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ABSTRACT. We present an analog of the Robinson-Schensted-Knuth correspondence
related to Schubert polynomials and some of its applications. This correspondence
is based on a new insertion procedure for certain binary tableaux of staircase shape,
which are the analogs of semistandard Young tableaux in the theory of Schubert poly-
nomials. The main application is an extension of the theory of noncommutative Schur
functions, due to S. Fomin and C. Greene, to Schubert polynomials; more precisely,
we prove noncommutative versions of the Cauchy identity and the Pieri formula for
Schubert polynomials. Finally, we use these results in the theory ofGro-thendieck poly-
nomials, which are generalizations of Schubert polynomials related to the K-theory of
flag varieties.

1. INTRODUCTION

The singular cohomology of flag varieties has attracted a great interest from peo-
pie in various mathematical areas, ranging from algebraic geometry and topology, to
representation theory, and more recently to algebraic combinatorics. The latter enters
the picture with the construction by Lascoux and Schiitzenberger [11] of the Schubert
polynomials as representatives for Schubert classes in type A. Since their work, many
papers on the combinatorics of Schubert polynomials have appeared. Currently, one
of the main open problems related to Schubert polynomials is finding a Littlewood-
Richardson rule for them. This rule is concerned with a combinatorial description of
the structure constants for the ring of polynomials with respect to its Schubert basis.
In this work, we present a construction whose ultimate application we believe to be the
mentioned Littlewood-Richardson rule. We base our assertion on an analogy with the
classical case of symmetric functions. Indeed, our construction is an analog of the well-
known Robins on-Schensted-Knuth (R-S-K) correspondence. It is based on an insertion
procedure (this should be viewed as the analog of Schensted's insertion) for certain
binary tableaux of staircase shape, which we call rrc-graphs, and which appear in the
combinatorial definition of Schubert polynomials; in fact, these objects correspond to
the semistandard Young tableaux in the theory of Schur functions. Our analog of the
R-S-K correspondence is a bijection between binary tableaux of staircase shape and
certain pairs of rrc-graphs. We show that this construction, as well as our insertion
algorithm, have properties similar to those of the classical constructions. The main
application of our insertion algorithm is an extension of the theory of noncommutative
Schur functions, due to S. Fomin and C. Greene [3], to Schubert polynomials. We define
noncommutative analogs of Schubert polynomials by considering a certain reading of
rrc-graphs. Unlike noncommutative Schur functions, our noncommutative polynomials
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do not commute given certain relations between the variables. However, they satisfy
a noncommutative version of the Cauchy identity for Schubert polynomials, given the
same relations. The proof of this identity is based on a Pieri-type formula for our poly-
nomials, and, ultimately, on our insertion algorithm. The mentioned noncommutative
Pieri-type formula is considerably simpler than the Pieri formula for Schubert polynomi-
als, because it only involves the weak Bruhat order. Finally, we discuss the special case
when the variables satisfy the relations of the degenerate Hecke algebra Hn{0), which is
related to the theory of Grothendieck polynomials. Recall that these polynomials are
representatives for the classes dual to the structure sheaves of Schubert varieties in the
jFC-theory of the flag variety. Our Cauchy identity immediately implies a conjecture of
Fomin and Kirillov concerning the expansion of a Grothendieck polynomial in the basis
of Schubert polynomials; furthermore, it oflfers a combinatorial interpretation for the
coefi&cients of this expansion.

Parts of this work will appear in [17].

2. THE MAIN CONSTRUCTION

We start by recalling a combinatorial construction of Schubert polynomials. The
objects underlying this construction, namely the re-graphs used in [I], play a major
role in this work.

The nilCoxeter algebra (of the symmetric group Sn, with n fixed throughout) is
generated by elements Ui;... , ̂ n-i, subject to the relations

(2. 1)
^2=0,
ViVj=VjVi, \i-j\>2,
ViVi+^Vi = Vi+iViVi+i .

