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Abstract. Some recent results on homological and ring properties of formal power
series (including also skew power series rings and skew Laurent series rings) are exposed
from a unified point of view. The main lines of investigations: regularity conditions (to
be a regular, biregular or Abelian regular ring); hereditary properties (to be a reduced,
Rickartian or semihereditary ring); conditions on the lattice of ideals (to be a Bezout
or distributive ring).

Resume. Des resultats recent sur des proprietes d'homologie et d'anneau de series
formelles (incluant les anneaux de series formelles gauches et les anneaux de series
gauche deLaurent) sont presentes d'un point de vue unifie. Les principales directions
de recherche sont: les conditions de regularite (regulier, biregulier ou anneau Abelien
regulier); les proprietes hereditaires (reduit, anneau Rickartien ou semi-hereditaire); les
conditions sur Ie treillis des ideaux (un treillis distributif ou de Besout).

1 General Results

1. 1 Let y be an injective endomorphism of a ring A. We denote by Ae[[x, if]} the
left skew (power) series ring consisting of formal series ̂ ^o azxt of the variable ̂  with
canonical'coefRcients a, 6 A, where addition is defined naturally and multiplication is
defined by the rule 2;2a= (^2(a)a;!. __ .

The right skew (power) series ring Ar[[x y]\ consists of series E^o-ctat' and their
multiplication is defined by the rule ax' = xlyt (a).

The left skew polynomial ring Ae[x, <f\ C A^[[a;, ^]] and right skew polynomial ring
Ar[x, <f] C Ar[[x, y\] are the subrings of skew power series rings Ae[[x, y]] and Ar[[x, <^]],
respectively, consisting of the series with a finite number of nonzero coefficients

1 Let y be an automorphism of a ring A. Analogously, we define the left skew Laurent
series ring A^((z, y)) and the right skew Laurent series rmp Ar( (a;, ̂ )) consisting of
the series"/ sE^a,. E2 and g^ E.^n^t^> where m = m(/), n = n(ff) are^maybe,
negative) integ^and xfa = ^'(a)a;t in the left-side case, ax1 = xl^{a)m the right-
side case. It follows from the two last equalities that the set T = {xl}^o is a right
and left denominator set both in the ring Af[[x, y]} and in A, [[a;, <^]], and isomorphisms
(Ae[[x, y]])r ̂  A<((2-, y)), (A, [[a-, ̂ ]])T ̂  A, ((x, ̂ ) are directly verified.

The left skew Laurent polynomial ring Ae[x, a;-1, ̂  C A^((a;, ̂ )) and the right skew
Laurent polynomial ring Ar[x, x-\y\ C A, ((a-, ^)) are the subrings of skew^ Laurent
series rings A^((. r, <^)) and A, ((^, <^)), respectively, consisting of the series with a finite
number of nonzero coefficients.
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It follows from the equalities xia = (pi{a)x (for A^((a;, (^))) and ax' = xipt {a)
(for Ar((a;, <y2))) that the set T = {a;t}^o is a two-sided Ore subset both in the
rings Ae[x, x~l, (p] and Ar[x, x~l, ip], and isomorphisms (A^[a;, y])T ^ A^[. r, a;-l, y],
(A, [.r, ^])T ^ A, [.c,.r-l, y], (A^[[a;, y]])r ^ A^((a-, ^)), (A, [[a;, <^]])r ^ A, ((a;, ^)) are
directly verified.

If the series / belongs to one of the rings A^[[2;, y3 ]], Ar[[a-, <^]], A^((2;, <^)), Ar((a;, y)),
then we denote by /, and by C(f) the coeflRcient a,   A of a;1 in the canonical form of /
and the contentof f, (i. e., the ideal of A generated by all coefficients /;. ), respectively. If
apolynomialfif belongs to one of the rings Ae[x, y], Ar[x, y], Ae[x, x~l, (p], Ar[x, x~'l, y],
then we denote by deg(fif) the degree of g.

