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Abstract

A 0-1 matrbc is said to be extendably r-avoiding if it can be the upper
left corner of a r-avoiding permutation matrix. This concept arose in [EL],
where the surprising result that the number of extendably 321-avoiding
rectangles are enumerated by the ballot numbers was proved. Here we
study the other five patterns of length three. The main result is that the
six patterns of length three divides into only two cases, no easy symmetry
can explain this. An other result is that the Simion-Schmidt-West-bijection
for permutations avoiding patterns 12r and 21r works also for extended
pattern avoidance.

The results and proofs use many properties of the Catalan numbers and
refinements of the Catalan numbers.
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1. INTRODUCTION

1.1. Notation. Given a permutation TT   Sn, let it be represented by a permutation
matrix, with 1's in positioiis (i, TT(i)). Fbc any t of these 1's and delete all rows and
columns that do not contain any of them. The result is a permutation matrbc for a
permutation r   5'(. It is said that TT contains the pattern r. A permutation that
does not contain the pattern r is said to be r-avoiding.

We will for convemence switch from 1's and O's to dots and empty positions.

An r x A-rectangle with d dots is said to be extendably r-avoiding if it can
be extended with dots to the right and below the rectangle to form a r-avoiding
permutation matrbc. Figure 1 gives an example ofan 10 x 9 rectangle with 6 dots
that is extendably 213-avoidmg.

DEFINITION For a pattern r   5't and integers 0 < c?< r, fc, let Sr(r, fc, d) denote
the number of extendably r-avoiding r x k matrices with d dots. D

Note that there can be many different ways to extend the rectangle which does
not influence <S'r(r, k, d). See for example Figure 1, where in rows 6 and 7 we could
replace the grey dots with the dashed ones.
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FIGURE 1. An extendably 213-avoiding 10 x 9 rectangle with 6 dots.

The Catalan numbers and different refinements will be essential in both the results
and the proofs. We have collected a number of facts about them in an Appendix.

1.2. Results. The concept of extendably avoiding a pattern was first studied in
[EL] in connection with the essential set of a permutation. It was proved that the
number 532i(r, fc, d) was equal to the ballot numbers, a refinement of the Catalan
numbers. There is no evident reason why the ballot numbers occur m this context.
The present paper calculates the Sr(r, k, d) for the other five patterns r of length
three. There is a priori no reason to expect that any of these sbc formulae should
be equal and therefore it was a surprise when it turned out that there are not sue
diflFerent formulae for the sbc different patterns of length three but only two formiilae.
The only synunetry that wUl simplify our proofs is 5312 (r, k, d) = 5'23i(fc, r, d).
Theorem 1. 1 (Main Theorem). The number of extendably r-avoiding r x k rect-
angular matrices with d dots is:

r +k\ fr+ k^
d )~\d-\)'

1. for T = 321, 312, 231 and 132

S^r, k, d)=
2. for T = 123 and 213

S^^)^^C^)(r+^-'l}(k^-d\
^I^T '< s

where Cd(s, t) = (2drf_7-Y2 ) - (2d7-~it-2), ^ ^e dou(>^e 6aZZo( refinement of the Cata-
lan numbers, see Appendix.

Note that (r^) - (^) = Cr+k-d+i(r +fc- 2d+ 1) is a ballot number, a fact
we will use in the proofs later. One might think it is not surprismg that the ballot
numbers show up since they are a natural rejfinement of the Catalan numbers Cn =
£t=i Cn(t). However, we see no way m this context to sum up the ballot numbers
occurrmg here to obtam a Catalan number. Indeed, the extendably T-avoidiag
matrices are not a subset of r-avoidmg permutations. Another non-expected fact is
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that in case 1 the value only depends on r + fc and d. The proof is given in Section
2.

We can immediately deduce the following corollary.

Corollary 1.2. The number of r-letter words on the alphabet 1,... , n that can be
extended to a r-avoiding permutation is

+n) - fr +"), /or r= 321, 312, 231 anri 132

^Cr(t)(n+ ~r), for r =123 and 213

where Cr(t) is the ballot number.

PROOF Follows from the Main Theorem with r = d and n= k. a

In Section 3 we prove a general theorem for longer patterns iising the Sunoion-
Schmidt-West bijection [SS, Wlj.
Theorem 1.3. For any r   5'fc_2 we fcave

Si2r(r, k, d) = 52ir(r, k, d).