This algebra has a basis consisting of elements which can be naturally identified with
permutations in Zn (we will not attempt to distinguish them notationally, because we
have made sure the context is clear each time); in particular, u, is identified with the
simple transposition s, = (i, ?+!). According to Proposition 1. 12 in [12] (see also [2, 6]),
the Schubert polynomials ©w(^) = @w(xi,... , Xn-i), for w in Sn, can be defined by
their generating function

n-1

(2. 2) G(x) := JJ IJ (1 + XiVj), that is, 6(2;) = ^ G^x)w;
1=1 j'=n-l W^Sn

the variables Xi commute with vj, and the noncommuting factors of the double product
are evaluated in the specified order.

The definition ofSchubert polynomials in (2. 2) can be reformulated in terms of certain
combinatorial objects called rc-graphs (essentially some binary tableaux of staircase
shape), as in [1]; thus, it can be viewed as the analog of the combinatorial definition
of Schur functions. We find more convenient for our purposes not to use the rc-graphs
themselves, but a slight variation of them, which we call reversed rc-graphs (or, simply,
rrc-graphs); these are binary tableaux of staircase shape obtained by reading the rows
of rc-graphs from right to left. To be more precise, we define the collection 7?-(w) of
rrc-graphs associated with a permutation w in Zn to consist of the binary tableaux of
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staircase shape R = (ry)i+j<n for which
n-1 n-i

.w:=nne,
i=i j=i

equals w in the nilCoxeter algebra. All binary tableaux considered from now on will
have the same shape and size as the ones above.

Example 2.3. The following rrc-graph is associated with the permutation (3, 1, 4, 6,
5, 2):

10011
0010
010
0 0
1

If we also define (for any binary tableau, in fact)
n-l n-i

^{R) -TIW,
1=1 J=l

then (2. 2) can be reformulated as

(2. 4) <5^x)= Y^ x{R).
Re'R. (w)

We are now ready to present our insertion algorithm for rrc-graphs. Let us first
mention that a different insertion algorithm (for rc-graphs) was given in [I], and used
in a combinatorial proof of Monk's formula. The main differences between the two
algorithms are: a) it does not seem possible to extend the algorithm in [1] to a R-
S-K type correspondence; b) the insertion of a decreasing sequence of elements using
our procedure produces paths which are situated weakly above one another, unlike the
algorithm in [1]. The latter fact prevented Bergeron and Billey from extending their
proof of Monk's formula to the Pieri formula for Schubert polynomials.
Algorithm 2.5. (Insertion). Consider an integer i with 1 <, i ^n-1, and an rrc-
graph R in K{w} for some w in 27n. Assume it is possible to find a sequence of indices
(the insertion path) (ko, lo), (A;i, k),... , (km, Im), with Kkp ̂ n-1, 1 ^lp <:n - kp
for all 1 ^p^ m, satisfying the following properties:

1. ko =i, lo= 0, and we set rkoio := 0;
2. if Tkpip = 0 for some p with 0 ^p^ r- 1, then A;p+i = A;p and Zp+i = ^ + 1;
3. if Tkpip = 1 and i-fcp-iip-i = 0 for some p with 1 ^p < r- 1, then A;p+i = /Cp - 1

and lp+i = Ip;
4. if r^i = 1 and rkp-iip--^ = 1 for some p with 1 ^j? ^ r- 1, then kp^ = kp - 1

and lp+t = lp+1;
5. km =1 and r^^ = 1.

If such a sequence exists, it is clearly unique. We define a new binary tableau {i ->
-R) = (*a&) (the insertion of i into J?) by simply setting ^p := r^-iZp-i ifl ^P ^ m,
and ^ := raft for all other pairs (a, 6).
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An example of insertion path is given in Fig. 3 (here n = 11 and z = 4). The insertion
algorithm consists of shifting the entries along the insertion path; an extra 0 enters the
tableau in position (i, 1), and the entry equal to 1 at the end of the insertion path is
removed (see Fig. 4).

0

0

0 0

0

(2. 6)

Fig. 3 Fig. 4
We now present some properties of this insertion procedure.
Define the column index j{i) as follows:

zm if^_i=l
lm+1 otherwise.

