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Abstract

The aim of this work is to count subgroups of a given index in the funda-
mental group of an orientable S'-bundle over a compact surface. The number
of subgroups of index n turns out to be independent of the orientability of the
base surface, closed or bordered, and is expressed as a linear combination of the
numbers of surface subgroups.

Résumé

Le but de cet article est de calculer le nombre de sous-groupes d’indice
donné dans le groupe fondamental d’un fibré en circles sur une surface com-
pacte. Nous prouvons que le nombre de sous-groupes d’indice n est indépendant
de I’orientabilité de la base lorsque celle-ci est une surface fermée ou a bord.
Le nombre des sous-groupes est exprimé comme une combinaison linéaire des
nombres de sous-groupes du groupe fondamental de la base.
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1 Background

1.1. Recall some known facts from algebraic topology. (cf., e.g., [Ma91, Ch.IV]).
There are three types of connected compact surfaces. Let 8, denote a closed orientable
surface of genus g > 0, X, a closed non-orientable surface of genus p > 1 and D, a
bordered surface of characteristic x = 1 —r, r > 0. In the first two cases, the Euler
characteristic is, resp., x = 2 — 2¢ and x = 2 — p. D, presents, in fact, a family of not
homeomorphic surfaces, orientable or not. The simplest one is a 2-disc with r holes.
Let M, M’ and N be connected manifolds. Two (unbranched) coverings p : M — N and
p': M' — N are said to be equivalent if there exists a homeomorphism 1 : M — M’
such that p = p’ on.

The equivalence classes of n-sheeted covering of N are in one-to-one correspondence
with the conjugacy classes of subgroups of index n in the fundamental group m;(N).
This makes natural the investigation of subgroups of fundamental groups and, in par-
ticular, the enumeration of them.

Denote I'; = m,(8,) and @, = 7m,(X,). Furthermore, m(D,) = F,, the free group of
rank 7.

The number of subgroups of a given index in the free group F, was determined by
M. Hall in 1949 (see formula (2.14) below). An explicit formula for the number of
conjugacy classes of subgroups of a given index in F, was obtained by one of the
authors [Li71] (see also [Li98]). Both problems for the group I', were completely solved
by the second author in [Me79] and [Me83], respectively. For @, they were solved
in [MP86].

In the present work we extend the developed technique to some 3-manifolds.

Our aim is to find the number of subgroups of a finite index in the fundamental group
of the orientable S'-bundles over a compact surface, or, in other words, of the three-
dimensional Seifert fibre spaces without exceptional fibres [Sc83]. We restrict ourselves
to the orientable Seifert spaces. There are four types of such spaces [FM97, Th.10.1]:
in the ordinary notation introduced by H. Seifert, these are the types (O,0) and (O,n)
over a bordered or closed base surface.

The structure of an orientable S'-bundle over a surface with non-empty boundary
is completely determined by the base surface. In the closed cases, such a bundle is
determined, up to fibre preserving homeomorphism, by its base surface and one more
parameter e called its Euler number ([FM97, Th.10.3], cf. also [Sc83, §3]). In our cases,
e may be an arbitrary integer.

1.2. As is typical for enumerative and other combinatorial questions about subgroups,
we rely upon the well-known interconnection between subgroups of a group and its
transitive permutational representations (cf., e.g., [Lu95]). However, one feature of the
present approach looks, possibly, somewhat unusual: we do not make use of the ordi-
nary recurrence relation between the number of transitive representations and that of
arbitrary ones (or, equivalently, the logarithmic formula in terms of the corresponding
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generating functions). Instead, the transitivity constraint combined with commutati-
vity conditions make it possible to manipulate within centralizers of regular permuta-
tions. Owing to this, we find the number of subgoups by applying results and adapting
our approach developed in the above-mentioned papers; a slight generalization (“anti-
commuting”) is required, moreover, for non-orientable base surfaces. The key idea in
the closed cases is to present all additional restrictions in the form of systems of linear
congruences modulo ¢, the order of the regular permutation. For the problems under
consideration, these systems, non-homogeneous in general, prove to be uniform, 1.e.
they possess an equal number of solutions.

