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Abstract

This paper is devoted to a noncommutative generalisation of a classical result occuring in the context of
the modular representation theory of the symmetric group. We prove that a noncommutative Schur ribbon
function RI is annihilated by the quasi-differential operator Dp,, if and only if the composition I is the
external border of a fe-core.

1 Introduction

Ordinary Schur functions can be interpreted as the Frobenius characteristics of the irreducible representations
of the symmetric group in characteristic 0. When one wants to work with modular representations of the
symmetric group, things become much more complicated since the algebra of the symmetric group does not
remain semisimple in this new context. One can however show that the two Grothendieck rings naturally
associated with irreducible and projective indecomposable modules of the symmetric group in characteristic k
are respectively isomorphic to

Sym/Ik and Sym^k

where Zfc denotes the ideal of the algebra of symmetric functions Sym which is generated by the power sums
indexed by a multiple of k and where Sym-k denotes the subalgebra of Sym generated by the power sums
which are indexed by a non-multiple of k. The Schur functions that belong to Sym^k are of special interest
since they are exactly the Frobenius characteristics of the Specht modules. One can show that these Schur
functions are characterized by the fact that they are indexed by fc-cores.

This paper is intented as a first step towards the generalization to noncommutative symmetric functions of
the previous framework. We indeed show that the good noncommutative analogues of the Schur functions, i. e.
the so called noncommutative ribbon Schur functions, belong to a noncommutative analogue of Sym-k (coming
from Lazard's elimination theorem) ifF they are indexed by a composition which is the border of a fc-core.

The main problem which remains clearly open would be to find a good representation theoretic interpretation
of such a result. Since the representation theoretic interpretation of noncommutative symmetric functions is
given by the 0-Hecke algebra, there is certainly some two parameter (g and t) deformation of the Hecke algebra
where one should both consider degeneracies at g = 0 and at t a fc-root of unity that would give us the required
representation theoretic interpretation of our work. This question is unfortunately still open '

2 Preliniinaries

2. 1 Noncommutative symmetric functions
The algebra of noncommutative symmetric functions defined in [G-T] is the free associative algebra

Sym=C(5i, 52,...)

generated by an infinite sequence of noncommutative indeterminates Sk, called the complete symmetric func-
tions. It is convenient to set 5o = 1.

Let t be another indeterminate commuting with the Sk . If one introduces the generating series

a(t):=^S^k,
fc>0
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it is possible to define other families of noncommutative symmetric functions by the following relations :

-1\(t) = a(-t)-
^a(t) = a(tWt) , a(t) = expWt)),

where X(t), ip(t), <p(t) are the generating series given by

\(t):=^\, tk,
k>0

W:=^>Skt
A=l

.k-1 ^. fcw-E?'
fc=l

The noncommutative symmetric functions Ak are called elementary symmetric functions and ̂ k and $fe are
respectively called power sums of first and second kind.

The algebra Sym can also be endowed with a Hopf algebra structure. Its coproduct A is defined by any of
the following equivalent formulas:

^(Sn)=Y^Sk®Sn-k, A(A^)=^Afc®A^_fc,
fc=0

A(^n)=l®^+'i'n®l,
k=0

A($n)= l®$n+^®l.

The free Lie algebra generated by the family ($n)n>i or equivalently by (^n)n>i is then exactly the Lie algebra
of the primitive elements for A.

A composition is just a sequence / = (ti, i2, --- i^r) of strictly positive integers. If m denotes the sum
I^^=i ̂  °f the parts of such a composition J, we will say that J is a composition of m. If J is a composition of
m, we will write 7 [= m and call m the weight of J. The integer r will be called the length of / and denoted by
^(1). Compositions can be represented by ribbon diagrams, i. e. by connected skew Ferrers diagrams that do
not contain 2 by 2 squares. One associates with the composition I = (ii, !'2,... , ir) the ribbon diagram whose
j-th row has exactly ij boxes.

Example 2. 1 The composition I = (3, 1, 5, 4) is a composition of 13. It can be represented by the ribbon
diagram given below.

It is often useful to number the boxes of a ribbon diagram by starting from the top left and finishing at the
bottom right. The previous ribbon diagram can then be numbered as follows :

6| 7
10| ll|12| 13|

Definition 2.2 If I = (?i , ?2,... , ir
I = (ir, ir--t,.. - , il)-

is a composition, we shall denote by I the mirror image of I defined by

We can also equip the set of all compositions of a given integer m with the reverse refinement order, denoted
^. For instance, the compositions 7 of 4 such that J -^ (1, 2, 1) are exactly (1, 2, 1), (3, 1), (1, 3) and (4).

