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Abstract

We give a quantum analogue of Sylvester’s theorem where the minors of a nu-
merical matrix are replaced with the quantum minors of the matrix formed by the
generators of the Yangian for the Lie algebra gl(n). We then use it to explicitly con-
struct the highest vectors and to find the highest weights of the so-called elementary
representations of the Yangian.

Résumé

Nous donnons un analogue quantique du théoreme de Sylvester ou on remplace
les mineurs d’une matrice numérique par les mineurs quantiques de la matrice des
générateurs du yangien a ’algebre de Lie gl(n). On l’applique pour la construction
explicite des vecteurs de plus haut poid et pour trouver les plus hauts poids des
représentations dites élémentaires du yangien.




0 Introduction

The classical Sylvester theorem provides certain relations between the minors of a
numerical matrix. A generalization of this theorem for matrices over an arbitrary
noncommutative ring was obtained by Gelfand and Retakh [5]. This result was used
by Krob and Leclerc [6] to find a quantum analogue of Sylvester’s theorem for the
quantized algebra of functions on GL(n).

In this paper we use a different approach based on R-matrix calculations to prove
a quantum Sylvester theorem for the gl(n)-Yangian Y(n) (Theorem 1.2). The first
part of the theorem provides a natural algebra homomorphism 7 : Y(r) = Y(n+m),
while the second part gives a quantum analog of the Sylvester identity where the
minors of a numerical matrix are replaced with the quantum minors of the matrix
formed by the standard generators of Y(n). The image of the composition € o 7 of
the homomorphism 7 with the natural epimorphism ¢ : Y(n + m) — U(gl(n + m))
turns out to be contained in the centralizer A = U(gl(n + m))®™ thus providing us
with a homomorphism Y(n) — A.

Let us now consider a finite-dimensional irreducible representation L(A) of the Lie
algebra gl(n + m) with the highest weight X and denote by L(A){ the subspace in
L(X) of gi(m)-highest vectors of weight u. It is well-known (see e.g. [3, Section 9.1))
that L(\)} is an irreducible representation of the algebra A and so, L(X)F becomes
a Y(n)-module which can be shown to be irreducible.

A different homomorphism Y(n) — A was constructed earlier by Olshanski [12,
13], and the corresponding representation of Y(n) in L(X)} was studied by Nazarov
and Tarasov [11]. It turns out that these two Y(n)-module structures on L(A)}
coincide, up to an automorphism of Y(n) (see Corollary 2.3). These modules play an
important role in the classification of the representations of Y(n) with a semisimple
action of the Gelfand—Tsetlin subalgebra; see [2, 11]. In particular, it was proved
in [11, Theorem 4.1] that, up to an automorphism of Y(n), any such module is
isomorphic to a tensor product of representations of the form L(A).

We explicitly construct the highest vector of the Y(n)-module L(A); and calculate
its highest weight. We also identify L(A)} as a module over the Yangian for the Lie
algebra sl(n) by calculating its Drinfeld polynomials; cf. [11].

1 Quantum Sylvester’s theorem

A detailed description of the algebraic structure of the Yangian for the Lie algebra
gl(n) is given in the expository paper [10]. In this section we reproduce some of those
results and use them to prove a quantum analogue of Sylvester’s theorem.

The Yangian Y(n) = Y(gl(n)) is the complex associative algebra with the gener-
ators tV #3 . where 1 < 7,7 < n, and the defining relations

[tij(u), tu(v)] = (trj(w)ta(v) — trj(v)ta(u)), (1.1)

u—v
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where
tij(u) = dij + tg')u_l +tPu?+ e Y(n)[[u )

and u is a formal variable. Introduce the matrix

T(u) =Y ti(u) ® Ei; € Y(n)[[u"']] @ End C",
1,7=1
where the E;; are the standard matrix units. Then the relations (1.1) are equivalent
to the single relation

R(u — v)Ty(u)To(v) = To(v)T1(u)R(u — v). (1.2)

Here Ty (u) and Ty(u) are regarded as elements of Y(n)[[v"']]® End C* ® End C", the
subindex of T'(u) indicates to which copy of End C* this matrix corresponds, and

R(u) =1- Pu”l, P= Z Eij ® E]'z' € (End(C”)®2.
2:5=1

The quantum determinant qdet T'(u) of the matrix T(u) is a formal series in u™"

with coefficients from Y(n) defined by

qdet T(u) = Y sgn(p) tpu)1(u) *+“to(ma(u — n +1). (1.3)
pGGn

The coefficients of the quantum determinant qdet T'(u) are algebraically indepen-
dent generators of the center of the algebra Y(n).