1. 2 Let y? be an injective endomorphism of a ring A, and let R = At[x, if\. Then
the following assertions hold.

(1) If A is a domain, then the rings R, Ar[x, y?], Ae[[x, 9?]], and Ar[[x, y\] are domains.
(2) If for any a   A, the right ideal (a+x)Rof R is an ideal of this ring, then ip is

the identity automorphism, and A is commutative.
(3) If A is a division ring, and one of the rings R, Ae[[x, (p\] is right uniform, then

if is an automorphism, and i? is a right and left principal ideal domain.

1.3 Let <f be an automorphism of a ring A. For every subset B of the ring A,
let us denote by B the subset of the ring A^((a-, y)) generated by all the series whose
coefRcients are contained in B. Then the following assertions hold.

(1) If B and C are right ideals of the ring A and B properly contains C, then the
right ideal B of the ring A^((a-, y)) properly contains C.

(2) If B is an ideal in A and Bn = 0, then B" = 0.
(3) A is a domain <^=^
A^((a-, y)) is a domain.
(4) If Ae((x, (p)) \s a semiprime ring, then A is a semiprime ring.
(5) If B is a minimal right ideal of the ring A, then -B is a minimal right ideal of

the ring Ae{(x, y)).
(6) If the ring A^((a;, (^)) is right Artinian (right Noetherian), then the ring A is

right Artinian (right Noetherian).
(7) A^({x, y)) is a semisimple Artinian ring <^==»
A is a semisimple Artinian ring.
(8) A is a division ring <==»
Ae((x, ip)) is a division ring.

1.4 Let (f be an automorphism of a ring A. If B is a subset of the ring A, then B
denotes the subset of the ring Ae((x, (p')) generated by all the series whose coefRcients
are contained in B.

A right (left, two-sided) ideal B of the ring A is said to be y-invariant if ip(B) = B.
A ring A is said to be if-prime if BC / 0 for all nonzero y-invariant ideals B and

C of the ring A.
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A ring A is said to be y-primitive if A has a maximal right ideal which does not
contain nonzero y-invariant ideals of the ring A.

A ring A is said to be y-reduced if a^(a) ^ 0 for every nonzero element a of the
ringA- .......

"Let ip be an automorphism of a ring A. Then the following assertions hold. ^
(1) 'If B is a proper ^-ideal of the ring A, then -B is a proper ideal of the ring

^(2) 'Let /= E^^ /i.c'   A^((^, ^)), where (/,   A) and fm is an invertible element

of the ring A.
Then the Laurent series / is invertible in the ring A^((a;, y)).
(3) A^ ((a;, y)) is a simple ring <^==^
A has no nonzero proper y-ideals.

1.5 Constructibility of the rational closure of the group ring of a linearly ordered
group in the Malcev skew field of series was shown in [18].

2 Regular, Biregular, and Abelian Regular Rings
2. 1 Normal, quasi-invariant, and invariant rings. All rings are assumed to

be associative and to have a nonzero identity element.
A ring is normal if all its idempotents are central.
A module M is quasi-invariant (invariant) if all its maximal submodules (all its

submodules) are fully invariant in M.
A ring A is right quasi-invariant (right invariant) <^==»
all maximal right ideals (all right ideals) of A are ideals ^=^
each cyclic right A-module is quasi-invariant (invariant).

2.2 A ring A is said to be regular if for any a   A, there exists b G A such that
a = a&a.

A ring is biregular if every its 1-generated two-sided ideal is generated by a
idempotent.

An Abelian regular ring is any ring A which satisfies the following equivalent con-
ditions.

(1) For any a   A, there exists 6   A such that a = aib.
(2) For any a e A, there exists b C A such that a = ba2.
(3) Every element of A is a product of a central idempotent and a unit.
(4) A is a regular reduced ring.
(5) A is a regular normal ring.
(6) A is a regular invariant ring.

