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ABSTRACT

We define a bijection befrnreea LittIewood-Richardson tableaux and rigged configura-
tions and show that it preserves the appropriate statistics. This proves in particular
a quasi-particle expression for the generalized Kostka polynomials K\ii(. q) labeled by a
partition A and a sequence of rectangles R. The generalized Kostka polynomials are q-
analogues of multiplicities of the finite-dunensional irreducible representation W{X) of s^n
with highest weight A in the tensor product W(Ri) (8 . .. (g }V(RL).

RESUME

Nous definissons une bijection entre les tableaux de Littlewood-Richardson et les config-
urations greees et montrons qu'elle preserve les statistiques appropriees. Cela demontre en
particulier 1'expression quasi-particulau-e des polynomes generalises de Kostka K^n^q), la-
belles selon uue partition A et une sequence de rectangles jR. Les polynomes de Kostka sont
des g-analogues de multiplicite de W(X') dans Ie produit tensoriel W(Ri) ®- . . (g W(Ri,).
Ou W(A) est la representation irreductible de dimension finie de gl^ avec Ie plus grand
poids A.

1. INTRODUCTION

This extended abstract is based on the preprint [6].
Recently generalizations of the Kostka polynomials were introduced and many of

their properties studied [5, 10, 11, 12, 13, 14]. These generalized Kostka polynomials
K\a(q') are labeled by a partition A = (Ai, A2,... ) and a sequence of rectangles R =
(JZi,... , RL^, that is, each jR» = (r)^') is a partition of rectangular shape. They are
g-analogues of the multiplicities of the finite-dimensional irreducible representation
W(X) of flln with highest weight A in the tensor product W[Ri) ® . .. g) W(RL)
(1) KXRW=[WW:W(R,)®---^W(RL)].
When all Ri axe single rows (in which case Ri = (»?i)), the generalized Kostka
polynomial reduces to the Kostka polynomial K\,, {q). The multiplicity K\R(I) is
equal to the cardinality of the set of Littlewood-Richardson tableaux [1].

In refs. [5, 10] a representation of the generalized Kostka polyiiomials in terms
of rigged configurations was conjectured. This extends the results of Kirillov and
Reshetikhin [4] who, in their study of the XXX model using Bethe Ansatz tech-
iiiques, obtained an expression of the Kostka polynomials as the generating function
of rigged configuratioiis.
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In fact, the representation of the (generalized) Kostka polynomials in terms
of rigged configurations is exactly in quasi-particle form. In recent years, much
research has been devoted to the study of quasi-particle representations of charac-
ters of conformal field theories and configuration sums of exactly solvable lattice
models. These quasi-particle representations are physically interesting [2, 3] be-
cause they reflect the particle structure of the underiymg model as opposed to the
"bosonic" representations coming from the Feigin and Fachs coiistruction. For ex-
ample, the quasi-particle representations give rise to the exclusion statistics of the
quasi-particles and also reflect the different integrable perturbations of the under-
lying conformed field theory. These notions are highly important to understcind
real physical systems in two dimensions which can be described by conformal field
theories such as, for example, the fi-actional quantum Hall effect.

The quasi-particle representation of the generalized Kostka polynomials was re-
cently proven in ref. [6]. This talk will report on this proof, which is based on
a statistic preserving bijection between Littlewood-Richardson (LR) tableaux and
rigged configurations. The next section contains a brief review of the definition of
the generalized Kostka polynomials as the generating function of LR tableaux. In
section 3 rigged configurations are defined and the quasi-particle representation of
the generalized Kostka polynomicds is stated. The bijection between LR tableaux
and rigged configurations is subject of secfcion 4. A proof that this bijection in-
deed preserves the statistics, thereby proving the quasi-particle representation of
the generalized Kostka polynomials, is sketched in section 5.

2. GENERALIZED KOSTKA POLYNOMIALS AND LR TABLEAUX

The multiplicity K\R(I) as defined in (1) is equal to the cardinality of the set
of Littlewood-Richardson tableaux. There are several ways to define LR tableaux.
Here we define the set CLR(A; R) where "C" indicates a column labeling. Later
we will also need the set of row LR tableaux denoted by RLR(A;J?). For a given
sequence of rectangles R= (Ri,... , RL) define the standard tableaux Zi {\<^i <
£) of shape Ri = (r)w) by inserting the numbers

i-1 i-1

(c - I)/.. +^\Ri\<k^c^+^ W
J=l J=l

into the cth column of Ri. For example, for R = ((2, 2), (3, 3)) we have

. 1 3 _^ ^ _ 5 7 9zl =2 4 
ajld Z2=6 8 10-

This means that Z, is a standard tableau over the alphabet Bi = {\RI\+ .. . +
1^, _11 + 1 < . . . < l^ll + ... + \Ri\}. For a tableau T denote by T\B the skew
tableau given by the restriction of T to the alphabet B. The row-reading word
of a skew tableau T is given by word(T) = . . . wzwi where w; is the word of the
ith row of T. Denote by P(w) the Schensted P-tableau of the word w and define
P(T) := P(word(T)). Finally denote the set of all standard tableaux of shape A by
ST(A). Then the set CLR(\;R) is defined as