The basis of Syni are naturally indexed by compositions. Let us indeed define for every family (-Fn)n>i of
homogeneous noncommutative symmetric functions and for every composition / = (t'i, t'z,.. . , ir), the noncom-
mutative symmetric function FI = F^Fi^ .. . F^. The families (57)/, (A7)/, ($ )/ and (^ )/ are homogenoeus
linear basis of Syin.
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There is also another very important basis of Sym that is indexed by compositions. If 7 is a composition
we can then define the ribbon Schur function RI by setting:

R, =^(-1)W-^SJ,
J^J

one can then show that the family (Ri)i is a basis of Sym.
We will use extensively the following rule for multiplying two noncommutative ribbon Schur functions.

Proposition 2. 3 Let I = (ii, i2, --. , ir) and J = (ji, j2,... , ^) be two compositions. Then we have ;
RI Rj = Rj. j + Ri^j

where weset I -J = (ii, h, - .. , ir, Ji, J2, . . . , Js) and I>J= (i'i, ?2,... , a'r +Ji, ^2, .. - Js)

2. 2 Quasi symmetric functions
Malvenuto and Reutenauer (cf. [MvR]) showed that the dual bialgebra Sym* of the noncommutative Hopf
algebra Sym can be identified with the algebra Qsym of quasi-symmetric functions, introduced by Gessel (see
[Ge]). This last algebra is defined as follows. Let X be an infinite alphabet totally ordered by some total order
<. A commutative polynomial P G C[X] is then said to be quasi symmetric if one has

(P, ^l... 4")=(P, 2/ll... ^n)

for every sequence (t'l, ^,... , t'n) £ N" and every strictly increasing sequences (x-i < x-^ < ... < Xn) and
(y\ <V2 < ... <yn) of letters of X. The set of all quasi symmetric polynomials of C[X] form an algebra,
denoted by Qsym, and called the algebra of quasi symmetric functions.

A natural basis of Qsym is formed by the quasi-monomial functions, defined by setting

ylilyt22... yppM, = ^
yi <y2 <... <i/p

for every I = (ii,... , ip). Another convenient basis is constituted by the quasi ribbon functions defined by
setting

F, =^Mj
J>J

for every I. One can then introduce a pairing between Qsym and Sym by setting equivalently

(Ri, Fj)=Su, oT{SI, Mj)=Su-
With this pairing, Qsym becomes exactly the Hopfdual of Sym (cf [G-T] for more details). The graded dual
basis of (^7) will then be denoted by (Pi).

2. 3 Commutative symmetric functions
The usual algebra of commutative symmetric functions will be denoted here by Sym. We refer the reader to
[Macd] or to [LS] for any details concerning the classical theory ofsymmetric functions. The Schur functions
(s^. )\ form in particular an important basis of Sym indexed by partitions.

One can define a morphism c from the algebra of noncommutative symmetric functions into the algera of
commutative symmetric functions by asking that

c{Sn) = hn

(using here Macdonald's notations) for every n > 1.
The image of a noncommutative symmetric function F under this morphism will be called the commutative

image of F. This terminology is justified by the fact that c(An) = Cn and c(^n) = c(<E>n) = pn for every n ^ 1,
using again Macdonald notations.

One can also show that the commutative image of a noncommutative ribbon function RI is the so called
ribbon Schur function r/. This last commutative symmetric function is defined in the following way. A com-
position I can be represented as a skew Ferrers diagram A//^ and the ribbon Schur function ri is then just the
skew Schur Function SA/^ (cf [Macd] for details). The following figure gives the example of the composition
, =(3, 1, 5, 4) interpreted as the skew Ferrers diagram (10 733/622).
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^ = 622
A = 10733

rj

Figure 1: The ribbon Schur function rs 15 4

Remark 2.4 The two symmetric functions n and rj are always equal.

Several properties of noncommutative Schur ribbons are inherited by their commutative images. In partic-
ular, the multiplication rule stated in Proposition 2.3 holds true for commutative ribbon Schur functions.

