Acyclic sets and colourings in digraphs

Víctor Neumann-Lara
Instituto de Matemáticas, UNAM
Circuito Exterior, C. U.
México 04510 D.F.
MÉXICO
Fax: (52) 56160348
e-mail: neumann@matem.unam.mx

Abstract

The dichromatic number of a digraph is the minimum number of colours needed to colour its vertices so that no monochromatic directed cycle appears. In this article we will give a view of the present state of this invariant.

Keywords: Digraphs, dichromatic number, tournaments, lexicographical sum, orientation.
AMS subject Classification. Primary: 05C20, 05C15.

1 Introduction.

Many fundamental concepts and invariants of Graph Theory are related to connectedness. The chromatic number is one of such invariants. In this article we will give a view of the present state of knowledge of the dichromatic number, an invariant which generalizes the chromatic number.

The dichromatic number $d c(D)$ of a digraph D is the least number of colours needed to colour the vertices of D in such a way that each chromatic class is acyclic $([4,13,14])$. So $d c(D)=1$ if and only if D is acyclic and $d c\left(D^{\circ \mathrm{p}}\right)=$ $d c(D)$ where D^{op} is obtained from D by reversing each one of its arcs. If G^{*} denotes the digraph obtained from a graph G by directing each edge in the two opposite directions then $d c\left(G^{*}\right)=\chi(G)$.

The dichromatic number has been used to prove the existence of objects such as kernel perfect digraphs and kernel imperfect critical digraphs having extremely complex cyclic structure [10] and for a similar purpose in Continuum Theory [20]. Another application has been given in [11].

The acyclic disconnection of a digraph, which is the maximum number of weak components which can be obtained in a digraph after deleting an acyclic set of arcs, gives also a (decreasing) measure of the complexity of the cyclic structure of the digraph. In $[18,21]$ relations between the dichromatic number and the acyclic disconnection are studied.

2 Preliminaries.

Let $D=(V(D), A(D))$ be a digraph. $\Delta^{+}(D)$ and $\Delta^{-}(D)$ (resp: $\delta^{+}(D)$ and $\delta^{-}(D)$) will denote the maximum (resp: minimum) outdegree of D and maximum (resp: minimum) indegree of D respectively; $\vec{\beta}(D)$ will be the maximum cardinality of an acyclic set of vertices in D.
D is called r-dichromatic if $d c(D)=r$, vertex-critical (v.c.) if $d c(D-u)<$ $d c(D)$ for every $u \in V(D)$; arc-critical (resp: minimal) if $d c(D-u w)<d c(D)$ for every $u w \in A(D)$ (resp: $d c\left(D_{0}\right)<d c(D)$ for every proper subdigraph D_{0} of D). Obviously, a digraph without isolated vertices is minimal if and only if it is arc-critical.

A digraph obtained from a graph G by assigning to each edge just one direction is called an orientation of G.

In what follows, $I_{n}=\{1, \ldots, n\}, Z_{n}$ is the ring of integers $\bmod n$ and for any nonempty set $J \subseteq Z_{n}-\{0\}, \vec{C}_{n}(J)$ is the digraph defined by $V\left(\vec{C}_{n}(J)\right)=Z_{n}$ and $A\left(\vec{C}_{n}(J)\right)=\left\{(i, j): i, j \in Z_{n}\right.$ and $\left.j-i \in J\right\}$. Notice that $\vec{C}_{n}(\{1\})$ is the directed cycle \vec{C}_{n} and that $\vec{C}_{2 m+1}(J)$ is a circulant tournament if and only if $|\{j,-j\} \cap J|=1$ for every $j \in Z_{2 m+1} \backslash\{0\}$. Finally we define $I_{m, j}=$ $I_{m} \cup\{-j\} \backslash\{j\}$ for $j \in I_{m}$.

For general terminology we refer the reader to $[1,2]$.

3 The dichromatic number of digraphs.

Theorem $3.1[14] d c(D) \leq \min \left\{\Delta^{-}(D), \Delta^{+}(D)\right\}+1$.
Theorem 3.2 If D is vertex-critical then $d c(D) \geq \min \left\{\delta^{-}(D), \delta^{+}(D)\right\}-1$.
Let $c_{0}(s, m)$ denote the maximum number of edge-disjoint cycles of length m in K_{s} passing by a given vertex and define $c(s, m)=2 c_{0}(s, m)$ for $2<m \leq s$ and $c(s, 2)=c_{0}(s, 2)$. Notice that $c_{0}(s, m) \geq\lfloor(s-1) /(m-1)\rfloor\lfloor(m-1) / 2\rfloor$ [14].