2.3 ([50]) Let if be an automorphism of the ring A such that y" = 1 for some
positive integer n. Then the following conditions are equivalent.
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(1) Ae((x, y)) is a regular ring.
(2) A^((a;, <^)) is a unit-regular ring.
(3) A{{(x, y}) is a semisimple Artinian ring.
(4) A is a semisimple Artinian ring.

2.4 ([51]) Let ̂ p be an automorphism of the ring A. Then the following conditions
are equivalent.

(1) Ae({x, y)) is a biregular ring.
(2) Ae({x, (/;)) is a finite direct product of simple rings Ri,.. -Rn-
(3) A is a finite direct product rings Ai,.. ., An with the identity elements ei,.. ., £",

y?(e;) == g, for all i, and every ring A, coincides with any its nonzero (^-invariant ideal.

2.5 ([59]) Let 9? be an automorphism of an Abelian regular ring A such that y?(e) =
e for every central idempotent tf of the ring A.

Then A is a ^-reduced ring, Ai{(x, y)) is a reduced ring, all idempotents of the ring
Af((a;, <y2)) are central and are contained in A, and every nonzero right ideal of the ring
R contains a nonzero central idempotent.

2.6 ([50], [53]) Let y be an automorphism of a ring A, and let R =. A^((.c, <^)).
Then the following conditions are equivalent.

(1) R is an Abelian regular ring.
(2) R is a finite direct product of division rings.
(3) A is a (^-reduced ring, and R/J{R) is a regular ring.
(4) A is a finite direct product of division rings and y?(e) = e for every central

idempotent e of the ring A.

3 Reduced, Rickartian, and Seniihereditary Rings

3.1 ([60]) Reduced rings. A ring which has no nonzero nilpotent elements is
called a reduced ring.

Let ip be an injective endomorphism of a ring A. The following conditions are
equivalent.

(1) The ring Ae[[x, y\] is reduced.
(2) Af[x, ip] is reduced.
(3) Ar[[a;, (,£']] is reduced.
(4) Ar[a;, <]£'] is reduced.
(5) A is reduced, and ay?" (a) ̂  0 for any nonzero a   A and for any n ^ 0.
(6) A is reduced, and ipn (a)a ^ 0 for any nonzero a   A and for any n ^ 0.

3.2 ([53], [60]) Let if be an automorphism of a ring A. The following conditions
are equivalent.

(1) The ring A^((a;, y)) is reduced.
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(2) A{[x, x~l, y\ is reduced.
(3) Ar({x, ip)) is reduced.
(4) Ar[x, x~l, y] is reduced.
(5) A is reduced, and atf>n{a) + 0 for any nonzero a   A and for any integer n.
(6) A is reduced, and y" (a) a ^ 0 for any nonzero a   A and any integer n.

3. 3 Rickartian, semihereditary and flat modules. A module M is Rickartian
(resp. semihereditary) if all cyclic submodules (resp. all cyclic submodules) of M are
projective.

A module EA is flat if for any monomorphism of left A-modules u: Mi -). Mz, the
group homomorphism E® Mi-^ E ® M^'is a. monomorphism.

3. 4 ([60]) Let ̂  be an injective endomorphism of a reduced ring A such that
a^n^a) / 0'for any nonzero a   A and each n ^ 0. The following conditions are
equivalent.

(1) Af[x, (fi]is right Rickartian.
(2) Ae[x, y\ is left Rickartian.
(3) Ar[x, (fi\ is right Rickartian.
(4) Ar[x, <f\ is left Rickartian.
5) The annihilator of any finitely generated ideal in the reduced ring A is generated

by a central idempotent.
(6) A is right or left Rickartian.

3. 5 ([60]) Let (^ be an injective endomorphism of a reduced ring A such that
ay" (a) '4- 0 for any nonzero a 6 A and each n > 0. Then the following conditions are
equivalent.

(1) A^[[a;, y]] is right Rickartian.
(2) A^[[2;, y]] is left Rickartian.
(3) S = Ar[[a-, y?]] is right Rickartian.
(4) S = Ar[[x, y]\ is left Rickartian.
(5) The annihilator of any countably generated ideal in a reduced ring A is generated

by a central idempotent.