2. 4 Some combinatorial results for ribbon diagrams

Definition 2. 5 Let I be a composition interpreted as a skew Ferrers diagram \/p.. We say that a composition
J of weight k is removable from I at the position i if and only if:

1. the boxes numbered from i to i+k - \ in the ribbon diagram of I form a ribbon diagram of shape J ;

2. one still gets a skew Ferrers diagram by removing from the Ferrers diagram A/^ the boxes numbered from
i to 1+k-l.

Example 2. 6 The next figure shows that a composition of weight 4 is removable from the composition (3, 1, 5, 4)
at position 6, but not at position 4. By removing a ribbon from another, one obtains two disconnected ribbons
(possibly empty).

LII
^

3I3Ii

I

11111

31
ai!f?I^

iqii|i2|i^ JJ.

Figure 2: Removable (top) and non removable (bottom) compositions

Renaark 2. 7 Notice that saying that a composition of weight k is removable from a composition I, is equivalent
to saying that a ribbon diagram o/length k is removable from the ribbon diagram associated with I.

Well known objects in the theory of representations are the so called k-cores.

Definition 2. 8 Let X be a partition. We say that X is a k-core if it is not possible to remove any composition
of weight k at the border of the Ferrers diagram X and obtain another Ferrers diagram.

Definition 2. 9 Let n be a positive integer, let I = (t'i, t'2, . . . , ir) be a composition of n and let i be an integer
in {1, 2,... , n}. We say that the composition I passes through i if there exists k ^ {1, 2,... , r} such that

, fc
^=1 IJ = 2-

For instance the composition / = (3, 1, 5, 4) of 13 passes exactly through 3, 4, 9, 13.

Proposition 2. 10 Let I be a composition. Then a composition of weight k is removable from I at position i if
and only if I passes through i+k - \ and I does not pass through i - 1.
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Sketch of the proof. The above condition guarantees that what is left after the removal of a composition of
weight k is still a Ferrers diagram.

Definition 2. 11 We will say that a composition I is k-solid if no composition of weight k is removable from I.

Remark 2. 12 It is straightforward from the definitions that a composition I is k-solid if and only if it is the
border of a k-core.

Lemma 2. 13 Let I be a composition of n. Then I is k-solid iff either n < k, or when n> k if I satisfies:

i) I passes through n - k,
ii) I does not pass through k,
izi) if I does not pass through i then I does not pass through i+k.

Proof. A ribbon of length k is certainly not fc-solid as it is possible to remove it entirely. Of course, ribbons
of length smaller than k are fc-solid. Let us then suppose that n is greater than k. Conditions 2), n') and zz't)
respectively insure that no composition of length k is removable at the end of /, at the beginning of / and at
any other position i of / (according to Proposition 2.10). 0

2. 5 Differential and quasi differential operators
The algebra of commutative symmetric functions Sym is equipped with a canonical scalar product ( , ) which
is defined by requiring that the Schur functions form an orthonormal basis for it, i. e.

(s\, s,,) = S\f,

for all partitions A and fJ,. It is worth noticing that the algebra of Qsym ofquasi symmetric functions contains
the algebra Sym of symmetric functions.

The scalar product defined in Sym is related to the pairing between Sym and Qsym since one can prove
that

(F, f}=(c(F), f) (1)

for every noncommutative symmetric function F and every quasi symmetric function / which is in fact a sym-
metric function of Sym (see [Ge] or [G-T]).

Let / be a symmetric function. The differential operator Df is defined as the adjoint of the multiplication
operator M{ : g - ?. fg , i.e. by setting :

(Dfg, h)=(g, Mfh)=(g, fh)
for every 5, /i   Sym. One can prove in particular that Dp,, = k-^. (cf [Macd], or [LS]). The Murnaghan-
Nakayama rule explicitly describes the actions of these last differential operators on commutative ribbon Schur
functions.

Proposition 2. 14 (Murnaghan-Nakayama rule) Let I be a composition. Then one has :

D^{n}= E (-1)^)-1^^
J revnovabte from I

J^fc"
where Ji and ,2 ore the ribbons obtained by removing J from I in all possible ways.

The following corollary of the previous proposition can be obtained by simple computations. We use it
extensively in the proofs of following theorems and lemmas.