The number of subgroups of index n for the four types of Sl-bundles is expressed
uniformly as a linear combination of the numbers of surface subgroups of index m =
n/l, £|n. The corresponding coefficients prove to meet the following pattern:

g-xm+1 1 for orientable bundles over bordered surfaces (1.1)
? or 0 for orientable bundles over closed surfaces. '

Non-vanishing the last factor in the second case depends on n, ¢ and the Euler number

¢ of the bundle. In both cases, the results prove to be independent of the orientability
of the base surface.

2 Definitions and preliminary results

Below, Mg(n) denotes the number of subgroups of index n in a group G.
A. Permutations

S, := S(V) denotes the symmetric group of permutations actingon aset V' := Vi, Vol =
n (usually V, = {1,2,...,n}). We distinguish one element v € V (e.g., vo := 1) and

call it the root. 1 = 1, stands for the identity permutation. We denote by v" the result

of applying a permutation % to an element v.

For enumerative aims, it is convenient to express some known, or easily provable,

properties of permutational representations of finitely presented groups in terms of

permutation tuples. In fact, both languages will be used interchangeably.

2.1. Definitions. 1. An r-tuple of permutations @ = (a1, as,...,a.) where a; € Sy,
i=1,2,...,r, is called a transitive permutation r-tuple of degree n (or simply a transi-
tive tuple) if the permutation group A = (a1, az, .. ., a,) generated by them is transitive.
2. A permutation is called regularif it consists of independent cycles of an equal length.
3. If two r-tuples of permutations a = (a1,a2,...,a.) and b = (b1, b2,...,b.) are
conjugate element-wise by a common permutation h € Sy, that is,

bl =by, 4= LZceo (2.1)

then they are called similar (by h). We write b = hah~!. If, moreover, one can find
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h € S, that meets equality (2.1) and leaves the root v fixed, then the tuples @ and b
are called root-similar.
4. Ifb=ain (2.1), i.e. a; commute with A:

hah ™t =a;, i=1,2,...,r, (2.2)
then the tuple a is said to commute with k. If, instead, '
hmh=wa; 1=12...,7 (2.27)

or, equivalently, a;ha;! = h™!, then q; and a as a whole are said to anti-commute with
h. More generally, “semi-similarity” between a and b is defined with respect to A by
the rule

Bah ™ =8y 1=1,2,vu:;7; (21:t)
given a vector (e1,€3,...,¢&,) where all &, = 1. The tuple a is said to semi-commute
with A if

ha;h " =a; 1=12...,r (2.2%)

The next simple statement is crucial in what follows.

2.2. Lemma. A permutation h with which a transitive permutation tuple semi-commutes
s reqular. '

PROOF. Let a tuple @ semi-commute with A. By (2.27), if a permutation anti-
commutes with A, it anti-commutes with all powers of A. A permutation is regular if
and only if all its non-identity powers are point-free. Therefore it suffices to prove that
h =1 whenever v* = v for some v € V.

Suppose that permutations ¢ and b anti-commute with k. Since a anti-commutes
with ™! as well, we have ah™'a™! = h and bhb~' = h~!. Substituting A~! from the
second equality into the first one, we obtain abhb~'a~! = h, i.e. ab commutes with A.
Likewise, if ¢ commutes with k, then ac and ca anti-commute with k. Therefore the

group A = (aj,az,...,a,) consists of permutations which commute or anti-commute
with A. By transitivity, for an arbitrary w € V, there exists a € A such that w* = v.
Then aha™! = h® where ¢ = 1. Hence, w** = w**™ = ph™" = 427" = . That is,
wh = w. O

2.3. Lemma. For any group G, Mg(n) = |Tg(n)|/(n — 1)! where Tg(n) denotes the
set of transitive permutational representations of G of degree n.

The well-known interconnection between subgroups of a group and its transitive permu-
tational representations [Ha59, Ch.5] can be formulated for a finitely generated group
as follows (by abuse of notation we denote both the generators and their images in S,,
by the same variables a;):
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2.4. Proposition. Given a finitely generated group
Gz(al,ag,...,ar: R1 = 1,R2= 1,...),

there is a one-to-one correspondence between the subgroups of index n > 1 in G and
the root-similarity classes of transitive permutation r-tuples (a1,az,...,a,) of degree n
that satisfy the defining relations {R; =1}, j=1,2...

Specifically, a transitive permutational representation ¢ : G — S, corresponds to the
subgroup H, C G which is the preimage of the root stabilizer, i.e. H, consists of all
words whose images fix the root.