We can show that we necessarily have j(i) <:n- 1 and rij(, ) = 1.
Proposition 2.7. The binary tableau i -> R is an rrc-graph associated with the per-
mutation Sn-j(i]v(R), where v(R) is viewed as an element of Zn; in particular, we have
l(sn_^v{R))= l{v{R)) -1.

We can reverse this algorithm.
Algorithm 2. 8. (Reverse Insertion). Consider an integer j with 1 ^j ^ n-1,
and an rrc-graph R in 7?. (w) for some w \n. En. Find the unique sequence of indices (the
reverse insertion path) (ko, ly), (A;i, li),... , (km, lm), with 1 <, kp <: n-1, 1 ^ Ip ̂  n-kp,
forall 1 ^p ^ m, satisfying the following properties:

1. ko =0, IQ = j, and we set rkoio := 1;
2. if rkpi == 0 for some p with 0 ^p ̂  r-1, then kp+^ = kp and /p+i = Ip- 1;
3- ^ T-fepip = 1 and r/cp+i, ;p = 0 for some p with 1 ^p^ r- 1, then /Sp+i = /Cp + 1 and

lp+l - ''pl

4. if rkplp = 1 and rfep+i, ;p = 1 for some p with 1 <p< r- 1, then /;p+i = A;p + 1 and
^p+1 = ^p - 1;

5. lm=l, and r^i^ = 1 implies r^+i, ;^ = 1.
Note that it is not possible to have kp+lp=n and rkpip = 1, so the entry rkp+i, ip always
exists in R if Tk i = 1. We define a new binary tableau {R .<- 3} = (ta.b) (the reverse
insertion of j into R) by simply setting tkpip := T'Ap_i^_i ifl ̂ P ̂  m, and ̂  := r^ for
all other pairs (a, &). We let i{j) := km.
Proposition 2. 9.

(a) If we can insert i into R, then ((i -> R) .<- j{i)) = R.
(b) Ifvjv(R) ^ 0, then (i(j) -> (J? <- j)) = R.
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Based on the above results, we study the way in which successive insertions can be
performed.

Proposition 2. 10. Let 1 <, ii <i<2 <:n-l, and assume we can insert iy into R. Then
it is also possible to insert i^ into i^ -^ R, and the second insertion path stays weakly
above the first one. Furthermore, if ji and j^ denote the corresponding column indices
defined in (2. 6), we have ji < j2.

We now discuss the way to use the above insertion procedure to give an analog of the
R-S-K correspondence. More precisely, we describe how to associate with an arbitrary
binary tableau T, a pair of rrc-graphs (J?i(r), ^2(T))- We consider the lexicographic
array (,-l'""'^m) of coordinates of 1's in T, and set

11»-" y3m

^(T):=0l-^(j2^... (jm^l)... )),
where 1 denotes the tableau with all entries equal to 1. Indeed, Proposition 2. 10 shows
that all these insertions can be performed. Let A;i,... , km denote the corresponding
column indices defined in (2. 6). We define ^(T) to be the binary tableau associated
with the lexicographic array (^';;;'^)-
Example 2.11. Consider the lexicographic array ([^'1'!)^ corresponding to a binary
tableau which is not an rrc-graph. The algorithm described above produces the following
results:

11 000\ /Oil 000\ , 001 000
1 , 00 |^{11 , 00 1-^(11 , 01

We can prove the following result.

Theorem 2. 12. The correspondence defined above is a bijection between binary ta-
bleaux (of staircase shape with n-1 rows and n-1 columns) and pairs of rrc-graphs
associated with permutations w and WWQ, for w in Sn. Furthermore, the number of 1 's
in the columns of T and the number ofO's in the rows of Ri{T) coincide, while the
number ofl's in the rows of T and ̂ (T) also coincide.

This correspondence provides a bijective proof of the Cauchy identity for Schubert
polynomials (2. 13), exactly in the same way as the classical R-S-K correspondence
proves the Cauchy identity for Schur functions.

(2. 13) H {x, + yj) == ̂  6^(2;) ©wwo(?/) .
i+j<n wCZn

In fact, what we have done is to make explicit the combinatorial proof of the Cauchy
identity in [5]; however, it seems very difficult to decode the above construction from
the manipulations with wiring diagrams in that paper.