CLR(\;R) = {T 6 ST(A)|P(r|s;) = Z.}.
It was shown in .[10, Section 6] and [11] that the set CLR(JZ) = UACLR(A;JZ)

has the structure of a graded poset with covering relation given by the Ji-cocyclage
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and grading function given by the generalized charge, denoted cj;. The general-
ized Kostka polynomial is the generating function of LR tableaiuc with the charge
statistics [10, 11]

(2) K^q) = ^ qcR^.
T6CLR(A;/i)

This extends the charge representation of the Kostka polynomials K\^ (g) of Lascoiuc
and Schiitzenberger [8, 9].

3. QUASI-PARTICLE REPRESENTATION OF THE GENERALIZED KOSTKA
POLYNOMIALS

Recall that jR = (RI,..., RL') such that Rj has ^ rows and r]j columns for
1^. j ^. L. For a partition A denote by A* its transpose and set Rt = (R^ ,... , -R^).
A (A(; J2t)-configuration is a sequence of partitions v = (i/(1), i/(2), ... ) with the size
constraints

(3) i»/(fc)i=E^--E^max(^-A:'0)-
j>k a=l

For a partition p, define mn(p) as the number of parts equal to n and Qn(p) =
p^ +pi +. .. +p^, the size of the first n columns of p. Let ̂  (R) be the partition
whose parts are the heights of the rectangles in R of width k. The vacancy numbers
for the (At;J2t)-configuration v are the numbers (indexed by fc ^ 1 and n ^ 0)
defined by

(4) PWW = Qn(^(fc-l)) - 2Qn(t/W) + Qn(^fc+1)) + Qn( (fc)W)

where v^ is the empty partition by convention. In particular P^ ) (t/) = 0 for all
k > 1. The (A*; ̂ ^-configuration v is admissible if Pw(v) ^ 0 for all fc, n > 1,
and the set of admissible (At;J?t)-configurations is denoted by C(\t;Rt). Define
the cocharge of a (At;JZt)-configuration v by

ccM- ^aW(aW-a^1))
k,n>l

where a^) is the size of the n-th column in v^. Finally, the g-binomicd is given
by

[m+n

L m
(g) m,+n

(g)m(g)n

for m, n   Z>o and zero otherwise where (g)m = (1 - g)(l -g2)- .. (1 - gm). With
this notation we can state the following quasi-particle expression of -the generalized
Kostka polynomials.

Theorein 1. For \ a partition and R a sequence of rectangles

rpw^+m^^)
m^W)(5) KxR{q) = T, 1

veC(\l;Rt)

,"(</)
fc, n>l
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Expression (5) can be reformulated as the generating function over rigged con-
figurations. To this end we need to define certain labelings of the rows of the
partitions in a configuration. For this purpose one should view a partition as a
multiset of positive integers. A rigged partition is by definition a finite multiset of
pairs (n, a;) where n is a positive integer dnd a; is a nonnegative integer. The pairs
(n, x) are referred to as strings; n is referred to as the length or size of the string
and 3- as the label or quantum number of the string. A rigged partition is said to
be a rigging of the partition p if the multiset consisting of the sizes of the strings,
is the partition p. So a rigging of p is a labeling of the parts of p by nonnegative
integers, where one identifies labelings that differ only by permuting labels among
equal-sized parts of p.

A rigging J of the (A*; J2()-configuration y is a sequence of riggings of the parti-
tions v^ such that every label a; of a part of v(-k^ of size n, satisfies the inequzdities

(6) 0^x^P^(v).

The pair (i/, J} is called a rigged configuration. The set of riggings of admissible
(At;J?t)-configurations is denoted by RC(\t;Rt). Let (v, J)w be the k-th rigged
partition of (r, J). A string (n, x)   (i/, J)(fc) is said to be singular if a; = Pw(v),
that is, its label takes on the maxunum value.

The set of rigged configurations is endowed with a natural statistic ec [5, (3. 2)]
defined by

cc(i/, J) = cc(i/) + y^z^
fc,n^l

\JW\

for (i/, J)   RC(A(; IZt). Here \p\ is the size of the partition p and Jw denotes the
partition inside the rectangle of height mn(i/(fc)) and width Pw(y) given by the
labels of the parts of i/(fe) of size n. Since the g-binomial [ ^m] is the generating
function of partitions with at most m parts each not exceeding P, Theorem 1 is
equivalent to the following theorem.