2. PROOF OF THE MAIN THEOREM

Case 321: The case r = 321 was proved in [EL].
Case 132: First we map to a 132-avoiding permutation matrbc of size r+k-d+2.

Given an r x fc rectangle R with d dots that extendably avoids 132, we add a
zeroth row with a dot in square (0, A; + 1), we add a zeroth coliunn with a dot in
square (r + 1, 0) and then we extend the rectangle with dots to the right and below
such that we obtain a 132-avoiding permutation matrbc of size r+ k - d+2 with
the dots m first column and first TOW as described, see Figure 2. Because of the
dots (0, k+1) and (r + 1, 0) there is only one way to do the exteiision and still be
132-avoiding.

There are Cr+k-d+2{k - d+l, r -d+l) such matrices, see equation (1) in the
Appendix. However we only obtain those which have d dots in the area corresponding
to R, which is the same as having zero dots in area B of Figure 2. It is easy to see
that if there is a dot m B then there is adot m (r+k - d+l, r + k-d+1). We
therefore have to subtract the number of 132-avoiding permutations TT   Sr+k-d+2
with TT(I) = fc+2, ?r(r + 2) = 1 and ?r(r+ fc -d+ 2) = r+fc -rf+ 2, which is
the same as the niunber of 132-avoidmg permutations TT G Sr+k-d+i with TT(I) =
fc + 2, Tr(r + 2) = 1, that is Cr+k-d+i(k -d, r-d). Hence we get,
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r

r+1

k -^̂
 ^ .

2?'

d dots

B

0 dots

increasing dots

r+k-d+1

increasing dots

FIGURE 2. The Case 132.

5l32(r, k, d) = Cr+k-d+2(k -d+l, r-d+l)- Cr+k-d+i{k -d, r-d)=

[ :')-^:)]-[(r:k)-(r:A)]=(r:t)-(;!t).
Case 312 and 231:

We study the 312 case. First we want to establish the following recursion.
Lemma 2. 1. For any r, fc, d wrt/i A; >d> 1 we Aave

d

S3i2(r, k, d) = 53i2(r, fc - l, d) +^ Ci^Ss^r -i, k- i, d - i).
!=1

PROOF Let R denote an extendably 312-avoiding r x fc rectangle with d dots. If
there is no dot m the first column of R then we can just remove it, this case gives
the first term. Assume the dot in the first column is m row i. Smce d < k, there is
an empty coliunn c which in the extended matrbc gives a dot below row i in. column
c. This means that rows 1,... , i - 1 must all have dots m R otherwise we could
not extend to a 312-avoidmg matrbc. By the same reasonmg the dots in these rows
must be in columns 2,... , ?' and form any 312-avoidmg permutation matrbc, there
are C',_i such. The other d-i dots must be ia the lower r-ixk-i rectangle which
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must be extendably 312-avoiding, there are 5'3i2(r -i, k- i, d - i) such. See Figure
3. a

c
i-1 no dots

no dots ^(r-i, k-i, d-i)

FIGURE 3. The Case 312.

We want to show that 5'3i2 (r, k, d) = Cr+k-d+i (r+k-2d+l) and plugging this
mto Lemma 2. 1 we get recursion (2) in the Appendbc. We are done by mduction
over fc, if we prove the theorem for k= d.

Lemma 2.2. For any r, d ̂  1 we have
d r

S3i2(r, d, d)=J^Ci^S3i2(r-i, d-i, d-i)+ ^ 8312(1 - l, d - l, d-1).
i=l i=d+l

PROOF Let R denote an extendably 312-avoiding r x d rectangle with d dots.
Assume the dot in the first column of R is in row i. Ifl <? < dwe argue as in the
proof of Lemma 2. 1 and get the &st sum. 1£ d <i <^r then there can not be any
dots in rows z + 1,... , r in J2 and there are 5'3i2(t - l, rf- l, d- 1) possibilities to
fill in rows 1,... , ? - 1 and columiis 2,... , d with d-1 dots. This gives the second
sum. D

By induction over d, wehave ̂ ^^i53i2(z-l, d-l, ri-l) ='^, i=d+}. Ci{i-d+l),
which by equation (3) in the Appendix is equal to Cr{r - d). We are once again in
the situation of recursion (2) m the Appendix and we are done by mduction.

Reflection of the permutation matrices m the mam diagonal gives <S'3i2(r, fc, d) =
S23i(, k, r, d) and since the formula for 53i2(r, fc, d) is symmetric in r and k we are
done also with the case 231.