2.5. Centralizer of a regular permutation. Let h be a regular permutation of
degree n and order ¢; for definiteness, put

hi=he=(1,2,....,0¢+1,...,20)...(m=1){+1,...,7n) (2.3)
where m = n/f. Then the centralizer C(h) of h is the wreath product [Ha59, 5.9]
C(h) = Z¢1Sm

where 7, is the cyclic group meant as the additive group of residues modulo /.

2.6. Lemma. 1. Any permutation a that commutes with a regular permutation h of
order £ and degree n = fm can be uniquely written in the form
a=(c1,Co---,Cm;0) (2.4)

where ¢; = ci(a) € Zg, i =1,...,m, and @ € Sp. And conversely, any such permuta-
tion a commutes with h.

2 I b= [di,dgyss. ,dm;g) is another element of Zy1 Sy, then

ab = (¢; +dya, s + daa, . -y Gy + dia; BD). (2.5)
Furthermore,
a~! = (—cpam1, ~Coa=15. 0+, —c a-1;07 ). (2.6)
In particular, al=a"1

3. Ifa € C(h) is a reqular permutation, then @ is also regular. In particular, h =
(1,...,1;1,,) (so that, h =1) and 1, = 0,...,0;1,,).
4. If permutations ay,as, . ..,a, commute with h and form a transitive tuple, then the
tuple (ay,az, ..., a,) is also transitive.
From formulae (2.5) and (2.6) we obtain immediately (since (j‘ig’)‘i—l = jabah)

aba—l == (Cl + dla = Clai,a—l 9 C2 ‘l" d2& - Czaf)a—l gy Cm + dma = Cm&i,a—l ;a,b\a_l) (27)
and for the commutator [a,b] = aba™'b71,

~

(0,8 = (¢, + dya — Cpatat — dyaiys- o5 € + A = Cpsinmt — dais [@:8). (28)
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Important for the sequel is the following.

2.7. Lemma [Me83]. Let a = (aj,as,...,a,) be a transitive permutation tuple of
degree m. Then the linear system of m equations in mr unknowns

1 2 2 — S =
Ti = Lioy + 27 =Ty + .ot 2t =5, =0, j=1,...,m,

has rank m — 1.

2.8. Anti-commuting. Let C~(h) denote the set of permutations that anti-commute
with a regular permutation h. As is clear from the proof of Lemma 2.2, C(h)UC~ (k) is
the group of permutations that commute or anti-commute with A. Therefore C~(h) =
C(h)q where ¢ is an arbitrary permutation anti-commuting with A. It is possible to
select, as such, an involution preserving all cycles of h. Namely, if

b= (Ul,la V1,25 -- .,'01,() o (Um’l, Um,2y -+ ,vm’g),

then we may put ¢ := g, € C~(h) where g, is defined by

v ;" =vie_jp1 foralli,j. (2.9)
2.9. Lemma. 1. Any permutation a that anti-commutes with a reqular permutation h

of order { and degree n = fm can be uniquely written in the form

a=(c1,C2,...,Cn;a)qn (2.10)
where ¢; = ¢;(a) € Zy, 1=1,...,m, and @ € S,,. And conversely, any such permuta-
tion a anti-commutes with h.

2. Also,
(c1,€2,- -, Cm; @) = qu(—c1,—C2, ..., —Cm; Q). (2.11)

B. Fundamental groups

2.10. Closed surfaces. The fundamental groups I'; = m(§,) and @, = m(X,)
(see 1.1) possess the following well-known presentations:
g

Fg = (ai,bi : H[ai,bi] = 1, = 1, 3.3 @ ,g> (212)

1=1

(this is trivial for g = 0) and
& =(a;: [[al=1,i=1,....,p), p>1. (2.13)

2.11. Subgroups of free groups. According to Proposition 2.4, the number Mg, (n)
of subgroups of index n in the free group F, is equal to the number of root-similarity
classes of all transitive r-tuples. Therefore by the well-known general method of coun-
ting connected combinatorial objects, one can obtain the following famous recurrence
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formula of M. Hall [Ha59, Th.7.2.9] (see also [St98, Ex.5.13(a)]):
n—1

Mp,(n) = n(aly = = S ((n = M (1), Mr(1) =1 2.14)
t=1
2.12. Subgroups of surface groups. According to [Me83] (cf. also [Me88)),
Mr,(n) = R,(n) (2.15)
where v = 2¢g — 2,

R,,(n):nz(_lt)tﬂ S BB B (2.16)

$=1 i) tig+-+ig=n
i1 52 rip 21

Bx = z (k!/ M) Dy is the set of all irreducible representations of the symmetric

AED;
group Sy and f®) is the degree of the representation A.