Introduce the series t3.77*(u) € Y(n)[[u™"]] where a;,b; € {1,...,n} by the fol-
lowing equivalent formulas

et () = Y 580(0) tagyb (u) -+ tagp (v —s +1)
UEGS

= Z sgn(o) talba(l)(u —s+1)--- tasbc(s)(u).
lACE

Tn particular, ¢ #(u) = tes(u). The series 575 (u) can be shown to be antisymmetric

with respect to permutations of the upper indices and of the lower indices; see [10].
Note that ¢ 17%(u) = qdet T'(u) by (1.3).
Proposition 1.1 We have the relations
min{k,1} _
(=1)P"1p!
tal ak tcx Cl s
RTINS X TR D (v k)

al...cjl...cjp...ak Cl"'ail"'a"ip"'cl c1 v Q ay - ag
E (t by - by (U)tdl - d (U) _tdl"'bil"‘bip"'dl(v)tbl"'d_”"‘djp"‘bk(u) .
1‘1<...<i?
51<+<Jp
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Here the p-tuples of upper indices (a;,,...,a;,) and (c;,,...,c;,) are respectively in-
terchanged in the first summand on the right hand side while the p-tuples of lower

indices (b;,,...,b;,) and (d;,,...,d;,) are interchanged in the second summand.

We may regard the series ¢ ;' ";"*(u) as matrix elements of certain operators in the

space C* ®@- - - @ C" with coefficients in Y(n)[[u~!]]; see [10]. To prove the proposition
we use a generalization of (1.2) for such operators [10].

The Poincaré-Birkhoff-Witt theorem for the Yangians (see e.g. [10]) implies that
the Yangian Y(n) can be identified with the subalgebra in Y(n + m) generated by
the coeflicients of the series t;;(u) with 1 < 7,7 < n. For any indices 1 < 7,5 < n
introduce the following series with coefficients in Y(n + m)

tii(u) = 1Tt (u)

and combine them into the matrix T(u) = (#;;(u)). For subsets P and Q of the set
{1,...,n + m} and an (n + m) x (n 4+ m)-matrix X we shall denote by X, the
submatrix of X whose rows and columns are enumerated by P and Q respectively.

Set A =41;s0u; )
Theorem 1.2 The mapping
ti(u) = ti(w), 1<4,7<n
defines an algebra homomorphism Y(n) — Y(n +m). Moreover, one has the identity
qdet T(u) = qdet T(u) qdet T(u — 1) 44 - - qdet T(u — n + 1) 4 4. (1.4)

The first part of the theorem follows from Proposition 1.1. The relation (1.4)
1s a noncommutative generalization of Sylvester’s identity and is proved by using
R-matrix representations of the quantum determinants; see [10].

2 Elementary representations of the Yangian

Here we use Theorem 1.2 to identify the elementary representations of Y(n) by con-
structing their highest vectors.

2.1 Yangian action on the multiplicity space

Let A = (A1,..., Anym) be an (n + m)-tuple of complex numbers satisfying the con-
dition A\; — Aiy; € Zy for ¢ = 1,...,n + m — 1. Denote by L()) the irreducible
finite-dimensional representation of the Lie algebra gl(n +m) with the highest weight
A. It contains a unique nonzero vector ¢ (the highest vector) such that

Egé = NE for 1=1,...,n+m,
Bgt=10 for 1<i<j<n+m.
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Consider the subalgebra gl(m) C gl(n + m) spanned by the basis elements E;;
with 7,7 = 1,...,m. Given a gl(m)-highest weight 4 = (u1,...,um) we denote by
L(A)} the subspace of gl(m)-highest vectors in L(A) of weight s

LN ={ne LM\ |Ein=mn for 1=1,...,m,
EZ'J'77=0 for ].SZ(]Sm}

The dimension of L(A)} coincides with the multiplicity of the gl(m)-module L(p)

in the restriction of L()\) to gl(m). The multiplicity space L(A)} admits a natural
structure of an irreducible representation of the centralizer algebra

A = U(gl(n + m))&™),
see [3, Section 9.1]. On the other hand, we have an algebra homomorphism
Y(n+m)—= Ugl(n+m)),  T(u)=1+Eu"", (2.1)

where F denotes the (n+m)x (n+m)-matrix (E;;); see e.g. [10]. Take the composition
of (2.1) with the homomorphism Y(n) — Y(n 4 m) provided by Theorem 1.2. Then
the image of the series tx(u) is given by

tkl(u) — qdet (1 + Eu_l)ckcl, (2.2)

where C; = {1,...,m,m + k} for k € {1,...,n}. Proposition 1.1 implies that the
image in (2.2) is contained in the centralizer A and so, we obtain an algebra homo-
morphism Y(n) — A. One can show (see [13]) that the Y(n)-module L(}); defined
via this homomorphism is irreducible. Following [11] we call it elementary.