3. 6 ([54]) Let ̂  be an automorphism of a ring A, and let all 2-generated right
ideals of A{[[x, y]\ be flat.

Then the ring A is regular.

3. 7 ([60]) A module MA is countably m^ec^ue if every homomorphism BA -4' M'
where B is an arbitrary countably generated right ideal of A, can be extended to a
homomorphism AA -> M.

(1) There exists a commutative regular countably injective ring ̂  such that D is
not self-injective, and D is a factor ring of a commutative regular self-injective ring A.
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(2) There exists a commutative regular ring D such that D is & factor ring of a
commutative regular self-injective ring A, D has a countably generated ideal B such
that rD{B) is not generated (as an ideal) by an idempotent, and D is not self-injective.

3. 8 ([56]) Let y be an automorphism of a normal ring A such that y(e) = e for
any idempotent e G A. The following conditions are equivalent.

(1) All submodules of flat A^[[a;, yjj-modules are flat.
(2) All 2-generated right ideals of A^[[. z;, 9?]] are flat.
(3) All 2-generated left ideals of A{[[x, ip}] are flat.
(4) A is a Abelian regular countably injective ring.

3. 9 ([56]) Let ip be an automorphism of a normal ring A such that <^(e) = e for
any idempotent e 6 A. The following conditions are equivalent.

(1) The ring A^[[a;, <^]] is right semihereditary.
(2) A^[[x, y\] is left semihereditary.
(3) All 2-generated right ideals of A^[[a;, <^]] are projective.
(4) All 2-generated left ideals of A^[[a;, y>]] are projective.
(5) A is a Abelian regular countably injective ring, and the annihilator of any

countably generated ideal in A is generated by a central idempotent.

3. 10 ([60]) There exists a commutative regular countably injective ring D such
that D[[x]\ is a commutative distributive reduced Bezout ring, all submodules of flat
£'[[a;]]-modules are flat, -D[[.z'j] is not a Rickartian ring, and a classical ring ofquotients
of £)[[a-]] is not regular.

4 Bezout and Distributive Rings

4. 1 Distributive, uniserial and Bezout modules. A module M is said to be
distributive if the lattice Lat(M) of all its submodules is distributive, i.e., F^~}(G+H) =
F^\G+F{~}H for&\\ submodules F, G, and H of the module M.

A module M is said to be uniserial if any two submodules of the module M are
comparable with respect to inclusion.

A module M is called a Bezout module or a locally cyclic module if every finitely
generated submodule of M is cyclic.

4.2 ([58]) Let y be an injective endomorphism of a ring A. The following condi-
tions are equivalent.

(1) Af[x, if] is a right Bezout ring, and either A is right quasi-invariant or all anni-
hilator right ideals of A are ideals.

(2) A is Abelian regular, y is an automorphism, and Ae[x, x~l, (p\, A{[x, y] are
semihereditary reduced Bezout rings.

(3) A is Abelian regular, y? is an automorphism, for any idempotent e   A, the
equality y{e) = e holds, and e is central in A{[[x, y]].
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4.3 ([60]) For a ring A, the following conditions are equivalent.
(1) A[a;, a;-l] is a right distributive ring.
(2) A[a;, a;-l] is a right quasi-invariant right Bezout ring.
(3) A[x, x } is a commutative distributive Bezout ring.
(4) A is a commutative regular ring.

4.4 ([60]) Let y; be an injective endomorphism of a ring A. Then the following
conditions are equivalent.

(1) A{[x, y\ is a right distributive ring.
(2) A is a commutative regular ring, and y = 1.

4.5 ([54], [55], [57], and [58]) Let f> be an injective endomorphism of a ring A.
The following conditions are equivalent.