Also [MP86], for v = p — 2,
Ms,(n) = Ry(n). (2.17)

9.13. Circle bundles. Let B be an orientable Seifert 3-manifold over a compact
surface F. Its fundamental group can be presented as follows [FM97, Prop.10.4].

o If F is an orientable surface of genus g with k > 1 boundary components, then
m1(B) = (a;, b, dj, h ﬁl[ai,bi] _kldj =1, a;hai? = h, bhb;t = h, d;hd;t = R). (2.18)
i= =

Here the characteristic y = 2 — 2g — k.
o If F is a non-orientable surface of genus p with k£ > 1 boundary components, then
m(B) = (ai, dj, h : ﬁla? ﬁldj =1, asha; = k7Y, djhd; = R7Y). (2.19)

=1 j=
Here the characteristic x =2 —p — k.

e If F is the orientable closed surface S, of genus g > 0 and e € Z is the Euler
number of the bundle B, then

g
71'1(3) = (ai,bi,h : H[ai,bi] = he, aihai'l = h, bJLbl_l = h> (220)
1=1

e If F is the non-orientable closed surface X, of genus p > 1 and e € Z is the Euler
number of the bundle B, then

P
m(B) = (ai, h: [ a? =k, asha]' =h7). (2.21)

=1
In these presentations, the index 7 ranges over the interval [1, 9] in the orientable cases
or [1,p] in the non-orientable cases, and j ranges over [1,%] in the bordered cases.
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3 Bundles over bordered surfaces

3.1. Theorem. Let A = A, denote the fundamental group of an orientable S*-bundle
B over a bordered surface D, of Fuler characteristic x = 1 — r. Then the number
Ma(n) of subgroups of index n in A is given by the formula

Ma(n)= > Mg (m)et=1m+t (3.1)

m|n,fm=n

Proof (sketch). Suppose that the base surface A, of the bundle B is orientable and
its boundary consists of £ > 1 components. Now, A, is the group presented by (2.18)
where the genus g meets the equality r = 2g + k — 1. After renaming the generators
appropriately we obtain the following presentation:

A, ={ai,h: ashai' =h; i=1,...,r) = F. x Z. (3.2)

Let T ,(n) denote the set of all transitive (r + 1)-tuples (a1, as, ..., a,,k) of degree n
such that all a; commute with 2. Then by Lemma 2.3, Ma(n) = |T}(n)|/(n — 1)L
Consider a tuple (ay,as,...,a-,,h) € T} (n). Since h commutes with itself as well,
by Lemma 2.2 it is a regular permutation. Let ¢ denote its order and m = n/{. By
Lemma 2.6 we may write a; = (ci,cb,...,c;@), ¢ = 1,2,...,r. Here c§ may be
arbitrary elements of Z, while (d;,a5...,4,) is an arbitrary transitive tuple of degree
m. Due to this fact, we come easily to (3.1).

The arguments for non-orientable base surfaces are similar. The only difference is
that the appropriate tuples (a7,...,a;) anti-commute with h (in fact, such tuples

bijectively correspond to the tuples (ay,...,a,) of the orientable case). O

4 Bundles over closed surfaces

4.1. Theorem. Let © = OF denote the fundamental group of an orientable S*-bundle

B with Euler number e over a closed surface F of Euler characteristic x = —v. Then
the number Meo(n) of subgroups of indezx n in © is given by the formula
Mo(n)= > R,(m)*m+ (4.1)
Fintom

where R,(n) is the number of subgroups of index n in the fundamental group m(F)
determined by formula (2.16) and (e,n) denotes the g.c.d. of the numbers e and n.

PROOF. (A) Let the base surface be orientable of genus g: F = §, where v = 2g — 2.
Now the group © is determined by presentation (2.20).