Theorein 1'. For X a partition and R a sequence of rectangles

(7) K^{q)= ^ gcc(^.
(v, J)£RC(\t;Rt)

To establish this theorem we describe a bijection <^A : CLR(A;JZ) -> RC(At;J?t)
in the following section and sketch a proof in section 5 that this bijection preserves
the statistics, that is c^(T) = ec (^(T)).

Observe that the definition of the set RC(At;JZt) is completely insensitive to
the order of the rectangles in the sequence R. However the notation involving the
sequence R is useful when discussing the bijection ̂  : CLR(A;jR) ->. RC(At;jRt)
between LR tableaux and rigged configurations, since the ordering on R is essential
in the definition of CLR(A; R). Exchanging two rectangles in R induces a bijection
on the LR tableaux that is explicitly described in [11]. It coincides with the auto-
morphism of conjugation of [9] in the case when each Rj is a single row (using a
suitable labelmg of LR tableaux).
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4. THE BUECTION BETWEEN LR TABLEAUX AND RIGGED CONFIGURATIONS

In this section we define a bijection ̂  : CLR(A;J?) -> RC(\t;Rt) between LR
tableaux and rigged configurations. The bijection which preserves the statistics is

<I)R = comp o ^

where comp : RC(>;R} -+ RC(A;JZ) complements the rigging labels. That is, for
(i/, J)   RC(A; J?) a string (n, a;)   (v, J)W is mapped to (n, Pw (v) - x).

There are several ways to define a bijectioa between LR tableaux and rigged
configurations depending on the labeling of the LR tableaux (rowwise or colum-
nwise labeling) and the way to assign the rigging labels (quantum or coquantum
labeling). The bijertion <^>^ uses the columnwise and quantum labeling cind is de-
fined recursively based on the following two operations on sequences of rectcingles
R=(Ri,..., Ri):

I. Let R" be the sequence of rectangles obtained from R by splitting off the last
column of RL; formally, R^ = Rj forl^j^L-1, R^= ((^ - \YL ) and

RW = (1^).
II. If the last rectangle of I? is a single column, let R be given by removing one

cell from the column RL; R, =Rj for !<, j <: L-l and RL = (l''r-1).

Renaark 1. Given any sequence of rectajigles, there is a unique sequence of trans-
formations of the form R-^ RA or R->^. resulting in the empty sequence, where
R-> R^ is only used when the last rectangle of R has more than one column.

For both transformations on sequences of rectangles, there are natural (injective)
maps on the corresponding sets of LR tableaux and rigged configurations. The
analogue of transformation I on LR tableaux is the inclusion

»A : CLR(A;I?) -». CLR(A;^A).
When the last rectangle of J? is a single column define

CLR(A-;S)= [J CLR(p;S)
P<A

where p<\ meajis that p C A and A/p is a single cell. Define the injective map
CLR(A;I?)-». CLR(A-;S)

T^T~

where T~ is the LR tableau obtained by removing the maximum letter from T.
The anzdogue of transform I for rigged configurations is given by the map

^.. RC(\t;Rt)->RC{\t;(RA)t)
by declaring that jA(i/, J) is obtained from (t/, 7)   RC(At; Rt) by adding a singular
string of length {ML to each of the first ̂  - 1 rigged partitions. Note that JA is the
identity map if i?^, is a single column. It is shown in [6] that JA is a well-defined
injection that preserves the vacancy numbers of the underlying configurations.

Suppose the last rectangle of J? is a single column. Define the set

RC(A-t;^t)= |jRC(pt ;^).
p<\
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The key algorithm on rigged configurations is given by the map
k*. Rti _kRr'^-t. 'fft']6:RC(\t;Rt)-^RC(\-t;Rt},

7(0)defined as follows. Let (v, J) G RC(At;^t). Define t~' = fJ,L- By induction select
the singular string in (v, J)^ whose length £ is minimal such that I <, {. .
Let rk(f, J) denote the smallest k for which no such string exists, and set £ = oo
for k >, Tk(v, J). Then S(i/, J) is obtained from (r, J) by shortening each of the
selected singular strings by one, changing their labels so that they remain singular,
and leaving the other strings unchanged. It is shown in [6] that the map j is a
well-defined injection such that S(v, J)   RC(p(; ~R) where p is obtained from A by
removing the corner cell m the column of index rk(i/, J).

The bijection ^ : CLR(A;Ii) -> RC(Xt;Rt) is defined inductively based on
Remark 1.