The following is the analog of the symmetry property of the classical R-S-K corre-
spondence.
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Proposition 2. 14. If a binary tableau T corresponds to the pair of rrc-graphs (-Ri(T),
R^T}), and T denotes the tableau obtained from T by changing Q's into 1 's and vicev-
ersa, then the transpose of T corresponds to the pair (R-2{T), R^(T)).

3. NONCOMMUTATIVE ANALOGS OF SCHUBERT POLYNOMIALS

In their pioneering papers [19, 9], Lascoux and Schiitzenberger defined noncommu-
tative Schur functions with variables in the free algebra by using a certain reading of
the tableaux in the combinatorial definition of Schur functions. They went on to de-
velop a theory of noncommutative Schur functions for the so-called plactic algebra. This
theory was generalized by Fomin and Greene in [3]. They showed that, surprisingly,
the noncommutative Schur functions commute if their variables Ui, U2,... satisfy the
"non-local Knuth relations"

(3. 1) UiUkUj = UkUiUj, i <, j < k, \i - k\>^2,
UjUiUk == UjUkUi, i < j ^k, \i- k\>2,

as well as the following "local commutation" relation:

(3. 2) {ui + Ui+i)ui+iUi = Ui+iUi(ui + u,+i).
The above relations are satisfied in many well-known algebras, such as the plactic,
nilplactic, nilCoxeter, and degenerate Hecke algebras. As a consequence of the above
result, Fomin and Greene derived a Cauchy identity for the noncommutative Schur
functions and a generalized Littlewood-Richardson rule for a large class of symmetric
functions, including the stable Schubert and the stable Grothendieck functions.

We now extend the work of Fomin and Greene to Schubert polynomials. We start
by defining noncommutative analogs of Schubert polynomials for every permutation w
in the symmetric group Zn- Given a set of noncommuting variables Ui,... , Un-i and
some binary tableau T, we let

n-1n-j

"(T)-nn^.
.
7=1 1=1

We now define the noncommutative analogs of Schubert polynomials 5'u, (u) by

(3. 3) S^{u)=S^u,,..., u^):= ^ u{K),
R^Ti(wwo)

where WQ is the longest permutation in Sn- Similarly, we can define 5'u, (ufc,... , Un-i)
for every permutation w of the set {k,... , n}; in this case, we consider binary tableaux
T = (tij) with 1 ^ ? ^n-A; and \<, j^n-\-l-k-i, and define

n-kn+l-k-i

°(r):=n n
3=1

^
n-kn+1-k-j

i=l
»(D:=n n

J=l
u
i-tij

1=1

Note that

S^x)=[]^xi fwwo[.xn-li . . . ^xl

292



Clearly, the degree of Sy, (u) is l{w). For instance, if w is the identity permutation,
then 5u, (u) = 1, and if w = WQ, then Sw{u) = (un-i... 'ui)(un_i ... Uz)... Un-i. Let us
consider another example.

Example 3.4. Consider the permutation w = (2, 3, 4, 1) in Z^, for which WWQ =
(1, 4, 3,~2) = S2S3S2 = S3S2S3. The set TZ(wwo) consists of the following rrc-graphs.

110 110 100 010 000
10 00 01 11 11
01101

Hence Sw(u} = Uiu^us + u^u^us + u^usUs + uzu^uz + u^u^u^.

Note that the polynomials 5^(u) are in some sense complementary to Schubert poly-
nomials, because they are defined in terms of the entries equal to 0 of the rrc-graphs
R, as opposed to the entries equal to 1, which are used to define Schubert polynomials.
The main reason for considering these polynomials is that only in terms of them were
we able to find a noncommutative version of the Cauchy identity for Schubert polyno-
mials. Let us note that neither the polynomials Sy, (u), nor their variations obtained by
changing the definition of u(T) (for instance, by recording the 1's rather than the O's)
are directly related to the noncommutative Schubert polynomials defined by Lascoux
and Schiitzenberger in [15] (see also [14, 18]).