Expression (4.1) is trivial for g = 0, so that suppose g > 0. Let U’g:_fl)(n) denote the
set of all transitive (2g + 1)-tuples (ay,b1,...,aq,by, h) of degree n such that all a;, b;
commute with A and the equality

[a1,b1] ... [ag,by] = R® (4.2)
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is valid. By Lemma 2.3,
Mo (n) = T3 (n)l/(n — 1)\, (4.3)

Consider a permutation tuple (a1, b1, ... ,a4,04,k) € ‘J'gfl)(n). Since h commutes with
itself as well, by Lemma 2.2 it is a regular permutation. Let £ be its order and m = n/{.
By Lemma 2.6 we write

ai:(c1i7c§7""cin;d;)7 bl:(d1i7d227"'7d’lﬂl;b/\l)’ i:172""’g’
and
B = 8,00 058 m)
where cé, dé- € Ly, G;, 5: € S,, and € is the residue of e modulo 4.
For reducing long expressions we will write (c;) instead of (c1,ca, .- .,Cm) and so on
with j standing for the ‘generic’ subscript.

Applying multiplication formulae (2.5) - (2.8) repeatedly we obtain

[al’bl] i o [awbg] = (le'al + d;ﬁl - cl'*u - d;% +- cjﬁg + dgﬁg — €y — sy

B X e I (4.4)
[al’bl]"'[agvbg])
where o; = §i—1, Bi = 6im1di, i = i—16;b;@ " and 5i=5i-1[6§,5;']f0ri=1,2-,--'-9a

Wlth 50 = ﬂm.
Substituting permutations a; and b; into equation (4.2) we obtain by formula (4.4), the
following system of m linear equations in the group Zg:

C;al + d;ﬁl — c}ﬂ — d}él 4ot Cjag + df-ag — cjw - djég = e (mod ¢), (4.5)
j=1,...,m, and one equation in the group Sn,
[@,61]. - (@5, 8] = 1. (46)

Note that, given a regular permutation &, the tuple (a1,b1,.. ., aq, by, h) belongs to the
set ‘3‘(+’e)(n) if and only if the elements a; = (ci,...,c\,;a) and b; = (dj,.. diiby)

2g9+1
satisfy jointly the system of equations (4.5) and (4.6), and moreover, the 2g-tuple
(@3,b1,--.,dy,by) is transitive. Indeed, the presence of h =(1,...,1;1,,) ensures the

transitivity (i.e. belonging to the same orbit) inside each £-block and does not affect
interconnections between the £-blocks.

Now, the number of transitive 2g-tuples (a1, by ... g, 5; ) satisfying commutator equa-
tion (4.6) is equal to (m — 1)!Mr (m).
Equations (4.5) form almost the same system that was used in [Me83] for the count of
n-coverings of §,, except that now it is in general non-homogeneous. From Lemma 2.7
it follows easily (see [Me83]) that for any transitive tuple (d],l;I ...,@;b;), the rank
of (4.5) is equal to

m— 1. (4.7)

This means that just one nontrivial linear combination of the left-hand parts, namely,
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their sum is identically equal to zero. This ensures the following necessary and suffi-
cient condition that the system of equations (4.5) be solvable:

me = 0 (mod ¢). (4.8)

It is clear that, given a transitive tuple (aj, by yenn ,(z;,l;;, ), if €,£ and m meet congru-
ence (4.8), the number of solutions of the system of equations (4.5) modulo £ is equal
to £29m=(m=1) Thus, h contributes (m — 1)!Mp, (m)¢?™=(™=1) tuples into ngfl)(n)
if (4.8) holds and it contributes nothing otherwise. Summing over all n!/(£™m!) regu-
lar permutations and all admissible m we obtain

Tl = Y (m—1)!Mp (m)e*emtmY

m|n, fm=n
me=0(mod £)

n!
{mm!’

(4.9)

The conditions £ |n & £|me where m = n/{ are equivalent to £? |n?® & £? | ne, which
in turn are equivalent to £2|n - (e,n). Hence in view of (4.3) and (2.15), formula (4.9)
turns into (4.1).

