a complete matching on 7T(x, y, Z, XA, ---, Xf).
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Case 2 FinaUy consider J:!(x, y, z}. Let£n-i(x, y, z)be\he family of graphs
H on the vertex set V \ {1} such that H   A^_j, ff + a;n ^ A^_i, and
Nc(x) = {y, z}. We want to prove that G i-> G(V \ {1}) is a bijection from
7^(x, y, z') to £n~l(x, y, z). First we show how this will imply Lemma 4.2.
By induction, Lemma 4. 2 holds for £n~l(x, y, z), since £n~l(x, y, z) is equal
to £n~l({l}, y, z) with x replaced by 1. Hence there is an acyclic matching on
£n~l(x, y, z) such that the unmatched graphs are of the form

Gk(x, y, z, as,..., an-]., n),

where 2 <, k ^ n - 3 and {05,... ,0n_i} = {2,..., n- !}\{x, y, z}. Note
that if we add 1, Ix, and ly to Gk(x, y, z, as,.. ., an-i, n), then we obtain the
graph Gk+i (1, a:, y, z, as,..., ttn-i, n). Thus choosing the acyclic matching on
^n(x, y, z) con-esponding in the obvious way to the chosen acyclic matching on
£n~ (x, y, z), we obtain Lemma 4.2 and hence Theorem 4. 1.

To obtain the bijecdon, let H 6 Sn~'i{x, y, z), and let {p, q} 6 X{H); note
that {p, g} n {a;, n} = <f>. Since ff + a;n is 3-connected, H{y \ {l, p, g}) consists
of two connected components, one containing x and one containing n. Therefore,
(G + In) (V \ {p, g}) is connected, where Gf is the graph obtained by adding the
vertex 1 and the edges la;, ly to H. Since H = G(V \ {1}) is 2-connected, it
foUows that X(G + In) = <f>, that is, G' 6 J? (a;, y, z).

Furthermore, if G   J~S(x, y, z), then H = G{V \ {1})   £n-\x, y, z}.
Namely, suppose that H+xnis not 3-connected. Then there is a {p, g}   X(H)
such that H(V \ {l, p, q}) contains a connected component that does not contain
x, y, or n. However, then the very same component will occur in G(V \ {p, q}),
which implies that {p, q} separates G+ln, a contradiction. Thus G i-> C?(V\{1})
issib\]ectionfTom3^{x, y, z)to£n~l(x, y,z). 0

5 Concluding remarks
Since A^ is not contractible, the complex is evasive (see [KSS]). Given a decision
tree for a simplicial complex A, say that a set S is evasive if 5   A and S U {a;} ^
A, where x is the last element checked in the decision tree for S. Recent results by
Robin Forman imply that any decision tree must contain at least m(A) evasive sets,
where m(A) +1 is the minimal number of cells needed to form a CW complex that
is homotopy equivalent to A. Namely, a decision tree induces an acyclic matching
on A with unmatched sets precisely the evasive sets; see [J] for details. Say that
a decision tree is optimal for A if the lower bound m(A) is attained by the tree.
There is an optimal decision tree for the complex A^ of disconnected graphs, and
we claim that there exists an optimal decision tree also for the complex A^ of not
2-connected graphs; the decision trees are described in [J]. However, the problem
of finding an optimal decision tree for A^ seems to be unsolved.

Finally, we mention that we have been able to construct a basis for the nontriv-
ial homology group fl'2n-3(A3(n)) of the CW complex A3(n) of 3-connected
graphs on n vertices. As the basis is not very easy to describe, we have decided
not to include the result in this extended abstract. As far as we know, the related
problem of determining the action of the symmetric group on ff2n-3(A3(n)) is
still unsolved.
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