Case 123 and 213: We will do the r = 213 case. r = 123 wUl then foUow from
Theorem 1. 3.

Let R denote an extendably 213-avoiding r x k rectangle with d dots. Assume
that there is a dot (2;, k) in column k and that there are s ^ 1 dots in R that are
in rows x + 1,... , r. Since R is extendably 213-avoiding, these s dots have to be
hi rows r - s +1,... , r. Similarly assume that there is a dot (r, y) m row r and
that there are t>l dots m R that are in columns y +1,... , k. Again, these t dots
have to be m columns k -t+ 1,... , k, see Figure 1 and 4. Note that becaiise R
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is 213-avoidmg all the dots in rows 1,... , x-l have to be in increasing order, and
similarly for the dots in columns 1,... , y - 1.

r-s+1

r-s rows with d-s dots

in increasing order

s rows with dots

k-t columns with d-t dots
in increasing order

t columns
with dots

FIGURE 4. The Case 213.

If we were to remove all empty rows and columiis of A we would get a 213-avoiding
dxd permutation matrbc. Vice versa we could start with a 213-avoiding permutation
matrbc with -^(d) = d-t and 7r(d - s) = d and construct an R by msertmg r-d
empty rows among the first r - s rows and k - d empty colmims among the first
k - t columns of R. Since we know that the dots in these rows and columns are
increasing, this will preserve the property of being extendably 213-avoiding. In this
way we construct Cd(d-s, d- t)^~_s^ (^). Substitute variables and we have the
the double sum

EE^<r+:-d)C+:-d).
Which R have we missed? All those that have no dot in the last column or no

dot m the last row or a dot in (r, k). That is all cases when all the dots have to be
m mcreasing order. This gives a total of (^) (^).

The Main Theorem is proved. D

3. THE BlJECTION

In this section we will define a bijection that will prove Theorem 1.3. We are usmg
the bijection between permutatioas avoiding 12r and permutations avoidmg 21r in
[Wl], which was inspired by the bijection in [SS]. We are brief m our description
and the intrested reader is referred to [Wl, BW] for more details.

First some definitions. Assume we are given the pattern r   5( and an extendably
r-avoiding r x fc-rectangle R with d dots. If r(t - 1) < r(<) then J? can be extended
to a r-avoiding permutation TT with ?r(r+ 1) > 7r(r+2) > ... > 7r(r + k - d)
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whereas if r(< - 1) > r(<) then R can be extended to a r-avoiding permutation TT
with 7r(r 4-1) < 7T(r +2) < ... < ^(r + fc - ri). Similarly we can always extend R m
columns k +1,... , r+k-d with either increasing or decreasing dots. We will call
this extension of R the standard extension.

With a partition A=(Ai ^A2 ^ ... > A, ) we associate a Ferrers board which
has top row of length Ai, second row of length As etc.

We now need to extend the concept of containmg a pattern to Ferrers boards. We
say that A contains the pattern r   6't if there are rows l^ri <rs < ... <r< <s
and columns l<ci < ... <C( ̂ Ai such that the restriction of A to these rows and
coluniiis form the permutation matrbc of T and that every square (rj, c;) falls within
the board. Let 5r(A, s) be the number of r-avoidmg ways to fill m s dots on A.

Also define a partial order on partitions byA=(Ai ^ As > ... > As) <term P =
{f-ll >. P2 >. .. . >. P-s) if ̂ i <: P-itoT aD. 1 <:i < S.

With these definitioiis we have the following lemma.
Leinma 3.1. Given A=(Ai >A2 > ... >AA > 1) with Ai = s then

1, t/A^term (s, 5-l,... , 3, 2, 1)5i2(A, s)=52i(A, s)=
.

0, otherwise

PROOF See [BWj. D

BIJECTION [essentially due to West] Let TT e Sr+k-d be the standard extension of
a 12r-avoiding r x k pennutation matrbc R with d dots. A square {i, j) in the
permutation matrbc TT will be called dominant if the pattern r can be found among
the dots in rows i +1,... , r + k- d and coliunns j +1,... , r+ k - d. Note that
the set of dominant squares fonn a Ferrers board X. Let D(TT) be the dots in TT
that are in dominant squares. D{7r) mcludes only dots in R, since we have choosen
the standard extension. Restrict A to the rows and columns that contain a dot in
Z?(7r) and get a new board A'. If \' is empty then we do nothing. If it is nonempty
we know by Lemma 3. 1 that the dots have to be in the one and only 12-avoidmg
way to fill the board which we map to the only 21-avoidmg way to fill m the board.
Do the correspondmg change of dots m R and the bijection is done. It is clearly
well-defined since the entire change of dots takes place within R. D

4. APPENDIX: CATALAN NUMBERS AND BALLOT REFINEMENTS

A huge amount of mathematical objects, see [St], is eniimerated by the Catalan
numbers 1, 1, 2, 5, 14, 42, 132,... Cn = (2^) - (n2-"i)- One important mstance is
pattern avoiding permutations. It is a well known theorem that this is the Catalan.
nuinbers for every pattern of length three, see e.g. [K] or [SS].