Corollary 2. 15 Let I be a composition of the znteger k. In the expansion of the commutative ribbon Schur
function rj in the basis of power sums, the term pk appears with coeffiaent {~lr,, . Moreover no other
monomial of this expansion contains the term pk .
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It is also interesting to introduce a notion of quasi differential operator in the context of noncommutative
symmetric functions. Let / be a quasi symmetric function. The quasi differential operator Df is then defined
by setting :

{Dj(F), g}={F, gf}
for every noncommutative symmetic function F and every quasi symmetric function g. The previous property
of the pairing given at the beginning of this section shows that

c(Df(F))=Df(c(F))
when / is a quasi symmetric function which is indeed a symmetric function. This justifies the fact that we used
the same notation for differential operators and quasi differential operators.

3 Corainutative ribbons and differential operators

3. 1 A tensor decoinposition of Sym
One can clearly decompose Sym as follows :

Sym = Sym,, ® 5ym_^,

where Sym,, = C[pk, p2 k, p3 k,... ] is the algebra generated by the power sums indexed by multiples of k and

where Sym_^ is the algebra generated by the remaining power sums.
This decomposition is of interest in the theory of modular representations of the symmetric group. The

Schur functions that are in Sym_k are indeed exactly the Frobenius characteristics of the Specht &-modular
representations of the symmetric group ( cf. [CR] and [R]). These Schur functions can be characterized exactly
as follows.

Theorem 3. 1 A Schur function s\ is in Sym_^ if and only if X is a k-core.

We want to generalize this result to the noncommutative case where the ribbons Schur functions Ri's play
the role of the usual Schur functions. Our first step in this direction will be to characterize the commutative
ribbon Schur functions that belongs to Sym_,,. When one expands a ribbon Schur function r/ of Sym_fe into
the basis of the power sums, no pjk appears in the expansion. Therefore a ribbon Schur functions rj ofSym_/c
satisfies :

.,. (. ) =,^=0
for every j ^ 1. In the main theorem of this section (Theorem 3. 2), we characterize the compositions / such
that Dp^(ri) = 0, in a further corollary (3. 10) we show that this condition is equivalent to the fact that :

^,. (^)=0
for every j > 1.

3. 2 Ribbon Schur functions in Sym_^
The following theorem is the main result of this section. It basically states that a ribbon Schur function is
annihilated by the operator Dp^ ifF it is indexed by a fe-solid composition or by the mirror image of such a
composition.

Theorena 3. 2 Let I be a composition. Then the two following assertions are equivalent :

1. ^, (r, )=0
£. I or I is k-solid.
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Remark 3. 3 Before entering into the proof, it is worth noticing that the conditions "J is fc-solid" and I is
A'-solid" are not equivalent. For instance, the composition J = 133 is 3-solid. It is easy to check that no
composition of weight 3 (in other words, no ribbon of length 3) can be removed from it. On the other hand, its
mirror image, the composition 7= 33 1, is not 3-solid. Indeed, it is possible to remove two ribbons of length 3
from it, one at the beginning (position 1) and one at the end (position 5). However, ̂ ^(rssi) is equal to zero.
Indeed, using Murnaghan-Nakayama rule, one gets

Dp, (r23l) = 7-31 -7-31 = 0.

Proof. Let us now show that condition 2 implies condition 1. If / is fc-solid, then no ribbon of length
k is removable from it and hence, by Proposition 2. 14, Dp^(ri) = 0. Of course, if / is fc-solid, one has
Dp^n) = Dp^rj) = 0.
We have split the proof of the converse of our theorem in the several following lemmas which we give without
demonstration. The proofs of these lemmas and of every result of this paper can be found in its journal version. <>

Lemma 3.4 Let I be a composition of n >_ k such that Dp^(ri} = 0. Then either I or I satisfies the conditions
i) and li) of Lemma 2. 13.

We are only left with proving that if / is a composition of n ^ fc that satisfies the conditions i) and ii) of
2. 13, and such that Dp^(ri) = 0 then / also satisfies the condition and zn) of Lemma 2. 13. This property is
proven in the following lemma.

Lenima 3.5 Let I be a composition of n ^ k that satisfies conditions i) and it) of 2. 13 and such that £)p^ (rj) =
0. Then, if I does not pass through some integer i, with n>i+k, I does not pass through i + k either.

This also ends the proof of Theorem 3. 2. We can now give some consequences of our result. Let us start
with the following remark.

Remark 3. 6 Let / be a fc-solid composition. Then if / passes through i, I passes also through i - k. This
condition is indeed clearly equivalent to the condition iii) of Lemma 2. 13.

We deduce from this remark the following corollaries.