Theorem 3.3 [14] If D is a minimal $(k+1)$-dichromatic digraph, $k \geq 2$ and m is an integer such that $2 \leq m \leq k$. Then
(i) For any two adjacent vertices u, v in D, there exists a set of $c(k, m)$ mutually arc-disjoint directed uv-paths of length $\equiv 0(\bmod m)$.
(ii) Any arc uw of D is contained in $c(k, m)$ directed cycles of length \equiv $1(\bmod m)$ such that any two of them share only one arc, namely: uw.
(iii) Every vertex u of D is contained in $c(k, m)$ pairwise arc-disjoint directed cycles of length $\equiv 0(\bmod m)$.

In [6], Erdös and Hajnal proved that if $\chi(G) \geq 3$ then G contains an odd cycle of length at least $\chi(G)-1$. Taking $m=\lfloor k / 2\rfloor$ in Theorem 3.3 (iii), we obtain the following version for digraphs.

Theorem 3.4 [14] If D is a minimal $(k+1)$-dichromatic digraph with $k \geq 2$, then every arc belongs to an odd directed cycle of length at least k.

As a direct consequence of Theorem 3.3 we also obtain the following
Theorem 3.5 [14] If D is a minimal $(k+1)$-dichromatic digraph then D is strongly k-arc connected.

For the composition $D[H]$ of D and H holds
Theorem $3.6[14] d c(D[H]) \geq d c(D)+d c(H)-1$.

4 Lexicographical sums and dichromatic number.

Let D be a digraph and $\alpha=\left(\alpha_{i}\right)_{i \in V(D)}$ a family of nonempty (mutually disjoint) digraphs. The lexicographical sum $\sigma(\alpha, D)$ of α over D is defined by $V(\sigma(\alpha, D))=\bigcup_{i \in V(D)} V\left(\alpha_{i}\right) ;$

$$
A(\sigma(\alpha, D))=\bigcup_{i \in V(D)} A\left(\alpha_{i}\right) \cup\left\{u w: u \in V\left(\alpha_{i}\right), w \in V\left(\alpha_{j}\right) \& i j \in A(D)\right\}
$$

If the members of the family α are not mutually disjoint, we replace each of them by one isomorphic copy so that the new family α^{\prime} becomes one of mutually disjoint digraphs. Notice that the resulting digraph $\sigma\left(\alpha^{\prime}, D\right)$ is defined up to isomorphism and that $\sigma(\alpha, D)$ is just $D[W]$ whenever $\alpha_{i} \cong W$ for every $i \in V(D)$.

Let H be an hypergraph without isolated vertices and suppose a positive integer ξ_{u} has been assigned to each vertex u of H (such an assignement ξ will be called a weight function on H).

The covering number $\tilde{n}(H, \xi)$ is the minimum cardinality of a family of non necessarily different edges of H such that each vertex u belongs to at least ξ_{u} edges of the family. The covering number $\tilde{n}(H, 1)$, where $\mathbf{1}$ denotes the constant function of value 1 , has been extensely studied (see [1]). In what follows, \mathbf{k} will denote a constant function of value k whenever k is a positive integer. We define $|\xi|=\sum_{u \in V(H)} \xi(u)$.

A weight function ξ on H is said to be \tilde{n}-subcritical (resp: \tilde{n}-upcritical) if for every weight function ξ^{\prime} such that $\xi^{\prime} \leq \xi$ and $\left|\xi^{\prime}\right|=|\xi|-1$ (resp: $\xi \leq \xi^{\prime}$ and $\left.\left|\xi^{\prime}\right|=|\xi|+1\right)$, we have $\tilde{n}\left(H, \xi^{\prime}\right)=\tilde{n}(H, \xi)-1\left(\right.$ resp: $\left.\tilde{n}\left(H, \xi^{\prime}\right)=\tilde{n}(H, \xi)+1\right)$.

Let D be a digraph and $H_{1}(D)$ the hypergraph whose vertex set is $V(D)$ and has the maximal acyclic subsets of $V(D)$ as hyperedges.

Theorem 4.1 [19] Let $Q=\left(Q_{u}\right)_{u \in V(D)}$ be a family of digraphs and ξ_{Q} the weight function defined by $\xi_{Q}(u)=d c\left(Q_{u}\right)$. Then $d c(\sigma(D, Q))=\tilde{n}\left(H_{1}(D), \xi_{Q}\right)$. Moreover $\sigma(D, Q)$ is vertex-critical if and only if Q_{u} is vertex-critical for every $u \in V(D)$ and ξ is \tilde{n}-subcritical.

Theorem 4.2 [19] Every acyclic $\tilde{n}\left(H_{1}(D), \xi_{Q}\right)$-colouring of $\sigma(D, Q)$ induces in each Q_{u} an optimal acyclic colouring if and only if ξ_{Q} is \tilde{n}-upcritical.