There are several diflFerent interestmg refinements of the Catalan numbers. One
is the ballot numbers Cn(t) which we may define as

Cn{t) = ]{7r 5'n : TT is 213-avoidmg and 7r(t) = n}|.
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Reflecting the permutation matrbc in the main diagonal we see that we could
replace TT(*) = n with 7r(n) = t. The same refinement can be found for all sbc
patterns of length three. Some readers might recogmze Cn(t) as the number of
Dyck paths (i. e. paths from (0, 0) to (2n, 0) with steps (1, 1) and (!, -!) that do
not go below the x-axis) with last peak of height t.

Lemma 4.1. The ballot number Cn(t} = (2^-tt-l) - QZ^}-
PROOF Induction over n. Given a 213-avoiding permutation TT   5n we want to
expand this to a 213-avoiding permutation TT' e 5n+i by defining

v{i) ifi<x
7T'(t)='{n+l \!i=x

TT^-l) l{i>X,

for some x. It is clear that this is possible if and only if v(t) =n, t>x-l. Hence
= V^" . /7-^t = Vn - /.2n-t-l^ _ ^n-t-l^ _ (2n-x+l\ _ f2n-x+l>(x) = L.t=x-l unW = L.t=x-l {"n^t ̂  ~ [~n-t-l) == {"n-^l) ~ Fn-^^-

D

That the same refinement exists, for the appropriate statistics, is clear by sym-
metry for 132, 312 and 231. It is also true for 123 and 321, but a slight adjustment
of the proof is necessary, see for example [W2].

We are also concerned with a double refinement of the Catalans.

Cn(s, t) = |{TT  5'n : TT is 213-avoidmg and 7r(s) = n, Tr(n) = t}[.

I have not seen these numbers discussed in print, but I am sure that they and the
lemma below have been rediscovered plenty of times. For example, they also count
the number of Dyck paths with first peak of height t and last peak of height s.
Leinina 4.2. For 1< s, t <n we have

_ f2n-s-t-2\ _ ftn-s-t-2\
^S, T) = ^n-t-t ~) ~ {'n-s-t-H-

Cn(s, n)=Cn(n, t)=0 and

Cn(n, n)= 1.

PROOF Similar to the proof of Lemma 4. 1. D

Again it is by symmetry clear that the correspondmg refinement exists for 132, 312
and 231. In this paper we need

Cn{s, t) = |{TT  5n :TT is 132-avoiding and 7r(n +1 -s) = 1, 7T(1) =n+l-t}\.
(1)

It is not immediate that the same is true for 123 and 321, but m fact we have the
following that is even stronger.
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Lemnia 4.3.

Cn(s, t) = \{TT e. Sn: TT is ISS-avoiding and 7r(s) = n, v(n) = t}\
|{TT £ 5'n : TT is ISS-ovoiding and v(s) = l, 7r(l) = t}\.

PROOF Omitted. D

s\t s\t 5V|| 1 |2| 3

TABLE 1. Tables of C'3(s, f), C'4(s, t) and Cs(s, t).

We also need the followmg two recursions.

The ballot number Cn(t) satisfies
n-t

Cn{t) = Cn^{t - 1) + ̂ ; C',_iC', _, (f). (2)
i=l

The perhaps easiest way to see this is to think of the Dyck paths where (2i, 0) is the
first place the path hits the x-axis.

For every n> 2, s >0 we have

^C^{i)=Cn+, {n-l). (3)
i=2

This recursion is easily proved using Lemma 4. 1. ^^3 Ci+s(i} = S?=2 (2S+5 ) -
^n (2s+i-l\ _ fts+n\ _ (2s+l\ _ f(2s+n\ _ C2s+t\-\ _ f2a+n\ _ fts+n\
Z^»=2 \. s-1 / ~ (s+l)~ ^s+l) ~ i\ s ) ~ ( s }\~ ^s+l) ~\ s ).
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