The polynomials Sw(u) are stable under the obvious embedding of the symmetric
group Z{k+i,..., n} into the symmetric group Z{k, k+i,..., n}- To state this property, we use
the standard notation 1 x w for the image of a permutation w   S{2,...,n} in ̂ n-

Proposition 3. 5. For every permutation w in ̂ {2,..., n}, we have Sw[u^... , Un_i) =
S'ixw(u)-

Unlike the noncommutative Schur functions of Fomin and Greene, the polynomials
S^(u) do not commute if the relations (3. 1) and (3. 2) are satisfied; they still do not
commute if we replace the relations (3. 1) with the stronger relation

(3. 6) UiUj = UjUi, |t -j) ^ 2.
Nevertheless, we now show that our polynomials do satisfy a noncommutative version
of the Cauchy identity for Schubert polynomials if relations (3. 6) and (3. 2) are satisfied
(note that (3. 1) and (3. 2) do not suffice). So from now on, we assume that we are
working in a noncommutative algebra containing elements ui,... , Un-i which satisfy
these relations. Clearly, we have to use difiFerent techniques from those in [3] to prove the
Cauchy identity for S^{u). Indeed, the most difficult step for us is to prove a Pieri-type
formula for our polynomials; this formula expresses the product of the noncommutative
analog of an elementary symmetric polynomial with Sw(u) as a sum of polynomials
Sw'(.u), provided that w(l) = 1 (note that a prior! it is not clear that such an expression
should exist). Recall that the noncommutative analogs of the elementary symmetric
polynomials Cm(u) are defined by

em(u) := ^ u, iUi,... -u^.
n-l>ii>i2>...>im^l

Our Pieri formula is easiest to express using the nilCoxeter algebra, and the convention
So{u) := 0.
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Theorem 3.7. Assuming that relations (3. 6) and (3. 2) are satisfied, the following iden-
tity holds for every integer m with 1 <, m <n-l, and every w in Zn with w(l) = 1.-

em(u)Sw{u) = E Sv^v^... v^w{u) .
n-i>. Jl>J2>->Jm>l

The proof of this formula relies heavily on our insertion algorithm discussed in the
previous section. Essentially, we insert elements corresponding to the indices of mono-
mials in Cm(u) into the rrc-graphs R corresponding to the monomials of Sw(u), and
investigate the effect on the reading word u{R).

Based on Theorem 3. 7, we can prove the noncommutative analog of the Cauchy
identity (2. 13) for Schubert polynomials.

Theorem 3.8. If relations (3. 6) and (3. 2) are satisfied, we have
n-l

n i] (i+^,-)= ̂  6, (2;)5, ^.
i=l j=n-l tuC^n

Proof. We use induction on n, which clearly starts at n = 1. Assuming the identity
holds forn - 1, we have

n-1 ! /n-l

n n (i+^u, )= (^^m^(u)
i=lj=n-l \m=0

^ ©w(2;2, . . . , 3;n-l) 5ixw(u)
,U'££{2,...,n}

n-1

S S S a;m0w(2;2,... , a;n-l)5^... ^(ixw)(u)
w6£'{2,..., n} m=0n-l^ji>... >jm>l

= E I E E ^m©w'(^,... ,^-i) 15, (u)
we^n \'"=o ixw'e^m)(w)

= ^ G^x)S^(u).
we^n

The first equality follows by induction and the stability property in Proposition 3. 5; the
second equality is an application of the Pieri-type formula in Theorem 3. 7; finally, the
fourth equality follows from a formula in [12] for expressing a Schubert polynomial as a
univariate polynomial in the first variable with coefficients being Schubert polynomials
in the rest of the variables. D

If Ui satisfy the relations (2. 1) defining the nilCoxeter algebra, then the noncom-
mutative Cauchy identity above implies S^(v) = w, according to (2. 2). This means
that there is a unique rrc-graph R* in %(wwo) with u(R*) = w, and for all the other
rrc-graphs R we have u{R) = 0; the latter fact can actually be proved directly without
difficulty. The following Proposition identifies the rrc-graph Rf.