Corollary 3. 7 Let I be a k-solid composition of n> k. Let us consider the euclidean division decomposition
n = qk+r (with 0 ^r <k) of n. Then I passes through r, r+ k, r+2k,... , r + qk = n and I does not pass
through k, 2k, 3k,... , qk.

Corollary 3. 8 Let I be a composition of n such that Dp^(ri) = 0. Then n mod k ^0.

Corollary 3.9 Let I be a composition of n and let n =: qk+r be the euclidean division decomposition of n.
Then the compositions I is k-solid iff one can decompose itas I = IQ- I-i . ... -Iq where Ij are compositions with
the following properties :

. Io is a composition of r,

. Ij is a composition of k for all J G {1,... , q},

. for all j G: {}-,... , q- \}, Ij+i is a composition less fine than or equal to Ij,

. none of the compositions /i,... , Iq passes through k - r

. if IQ does not pass through an integer i, then none of the compositions A, . . . , Iq passes through k-r+i.

Hence, the compositions I such that Dp^{ri) = 0 are the compositions described in the previous corollary
or their mirror images.
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Corollary 3. 10 Let I be a composition. Then one has Dp ̂ (r/) = 0 for every j ^ 1 , ijf I or 7 is k-solid.

Example 3.11 The composition .1111. 212. 2 1 2. 23 .. 5 . is 5-solid.
/o Ii h Is 1^

The composition 664231231112 is annihilated by Dp^ because its mirror image, the composition
2 J 11 32 13, 24^ 6 , 6 , is 6-solid.
,0 ,1 l2 h IA Is

4 Noncommutative ribbons and quasi differential operators
4. 1 A tensor decomposition of Sym

As in the commutative case, the algebra Sym has an analogous interesting decomposition. Let Yl = (r[n)n>i a
sequence of Lie idempotents with deg(Iln) = n. For any positive integer k, we can then define the subalgebra
Symfc (II) of Sym generated by the elements of the sequence H which are indexed by some multiple of k, i. e. :

sym^(n)=c(nfc, n2fc, n3fe,... }.

We must now introduce another important subalgebra of Sym. Let us denote by Tk the set of all compositions
of the form :

t = (iik,... , irk, ir+i)

with ir+i ̂  Q (mod k). We associate with every element t e Tk the noncommutative symmetric function Tl[t]
defined by

n[<]=[n. ^, [n^, [..., [n, ^, n,^j... ]]].
The subalgebra Syni_^(n) is then defined by setting

Sym_, (n)=C<nM \t^Tk}.
According to Lazard's elimination theorem (see [B]), the subalgebra Sym_fc(n) is freely generated by the family
{H[<] | <   T} and one has moreover the following tenser decomposition of Sym :

Sym = Symfc(H) ® Sym_fc(H).

An important fact is that the algebra Sym_^(n) does not depend on the sequence H of Lie idempotents that
was used to define it.

Proposition 4. 1 Let II = (rin)n>i and II' = (F[^)n>i fee (wo sequences of homogeneous Lie idempotents. Then
one has

Sym_, (n)=Sym_, (H/).
Sketch of the proof. The result is a consequence of the free Lie algebra version of the Lazard's Elimination

Theorem and uses simple arguments of degree homogeneity modulo k. A complete proof can be found in the
journal version of this paper. ^>

Therefore, the algebra Sym_fe(H) can be denoted simply by Sym_^. In particular one has Sym_^ =
Sym_^(^), where <EF = (^n)n^i, since (^n) is a sequence of homogeneous Lie idempotents.

Lemma 4.2 Let II = (Hn)n^i 6e a sequence of homogeneous Lie idempotents , such that deg(Tln) = n and let
(H}) be the graded dual baszs of (H/). Then 11^ = nPn.

Proposition 4. 3 Let H = (F[n)n>i a. sequence of Lie homogeneous idempotents. Then one has :

Sym_^(n) = F| ^erDp^ 1 k, m. ^k,... , m. rk
r>l

mi, m2,... , mr6N
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Sketch of the proof. It is possible to show that a noncommutative symmetric function F is in Sym_fc($)
if and only if it satisfies

<A(F), P^^, ^,.., ^fc®Pj)=0
for all mi, m2,. .. , mr E N and every composition /, and the latter condition is clearly equivalent to

DP^, ^,..., ^F)=Q

for all mi, m2,... , mr £ N. 0

4. 2 The ribbon functions in Sym_fc
The set of all noncommutative ribbon Schur functions form a basis of the algebra Sym. We want to characterize
the noncommutative ribbons that belong to Syin_fc.