(1) A^[[a;, (^]] is a right distributive ring.
(2) A^[[a;, y]] is a right Bezout ring, and either A is right quasi-invariant, or right

annihilators of all elements in A are ideals.
(3) A^[[a;, (^]j is either a right distributive ring or a right Bezout ring, and A is

Abelian regular.
(4) A^[[a;, ()i3]] is a distributive reduced Bezout ring, and all submodules of flat A-

modules are flat.
(5) A is a Abelian regular countably injective ring, ip is an automorphism, and

y{e) = e for any idempotent e   A.

4. 6 ([55]) (1) There exists a commutative regular ring A such that A is not count-
ably injective, and the ring A[[a;]] is not right or left distributive.

Let T be a field, and let A be the ring formed by all eventually constant sequences
/ = (/n)^o of elements of T (for each (/n)   A, there exists a number N = N(f) such
that fn = /N for all n ~^ N). Then A is the requied ring.

(2) If A is the division ring of real quaternions, then the ring A[[x]] is distributive,
and the ring A[x] is not right or left distributive.

If A is the commutative regular ring constructed in (1), then A[x] is distributive,
and A[[x]] is not right or left distributive.

4.7 ([58], [60]) Assume that a ring A has an injective endomorphism y such that
y?(a) is a unit of A for any nonzero a   A. Set R = Ar[[x, if>]]. Then the following
assertions hold.

(1) A and R are domains.
(2) xnR C axnR and (a + xf}R = al? for any nonzero a 6 A, for each positive

integer n, and for any series f  : R.
(3) Let M and N be nonzero principal right ideals of R.
Then there exist two nonzero principal right ideals D and £" of A and nonnegative

integers m, n such that M = xmDR, N = xnER, and the equality M = N is equivalent
to the equalities m = n and D = E.
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In addition, M C N <==?> either m< nor m= n, Z5 C £-.
(4) If A is right uniserial (resp. right distributive, a ring with the maximum condi-

tion on principal right ideals), then R is right uniserial (resp. right distributive, a ring
with the maximum condition on principal right ideals).

(5) If A is a right uniserial right Noetherian domain, then R is a, right uniserial right
Noetherian principal right ideal domain.

(6) If a is a nonzero noninvertible element of the domain A, then Ra^~\Rx = 0.

4. 8 ([58], [60]) There exists a commutative uniserial principal ideal domain A
which is not a field, and A has an injective ring endomorphism y? such that <f(a) e U{A)
for all a   A\0.

In addition, the ring Ar[[x, 92]] = R possesses the following properties.
(1) jR is a right uniserial principal right ideal domain, and therefore, J? is a right

distributive right Noetherian right hereditary right Bezout domain.
(2) R is not left distributive, R is not left finite-dimensional, and R is not a left

Bezout ring.
(3) There exist two nonzero distinct completely prime ideals M. and N of R such

that N = MN C M C, J(R), N + NM C N, and R/NM is a right uniserial right
Noetherian principal right ideal ring which contains a nonzero nonmaximal nilpotent
completely prime ideal N/NM'.

(4) Multiplication of completely prime ideals of the right uniserial principal right
ideal domain R is not commutative.

In addition, there exists a completely prime ideal N such that A'' is not a finitely
generated left ideal, and R has an indecomposable right uniserial right Noetherian
factor ring R which is neither right Artinian nor semiprime.

4. 9 ([58], [60]) For an injective endomorphism ^ of a ring A, the following asser-
tions hold.

(1) Let A be an indecomposable ring A. Then
Ar[[a;, ip]] is a right distributive ring <^==>
A is a right distributive domain, and y?(a)   U(A} for any nonzero a   A.
(2) Ar[[3;, y]] is a right uniserial ring <==»
A is right uniserial, and (^(a) is a unit of A for any nonzero a   A.

4. 10 ([61], [62]) Let y be an automorphism of a ring A.
conditions are equivalent.

(1) A^((a;, y)) is a right uniserial ring.
(2) A^((a;, y)) is a right uniserial right Artinian ring.
(3) A is a right uniserial right Artinian ring.

Then the following
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