Proposition 3. 9. Given w in Zn and assuming u, satisfy (2. 1), the unique rrc-graph
R* in ̂-{w) with u(R*) = wwo is the maximal one in lexicographic order (here R* = (r^.)
is identified with the binary word r*^... r^-ir^ . . . ^, 71-2 . . - rl.n-i)- The entries of this
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rrc-graph are

* ^^^ 1 ^^^-fc(w-1)ri,k-i+t = '} Q otherwise,

where 1 <i ̂ k <n-l, and c(w-1) = (ci(w-1), ... , Cn_i(w-1)) is the code of the
inverse permutation to w.

4. THE EXPANSION OF GROTHENDIECK POLYNOMIALS IN THE BASIS OF
SCHUBERT POLYNOMIALS

We begin this section with a brief introduction to the cohomology and K-theory of
flag varieties; for more information, we refer the reader to [7] and [10].

Let Fin be the variety of complete flags 0=Vo CVi C ... C Vn-i CK=C1 in C";
this is an irreducible algebraic variety of complex dimension (^) . Its integral cohomology
ring H*{FQ is isomorphic to Z[j;i,... , Xn}/In, where Jn is the ideal generated by
symmetric functions in 2:1,... , a;n with constant term 0; here, the elements 2;, are
identified with the Chem classes of the dual line bundles (Vi/V, -i)*. Recall that Fl^ is
a disjoint union of cells indexed by permutations w in En, and that their closures are
the so-called Schubert varieties Xw, of complex dimension l(w). It is well-known that
the cohomology class corresponding to Xw is represented by the Schubert polynomial
G^x).

The K-theory KQ{FQ of the flag variety is the Grothendieck ring of complex vector
bundles over Fin under direct sum and tensor product. It is known that K° {Fin) is
isomorphic to the same quotient of the polynomial ring Z[2;i,... , Xn] as the integral
cohomology H*{FQ. This time we identify x, with the ̂ -theory Chern class 1 - 1/a,
of the line bundle (y, /V;_i)*, where a, represents Vi/y,-i in the Grothendieck ring.
The classes dual to the structure sheaves of Schubert varieties form the natural ba-
sis of K° {Fin). The construction of these classes in the general case of flag varieties
corresponding to Kac-Moody Lie algebras was given in [8]; this construction is based
on certain divided difference operators, as shown below. For the flag variety Fin, the
J^-theory classes corresponding to Schubert varieties are represented by Grothendieck
polynomials, which were introduced by Lascoux and Schiitzenberger in [13], and stud-
led in more detail in [10]. In fact, in the latter paper, Lascoux defines the more general
double Grothendieck polynomials, which are polynomials in two sets of variables re-
lated to the T-equivariant ^-theory of Fin (see also [8]). Here we restrict ourselves to.
Grothendieck polynomials in only one set of variables.

Given a parameter ̂ , we define polynomials <SW{x) = 0^)(a;i, ... , a;n-i) by
n-1

<)(^)==n^-s
1=1

ew (^) = ^ ̂  ̂ ), if i(^ =i(w)+i.
Here 7r}w is the operator on Z[a;i,... , Xn} defined by

w^) f{x) =
(1 + (3xi+i) f{x) - (1 + f3xi) f{x^... , Xi+i, Xi,. .., Xn)

Xi - Xi+i
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The Grothendieck polynomial indexed by the permutation w is <8L~ (re), which we
denote simply by ©^(a;). Note that (S^o) (a;) is just the Schubert polynomial GwW-

It is easy to check that the operators TTW provide a faithful representation of the
algebra Aw generated by ui,... , Un_i, subject to the following relations:

(4. 1)
u] = Pu,,
UiUj^UjUi, \i-j\^2,
UiUi+iUi = U,+iU, U, +i .

iWThe algebra A^' has a basis consisting of elements which can be identified with per-
mutations in Zn in the same way as the basis elements for the nilCoxeter algebra were.
Once again, we shall not attempt to distinguish notationally between elements and their
products in Zn and Aw. Note that Aw is the nilCoxeter algebra, and A^l) is the
degenerate Hecke algebra Hn{0).