Theorem 4.4 Let I be a composition. Then the following conditions are equivalent :

z) Pl £ Sym_fc,
n)Dp, {Ri}=Q,
iii) Either I or I is k-solid.
iv) -DP^, i.. m, k,..., m, fc(-R^) = ° /<?r al1 integers mi, m2,... , mr > 1.

Note first that conditions i) and iv) are equivalent according to Proposition 4. 3 and that iv) obviously
implies ii). In each of the following subsections, we show the remaining implications.

4. 2. 1 Condition ii) iinplies condition iii)
Lemma 4. 5 Let I be a composition such that Dp,, (Ri) = 0, then either I or I zs k-solid.

Proof. Suppose that Dp,, (Rj) = 0. This means that one has :

(Ri, PkF}=0

for all quasi-symmetric functions F. Since every symmetric function is a quasi-symmetric function, we get in
particular that

{^, Rfc/) ==0
for every symmetric function /. Using now property (1) of Section 2. 5, we get

(ri, pkf)=0

for every symmetric function / (notice that indeed Pk = Pfc). Hence we have Dp^ (r/) = 0 and we can conclude
to our Lemma by using the results of the previous section. 0

4.2.2 Condition iii) iniplies condition iv)
Since the PK'S form a linear basis of the algebra of the quasi-symmetric functions, condition iv) is equivalent
to the fact that

(Rl, Pmik,m^k,...,mrkPK) = 0,

for all integers mi, m2,. .. , m^ ^ 1 and for every composition K. This last condition is itself equivalent to

{A(J?j), P^, fc, ^fc,..., m^ ®PK}=O

for all integers mi, m2,... , m^ ^ 1 and for every composition K. Hence, to prove that condition iii) implies
condition iv) it suffices to prove the following lemma.
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Lemma 4.6 Let I be a composition such that either I or I is k-solid. Then one has

^(Rl), Pm, k. m^,..., m. k®PK}=0

for all integers mi, m2,... , mr ^ 1 and for every composition K.

Proof. Let / be a composition such that either / or 7 is A-solid. By definition of a noncommutative ribbon
Schur function, note first that one has,

^(R, )=^(-l)W-eWA(SJ).
J^I

Hence it suffices to prove that one has

^ (-1/(J)(A(5J), P^^,^,.., ^ 0 Px) = 0
J<I

for every composition K. Recall now that for all composition J = (ji, j2,... , ^, ), one has

A(5J)=A(5, JA(5-, J... A(5,.)
By definition of A, one gets

A(5-/)=EE---E^5'---^®^-'.^-'. ---^-^.
d=0;2=0 ;, =0

By substituting this last expression in (2), we see that we have to show that :

Jl 3t J.

E (-1)'(J)<E E ... S 5'i5'- . -5'. ®5,,-^5,, _^ . .. S^^P^, m^...., m^ ® PX)
(i=0;2=0 l, =0

(2)

J<I

J'l 32

= E (-1)'(J) E E ... E <5''^ . .. Sl., P^.m^..... m^}{S, ^Sj^ . .. S^., PK) = 0.
J^.1

z^
i=0;2=0 l. =0

for every composition K. Using the expansion of 5; on the basis of noncommutative power sums of the first
kind (cf[G-Tj), one gets

SL=^ ac, ^c
OL

for every composition L, where Q'C. L is a rational number that depends on the composition L and its refinement
C. Therefore the only terms of the internal sum that are different than zero are those in which the Ij's that are
not equal to zero form a composition which is an anti-refinement of the composition M = m^k, m^k,... , m^k.
Hence we have to show that :

E(-I)^)(E^(E<^, ^)]
J-<I \L<M \ J'

=0

for every composition K, where the most internal sum in the above expression is taken over all compositions J'
of the integer n - (mi +m^+ ... + mr)k, which can be obtained from J in the following way :

1. take a sequence of non negative integers /i, /2,... , /,, such that the //s that are not equal to zero form
a composition L which is an anti-refinement of the composition M = m-^k, m-^k,... , mrk, and such that
It <, jt for all <= l, 2,...,s