Definition-Proposition 2. For each. sequence R there exists a unique bijection
^ : CLR(A;J?) -^ RC(At;J2t), such that:

1. If the last rectangle of R is a. single column, then the following diagram
commutes:

CLR(A;^)

^R[
RC{\t;Rt)

&

2. The following diagram commutes:

CLR(A;IZ) -

^1

CLR(A-;S)

1^
RC(A-t;5t).

CLR(A; J?A)

<^RA

RC(\t;Rt) -- > RC(At;(^A)t).
3"

The proof of this Definition-Proposition is given in [6].

5. SKETCH OF THE PROOF OF THEOREM 1'

For the proof of Theorem 1' it remains to show that the bijection 4>R preserves
the statistics.

Lemma 3. Let T   CLR(A;J2). Then CR(T) = cc(^(T)).

The proof of this lemma is given in full length in [6]. Here we only sketch the
main ideas.

There are further important maps on the sets of LR tableaux and rigged configu-
rations. The maps which play a central role in the proof are the transposition maps
on LR tableaux and rigged configurations and a statistic preserving embedding on
LR tableaux. Let us briefly review their definitions and some of their properties.

Denote by tr : ST(A) -». ST(A() the ordinary transposition of standard tableaux.
Analogous to the definition of CLR(A; R] let us define the set

RLR(A;J?) ={Te ST(A)|P(T|B. ) = Z^}
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where Z[ is the standard tableau of shape Ri == (r;^') obtained by inserting the
numbers

i-1 z-1

(r-l)r, i+Y^\R, \<k^rr, i+^\Ri\
J=l .7=1

into the rth row of Ri. There is a bijection 7^ : CLR(A; R) -^ RLR(A;J?) given by
relabeling as follows. Suppose the letter j occurs in Zi m cell s. Then to obtain
7fi(T) from T   CLR(A; R) replace the letter j in T by the letter occurring in cell s
of Z[ for all letters j. The transpose map tr restricts to a bijection tr : CLR(A; R) ->
RLR(At;J2t). Then the LR-transpose

trLR : CLR(A;J%) -». CLR(At;^t)

is defined as IFLR := tr o 7^.
An analogous RC-transpose bijection exists for the set of rigged configurations

denoted by trnc : RC(Xt;Rt) -^ RC(>;R), which was described in [5, Section 9].
Let (v, J)   RC(At;JZt) and let i/ have the associated matrbc my as in [5, (9. 2)]

, (.. -1) _"(..)m,j = a'j"t] Ot'.

for i, j > 1, where aw is the size of the j-ih column of the partition v^i'), recalling
that vW is defined to be the empty partition. The configuration vt in (yt, Jt) =
trRc (l/i ./) is defined by its associated matrix mt given by

my = -mj, - #{a|(z, j)   ̂ } + 1 if(», j) A
0 otherwise

for all i, j >, 1. Here (i, j) £ A means that the cell (i, j) is in the Ferrers diagram of
the partition A with i specifying the row and j the column. Recall that the rigging
J is determined by partitions Jw inside the rectangle of height mn(y^) and width
^ (i/) given by the labels of the parts of v^ of size n. The partition J^-nl corre-

spending to (i/(, Jt) = trRc(i/, J) is defined as the transpose of the complemeutary
partition to Jw in the rectangle of height mn(t/(fc)) and width P^ )(v).

It is shown in [6] that the diagram

(8)

CLR(A;^) -t^-s. CLR(At;I?t)
0H | | <t>Rl

RC(\t;Rt)
tmc

RC{X;R)

commutes.
Let rows (iZ) be obtained from the sequence of rectangles R by slicing all the

rectangles of R into single rows. In refs. [11, 10] cm embedding

OR : CLR{\;R) -> CLR(A;rows(J?))

was defined and it was shown that QR preserves the charge CR of LR tableaux. This
embedding stems from an analogous embedding on column-strict tableaiix given by
Lascoux and Schutzenberger [7, 9]. For rigged configurations, it follows immediately
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from the definitions that there is an inclusion RC{\t;Rt) C RC(A*;rows(JZ)t). It is
shown in [6] that the diagram

(9)

CLR(A;I?)

0R1
RC(\t;Rt)

-8R-^ CLR(A;rows(J2))
<'lrowB(R)

RC(At;rows(Ji)t)
inclusion

commutes.
Now the proof of Lemma 3 follows directly from (8) and (9). Since the embedding

0R preserves the statistics one can reduce the proof of Lemma 3 to the case that
all rectangles in R are single rows using (9). By (8) it may be assumed that
R consists of single columns only. Finally applying (9) again, it is siifEcieat to
establish Lemma 3 for R a sequence of single boxes only. In this case the lemma is
verified explicitly in [6].
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