Fomin and Kirillov gave a construction for the polynomials <SW(x) similar to (2. 2)
in [4]. They proved that if u, satisfy (4. 1), and <SW{x) is given by the same expression
as G(x), except that the v^s are replaced by the u, 's, then we have

(4. 2) ^\x}=^eW{x}w.
w£Fn

By taking a certain limit of the polynomials <SW{x), we obtain power series in /?,
denoted G^'{xi, x^,... ), whose coefficients are symmetric functions in a;i, 3;2,... .
There is a generating function formula similar to (4. 2) for these power series. We
call G'w' '{xi, x-2,... ) a stable Grothendieck function.

It follows from (4. 2) that the Grothendieck polynomial <S>w (x) is a nonhomogeneous
polynomial with monomials of degree greater or equal to Z(w); furthermore, the sign
of the coefficient of any monomial of degree l(w) + i is (-I)'. On the other hand, the
definition of Grothendieck polynomials implies that the lowest homogeneous component
of<Su;(x) is the corresponding Schubert polynomial ©w(.x). Hence the transition matrix
from Grothendieck to Schubert polynomials is triangular with 1's on the diagonal.
The geometric idea underlying this observation is that the cohomology of Fin is the
associated graded ring to K°{Fln) with respect to a certain filtration (see [8]).

Fomin and Greene used their theory of noncommutative Schur functions to show that
the stable Grothendieck functions are nonnegative integer combinations of Schur func-
tions, and gave a combinatorial interpretation for the coefficients of the expansion (see
[3]). Here we extend their work, by providing explicit combinatorial information about
the expansion of a Grothendieck polynomial in the basis of Schubert polynomials. We
also confirm the conjecture of Fomin and Kirillov concerning the signs of the coefficients
in this expansion.

Theorem 4.3. The sign of the coefficient of the Schubert polynomial Gw'{x) (where
l{w'} ^ l(w)} in the expansion o/@^(x) is (-l);(w')-;(u;). Furthermore, the absolute
value of this coefficient is equal to the number of rrc-graphs R with v{R) = W'WQ and
u(R) = w, where Ui satisfy (4-1) with ,3=1.
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Note that (-l)'(u'')-i(w) is precisely the value of the Mobius function of the Bruhat
order on the symmetric group. Hence it is natural to expect the following result,
conjectured by Lascoux.

Conjecture 4.4. Any Schubert polynomial is a nonnegative integer combination of
Grothendieck polynomials.

In [16] we proved that Conjecture 4. 4 is true in the Grassmannian case, and we
presented a combinatorial interpretation for the coefficients in the corresponding ex-
pansion.

Concerning the terms which appear in the expansion of a Grothendieck polynomial
in the basis of Schubert polynomials, we have the following result.

Proposition 4. 5. The Grothendieck polynomial <£>w{.x) is a linear combination of
Schubert polynomials Gw'{x} with w <:w in Bruhat order.

We state one more conjecture, which was suggested by several computer experiments.

Conjecture 4.6. We have that ©u;(^) == ©w(x) if and only if w is a dominant permu-
tation (i. e., its code is a partition).

As far as the geometric significance of the above results and conjectures is con-
cerned, it is still mysterious to a considerable extent. The main reason for this is that
the isomorphism between K°{Fln) and H*(FQ defined above (using identification of
Chern classes) is not entirely geometric. A geometrically defined isomorphism between
K° (Fin) 0 Q and H* (Fin, Q) is the Chern character. However, the images of Schubert
classes in AT-theory under the Chern character are more complicated to describe then
their images under the isomorphism used in this paper, although there is a connection
between the two images.

Let us now consider an example to illustrate Theorem 4. 3 and Proposition 4. 5.

Example 4.7. We have the following expansion for the Grothendieck polynomial
<S(1, 4, 3,2)(2;):

<S(1, 4,3,2)(^) = ©(1,4, 3,2) (2;) - 26(2, 4,3, 1) (3;) - ©(3,4, 1,2) (2;) + 6(3, 4, 2, 1) (^) .
The two rrc-graphs counted by the coefficient of ©(2,4,3, 1) (^), and the rrc-graphs counted
by the coefficients of ©(3,4, 1,2) (2;) and ©(3,4,2, 1) (2;) are listed below, in this order.

010 000 001 000
00 01 00 00
1 11 1
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