(B) Now let the base surface of the bundle B be non-orientable of genus p: F = X,
where v = p — 2. The group O is determined by presentation (2.21). In accordance
with it, let ‘J’If,:_’le)(n) be the set of all transitive (p + 1)-tuples (aq,...,ap,, k) of degree
n such that all a; anti-commute with -~ and the equality

a3a3...a = h° (4.10)

is valid. By Lemma 2.3,
Meg(n) = T53(n)]/(n — 1) (4.11)
Consider a permutation tuple (ai,...,ap,h) € ’J’Z(,:_I (n). Since all a; anti-commute

with A and h commutes with itself, it is a regular permutation (Lemma 2.2). Let ¢ be
its order and m = n/{. By Lemma 2.9,

a;= (¢, chy...,c ;@ )qn, 1=1,2,...,p, (4.12)
and
h® = (€,...,61%)
where cz € Zy, a; € S,, and € is the residue of e modulo 4.
By formulae (2.11) and (2.5), we have

5 pd.d . . e
ai =(c},¢ch, - e )gn gr(~—c1, —Coy- -+ y —Crn5 i)
= (c}, €5+, m’al)'( A TR Y 2
L . ST

= (¢} — Cla;, Ch — Chagy. . € — Chars @3 7),

whence
2 2 _ (pl _ 2 2 ~2 2

8oy = (€. —€, +Ths —Cop, +ooo+ s e —Fp e @Gy ). (4.13)

J 7% 74 7%1%2 i1 %1 U %1%

Substituting (4.12) into equation (4.10) we obtain by formula (4.13), the following
system of m equations in the group Zg:
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A—ct 4ty s P e, = e(modd), j=1,...,m, (4.14)
J jal jal.ap_l Jul--ap_lap

and one equation in the group Sp,

Bty =l (4.15)
Note again that, given a regular permutation &, the tuple (ai, - .., ap, h) belongs to the
set 7;(9;16)(”) if and only if the elements a; = (c},. .. ,ct s a; ) satisfy jointly the system
of equations (4.14) and (4.15), and moreover, the p-tuple (@i,...,ap) is transitive. Just
as in the above cases, the presence of h = (1,..., 1;1,,) ensures the transitivity inside

each /-block and does not affect interconnections between the ¢-blocks.

Now, the number of transitive p-tuples (d, ... ,Gp), satisfying equation (4.15) is equal
to (m — 1)!Mg,(m).

By Lemma 2.7, the rank of linear system (4.14) is equal to m — 1. This ensures the
following necessary and sufficient condition that the system of equations (4.14) be
solvable: me = 0 (mod £). But this is just condition (4.8) as above, and the remainder
of the proof is the same as in the part (A) due to formula (2.17). O

4.2. Corollary. 1. Me:(n), as a function of e, reaches the mazimal value if and only
if e =0 (mod n), and it reaches the minimal value if e = 1.

2. For v =0 and any e, Meo:(n) is a multiplicative arithmetic function of n.

5 Concluding remarks

1. Our method can also be applied to two types (out of the four), (N,0) and (N,n,I),
of non-orientable Seifert fibre spaces without exceptional fibres. But formulae
and their proofs are somewhat more combersome, although they are also inde-
pendent of the orientability of the base surface and meet a pattern similar to (1.1).
Furthermore, it is also possible to combine this approach with the technique de-
veloped by us previously and based on the enumerative Burnside lemma in order
to count the coverings of the corresponding 3-manifolds.

9 We do not know whether there exists a direct, “geometrical” interpretation of
the obtained simple reductive formulae and of their independence of the sur-
face orientability. In this respect it is interesting to note that the function
Mg, xz(n), which corresponds to the non-orientable fibre bundle X, x S*, dif-
fers from Mr,xz(n) = Meg(n) in spite of the equality Ms,(n) = Mry(n), p=2g
(see 2.12). On the other hand, the coefficients (1.1) can be interpreted as the
“lifting factors” for the corresponding surface subgroups.

3. According to [Li98], the assertion of Lemma 2.2 can be naturally reformulated as
the manifestation of the claim that the component-wise action of permutations
on transitive tuples by “semi-conjugacy” (2.1%) is orthogonal to their ordinary
action, which partially explains the simplicity of formulae.
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4. Me:(n) ~ R,(n) ~ 2n(n!)” as v — oco. Evidently, this is also valid as n — oo
for any e and v > 0. However, at present we do not possess a proof.

5. Let Ng(n) denote the number of conjugacy classes of subgroups of index n in a
group G. As was pointed out by R. Stanley [St98, Ex.5.13(c)], expression (3.1)
for the particular case (3.2) of the direct product F,. x Z is, in fact, equivalent to
the formula for Ng,(n) given in [Li71] (cf. [Li98]). This follows easily from the
general reductive formula [St98, (5.125)]

Mgxz(n) = »_ mNg(m)
m|n

valid for an arbitrary finitely generated group G.
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