2.2 Highest vector of the Y(n)-module L()\);

A representation L of the Yangian Y(n) is called highest weight if it is generated by
a nonzero vector  (the highest vector) such that

tre(w)C = Ap(u)C for k=1l,...,m,
tkl(u)(:O for 1<k<l<n

for certain formal series A\¢(u) € 1+ u"*C[[u™']]. The set A(u) = (A1(u),---,An(u))
is called the highest weight of L; cf. [4, 1]. Every finite-dimensional irreducible
representation of the Yangian Y(n) is highest weight. It contains a unique, up to
scalar multiples, highest vector. An irreducible representation of Y(n) with the high-
est weight A(u) is finite-dimensional if and only if there exist monic polynomials
Pi(v),..., Pa1(u) in u (called the Drinfeld polynomials) such that

Ak(u) _ Pr(u+1)
Ak+1(u) Pi(u) '

383



These results are contained in [4]; see also [1, 8].
Forall a € {m +1,...,m 4 n} introduce the following elements of U(gl(n + m))

sie= D EiEii- Ei i Bia(hi = hy) - (hi — hy,),
>y > >is>1
Sai = Z EiliEi2i1 e Eisis—lEais(hi - hjl) T (h1 - hjr)?

i<iy<-<is<m

where s = 0,1,... and {71,...,7-} is the complementary subset to {i1,...,%,} respec-
tively in the set {1,...,e =1} or {1+ 1,...,m}; h; = E;; —i+ 1. The s;, and s,; are
respectively called raising and lowering operators. They act in the subspace of the
gl(m)-highest vectors in L()) so that

L) = L), sai : LF = LV,

see [16] for more details.
For bl =140 86t

Tm+k,m+1(u) = u(u — 1) cee (u - m) tkl(u).

Proposition 2.1 Fora,b€ {m+1,...,m+n} the action of the element T,y(u) in
L(\)} is given by

Tun(u) = (Saptt + Eas) Eu+hi—1)—;sibsai I u}—:;i]};l

=1, 5

From now on we shall assume that the highest weight A is a partition, that is, the
A; are nonnegative integers. This does not lead to a real loss of generality because
the formulas and arguments below can be easily adjusted to be valid in the general
case. Given a general A one can add a suitable complex number to all entries of A to
get a partition.

As it follows from the branching rule for the general linear Lie algebras (see [15])
the space L(\)7 is nonzero only if x is a partition such that 4 C A and each column
of the skew diagram A/u contains at most n cells. The figure below illustrates the

skew diagram for A = (10,8,5,4,2) and ux = (6, 3):

e [ ]

Introduce the row order on the cells of A/u corresponding to reading the diagram by
rows from left to right starting from the top row. For a cell @ € A/u denote by r(a)
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the row number of a and by [(c) the (increased) leglength of & which equals 1 plus
the number of cells of A/ in the column containing a which are below a. Consider

the following element of L()):

(= H Sy il ) 5 (2.3)

aeA/“) r(a)Sm

where ¢ is the highest vector of L()) and the product is taken in the row order. For
the above example of \/u we have m =2, n = 3 and

(= (341)2 (531)2 S5 S42 (532)3 §.

Given three integers i, j,k we shall denote by middle{s, j,k} that of the three
which is between the two others.

Theorem 2.2 The vector ( defined by (2.3) is the highest vector of the Y(n)-module
L(\)f. The highest weight of this module s (A1(w), ..., An(u)) where
(u+ Vi (u + v 1) (u+ U m)

Aalu) = w(w—1)-(u—m)

and
z/f) = middle{p;—1, i, Aati-1}
with pm+1 = 0, and po is considered to be sufficiently large.

For the proof we find first a quantum minor representation for the raising and
lowering operators; cf. [7]. Then we use Propositions 1.1 and 2.1.

Note that for each 7 the n-tuple v = (1/£i), : ..,ur(f)) is a partition which can
be obtained from A/u as follows. Consider the subdiagram of A of the form A =
(AiyAig1s---> Xigno1). Replace the rows of MA@ which are longer than p;—1 by pi—1
while those which are shorter than p; replace with y; and leave the remaining rows un-
changed. The resulting partition is 1) For the above example with A = (10,8, 5,4,2)

and pu = (6,3) we have
M =(10,8,6), +vP=(654), +v¥=(32),

as illustrated:

i [ —— s R il p—
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By the content of a cell @ = (¢,7) € A/u we mean the number 7 — 3.

Corollary 2.3 The Drinfeld polynomials for the Y(n)-module L(A)} are given by

Pa(u):H(u+c), a=1,...,n—1,

(o]

where ¢ runs over the contents of the top cells of columns of height a in the diagram
A p.

If X =(10,8,5,4,2) and pu = (6,3) (see the example above) then we have
Pi(u)=(u+4)(u+8)(u-+9), Po(u)=u(u+3)(u+6)(u+T7).

The corollary shows that the Y(sl(n))-module L(A)} is isomorphic to that con-
sidered by Nazarov and Tarasov; see [11].

Remark. The approach to study the elementary representation of the Yangian Y(n)
based on a quantum analogue of Sylvester’s theorem can be applied to other series of
classical Lie algebras, where the Yangian is replaced by the twisted Yangians corre-
sponding to the orthogonal or symplectic Lie algebras; see [14, 10]. In particular, it
can be used to construct an analogue of the Gelfand-Tsetlin basis for representations
of the symplectic Lie algebras [9].
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