2. form then J' by subtracting in J the integer /; from jt for all f = 1, 2,... , s (ifa part ̂  of J is equal to
It, then this part "disappears" in J' when If is subtracted).
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We can now rewrite the above identity as follows :

Ea^(E(-l)'(J)(E<5-/'-F^)]=o-
L<M \J-<I \ J'

Of course it suffices to prove that all the terms

E(-I)^)|E<^, ^)|
J^. 1 \ J'

are zero for every composition J\. Now, any composition L which is an anti-refinement of M = m-ik, m'zk,... , mrk
is still a composition of the form n^k, n^k,... , ngk. Therefore it suffices to prove that if / is a fc-solid compo-
sition or the mirror image of a fc-solid composition and if m-ik, m-2k,... , mrk is a sequence of multiples of k,
then the identity

^_/
J-<I

(-1/(J)(E<5. -, P^-0 (3)

holds for every composition K.
Let us remind that J' is any composition obtained by taking any subsequence ji^ , jiy,... , ji^ of r parts of J

such that ji< ̂  mtfc for all < = 1, 2,... , r, and by subtracting the integer m^ from ji, for allf = 1, 2,... , r. If
a part ji, of J is equal to mfk, then this part "disappears" in J after the subtraction.

The fact that equation (3) holds for every composition K is clearly equivalent to the following identity

E(-1)^)(E5-)-°
J^, I \ J'

(4)

where the internal sum is taken over all compositions J' ofn- (mi +m2 + .. .+mr)fc obtained using the process
described above.
This last property is then an immediate consequence of the next lemma4. 11, which says that

E(-1)WE^/
J<I J'

is identically equal to zero when / is either a fc-solid or the mirror image a of /s-solid composition. 0

This result might be clearer with the following example.

Example 4. 7 Let / be the 3-solid composition : 11233. The anti-refinements of I are :

{11233, 2233, 1333, 1153, 1126, 433, 253, 226, 163, 136, 118, 73, 46, 28, 19, 10}.

Consider the sequence M = {3, 3}. By subtracting the integers of this sequence from the anti-refinements of /
(where this is possible), we obtain the followed signed compositions :

11233 -^ -112
2233 -> 22
1333 -» 13+13+13 (3 times !)
1153 -> 112
433 -^ -13-13-4
253 ->. -22
163 -^ -13
136 -> -13
73 -^4
46 -^ 13

It is straightforward to check that the sum of these signed compositions is identically equal to zero.
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Before stating the next lemma, we need to introduce some notations.

Definition 4. 8 Let J == (j\, ji,... , js) be a composition, k and r be two positive integers with r <^ s. Let
mi, m2,..., mr be another sequence of positive integers and /e(/i </2 < ... </r be elements o/ {1, 2,... , s}
such that ji ^ mfk for allt = 1, 2,... , r.
We note by (J; li, l-2, . . ., [^ mlK'7n2K''--'TT'"-K (/;g composition obtained from J by subtracting the integer mfk from
its Ifth part for all t = 1, 2,... , r. If ji = mtk, then the Ifth part is erased from J.

Example 4.9
((1, 3, 8, 6, 7);2, 4, 5F2 -4'4=(1, 1, 8, 2, 3)
((1, 3, 8, 6, 7);2, 4, 5F2 '6-4=(1, 1, 8, 3)

Definition 4. 10 Let I be a composition and let mi, m-^,.. ., mr be another fixed sequence of positive integers.
We note by £i the set defined by :

£l={(J;li,..., lr)\J=(ji,..., J,)^I; l^li<---<lr^s; ji, ^mtk, forallt= l,..., r}

The elements of this set are pairs made of a composition and a sequence of indeces corresponding to parts of
the composition from which it is possible to subtract the integers mfk. Notice that the above set also depends
on the sequence mi, m2,..., mr, we decided to omit this dependence in the notation £i for clearness.

Lenanaa 4.11 Let I be a composition of n such that either I or I is k-solid, and let mi, mz,..., m^ be another
fixed sequence of positive integers. Then the formal sum :

^ (-i)^)(j;/i, <2,..., /. rm lfc-m2':]--mrfc

(J;ll,..., lr)££l
(5)

is identically equal to 0.

Sketch of the proof. The proof is bijective. The argument is based on an involution which couples up pairs
of elements of the set £i whose contribution to the above sum is equal in absolute value but opposite in sign. <C>

Using the last lemma, we immediately obtain equation (4). This ends the proof of Lemma 4. 6.
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