Tiling groups and algorithms for tiling

Claire Kenyon

LRI, Bât 490, Université Paris-Sud, 91405 Orsay Cedex, France

We present algorithms for tiling a simply connected region of the plane (i.e. polygonal region without holes) with various kinds of tiles. Many of the algorithms use the concept of tiling group of J. H. Conway and Lagarias [1], ideas of W. P. Thurston on using the geometry of the group [12]. The concept of tiling groups is best illustrated by examples.
The first problem studied using tiling groups is the domino tiling problem. Given a simply connected polyomino P (polygon in \mathbf{R}^{2}, with vertices in \mathbf{Z}^{2}, horizontal or vertical edges, and no "holes"), find a tiling of P using dominoes, i.e. 1×2 and 2×1 rectangles, if it exists.
A moment's thought shows that the problem can be reduced via duality to perfect matching. However in [1] Conway and Lagarias used a radically different approach by introducing the domino tiling group. Let a represent a horizontal step to the right, a^{-1} a horizontal step to the left, b a vertical step going up, and b^{-1} a vertical step going down. Then the perimeters of the dominoes, read in a counterclockwise order from the lower left corner, correspond to the words $a^{2} b a^{-2} b^{-1}$ and $a b^{2} a^{-1} b^{-2}$. The perimeter of any simply connected polyomino P corresponds to a word $w(P)$.
Let $F=\langle a, b \mid\rangle$ denote the free group on two generators and in general let $\langle A \mid R\rangle$ denote the group generated by the elements of A with relations $r=e$ for $r \in R$. (Thus the discrete plane \mathbf{Z}^{2} has the group presentation $\left.\mathbf{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle\right)$. The domino tiling group is defined as $G=$ $\left\langle a, b \mid a^{2} b a^{-2} b^{-1}, a b^{2} a^{-1} b^{-2}\right\rangle$.
It is easy to see that if P is tileable by dominos, then $w(P)$ is equal to the identity in G [1]. Moreover, by studying the geometry of the Cayley graph of G, Thuston obtained an efficient and elegant algorithm for deciding if P is tileable and constructing a tiling if one exists [12].
The same approach can be used for other tiling problems.

- Tiling with "bars", $1 \times m$ and $m \times 1$ rectangles with m fixed [2].
- Tiling with $m \times n$ and $n \times m$ rectangles with n, m fixed [2].
- When the tiling group is equal to \mathbf{Z}^{2}, it suggests that the corresponding tiling problem may be "easy". This is confirmed in the case of tiling with "bibones" [3].
- When the underlying planar lattice is the triangular lattice, one can also use tiling groups to get tiling algorithms for "leaning dominoes" and other families of tiles [10].
- One can also use the tiling group to obtain some information on tiling with "tetrominos", polyominos of area $4[9,8]$, on tiling with "tribones" [12], and on the tileability of a planar polygon with squares [7].
- The tiling group approach can be used to give a new proof of the result that if a rectangle R is tiled with rectangles, each having at least one side of integral length, then R has a side of integral length [5].
- A generalization of the notion of tiling group can also be used to construct an example of a tiling problem which is not "Escher-equivalent" to any problem in which all the tiles are polygonal [4].

References

[1] J. H. Conway, J. C. Lagarias, "Tiling with polyominos and combinatorial group theory", J. Comb. Theory, Ser. A 53 (1990), 183-208.
[2] Claire Kenyon and Richard Kenyon, "Tiling a polygon with rectangles", 33rd Annual Symposium on Foundations of Computer Science (FOCS), Pittsburgh, PA, 1992, 610-619.
[3] Claire Kenyon and Eric Rémila, "Perfect matchings on the triangular lattice", Discrete Mathematics, 152 (1996), 191-210.
[4] R. Kenyon, A group of paths in the plane, Trans. AMS 348,(1996):3155-3172.
[5] R. Kenyon, A note on tiling with integer-sided rectangles, J. Combin. Thy A 74, No. 2 (1996):321-332.
[6] R. Kenyon, Tilings of convex polygons, Ann. Inst. Fourier, 47, 3(1997), 929-944.
[7] R. Kenyon, "Tiling with squares and square-tileable surfaces", preprint, 1998.
[8] R. Muchnik and I. Pak, "On tilings by ribbon tetrominoes", Yale university preprint, 1998.
[9] J. Propp, "A Pedestrian Approach to a Method of Conway, or, A Tale of Two Cities ", Mathematics Magazine 70,December 1997, 327-340.
[10] E. Rémila, "Tiling a figure using a height in a tree", Proc. of the 7th Ann. ACM-SIAM Symp. on Disc. Algorithms, 1996, pp 168-174.
[11] E. Rémila, "Tiling groups: new applications in the triangular lattice", Discrete and Computational Geometry 1998 20, 189-204.
[12] William P. Thurston, "Conway's Tiling Groups", Amer. Math. Monthly, 97, Oct. 1990, pp. 757-773.