The instances of Theorems 4.1 and 4.2 given by $D=\vec{C}_{3}$ were implicitly considered in [22] to prove the existence of an infinite family of vertex-critical r-dichromatic regular tournaments for $r \geq 3, r \neq 4$ and in [23] to construct uniquely colourable r-dichromatic oriented graphs. An infinite family of vertex-critical 4-dichromatic circulant tournaments (namely, $\vec{C}_{6 m+1}\left(I_{3 m, 2 m}\right)$ for $m \geq 2$) was given in [17].

An application of Theorem 4.1 allows the construction of an infinite set of mutually non isomorphic v.c. r-dichromatic tournaments of even order for every integer $r \geq 4$ [19] solving a question of [22].

Some properties and the behaviour of the function $\tilde{n}\left(H_{1}\left(G^{*}\right), \mathbf{k}\right)$ have been studied in several papers [$8,9,12,24]$.

Theorem 3.6 can be extended as follows:
Corollary 4.3 [19] If $d c(\alpha)=k$ then $d c(D[\alpha]))=\tilde{n}\left(H_{1}(D), \mathbf{k}\right)$.
Theorem 4.1 shows that the problem of computing the dichromatic number of a lexicographical sum of digraphs over a digraph D reduces to that of comput-
ing the covering number of $H_{1}(D)$ with respect to an adequate assignement of weights.

The function \tilde{n} has the following simple properties.
$P_{1}: \tilde{n}\left(H, \xi+\xi^{\prime}\right) \leq \tilde{n}(H, \xi)+\tilde{n}\left(H, \xi^{\prime}\right)$ and $\tilde{n}(H, k \xi) \leq k \tilde{n}(H, \xi)$ for every positive integer k.
$P_{2}: \tilde{n}(H, \xi) \leq \tilde{n}\left(H, \xi^{\prime}\right)$ whenever $\xi \leq \xi^{\prime}$.
$P_{3}: \tilde{n}(H, \xi) \geq\lceil|\xi| / \rho(H)\rceil$ where $\rho(H)$ is the maximal cardinality of an edge in H.
P_{4} : If H_{0} is a spanning subhypergraph of H then $\tilde{n}(H, \xi) \leq \tilde{n}\left(H_{0}, \xi\right)$.

Moreover if H^{\prime} is the spanning subhypergraph of H whose edges are the maximal edges of H, then $\tilde{n}(H, \xi)=\tilde{n}\left(H^{\prime}, \xi\right)$.

If $r \leq n$, let $\Lambda_{n, r}$ be the circulant r-graph such that $V\left(\Lambda_{n, r}\right)=Z_{n}, E\left(\Lambda_{n, r}\right)=$ $\left\{\alpha_{j}: j \in Z_{n}\right\}$ where $\alpha_{j}=\{j, j+1, \ldots, j+r-1\}$ for $j \in Z_{n}$.

Using the previous properties and applying Corollary 4.3 it is easy to prove the following

Lemma 4.4 [19] Let D be a digraph of order n and α a k-dichromatic digraph. If $H_{1}(D)$ contains an isomorphic copy of $\Lambda_{n, r}$ where $r=\vec{\beta}(D)$ then $d c(D[\alpha]))=\lceil k . n / r\rceil$.

Lemma 4.4 yields the next result.
Theorem 4.5 [19] If $d c(\alpha)=k$ then
(i) $\quad d c\left(\vec{C}_{2 m+1}\left(I_{m}\right)[\alpha]\right)=\lceil k .(2 m+1) /(m+1)\rceil$ for $m \geq 2$.
(ii) $d c\left(\vec{C}_{2 m+1}\left(I_{m, m}\right)[\alpha]\right)=\lceil k .(2 m+1) / m\rceil$ for $m \geq 3$.
(iii) $d c\left(\vec{C}_{6 m+1}\left(I_{3 m, 2 m}\right)[\alpha]\right)=\lceil k .(6 m+1) / 2 m\rceil$ for $m \geq 2$.
(iv) $d c\left(\vec{C}_{17}\left(I_{8,5}\right)[\alpha]\right)=\lceil 17 k / 5\rceil, d c\left(\vec{C}_{17}\left(I_{8,7}\right)[\alpha]\right)=\lceil 17 k / 7\rceil$ and

$$
d c\left(\vec{C}_{17}\left(I_{8,6}\right)[\alpha]\right)=\lceil 17 k / 6\rceil
$$

From Theorems 4.1 and 4.5 we obtain the next
Theorem 4.6 [19] Let α be a vertex-critical k-dichromatic digraph. Then
(i) $\vec{C}_{2 m+1}\left(I_{m}\right)[\alpha]$ is v.c. if and only if $k \equiv m(\bmod m+1)$ and $m \geq 2$.
(ii) $\vec{C}_{2 m+1}\left(I_{m, m}\right)[\alpha]$ is v.c. if and only if $k \equiv 1(\bmod m)$ and $m \geq 3$.
(iii) $\vec{C}_{6 m+1}\left(I_{3 m, 2 m}\right)[\alpha]$ is v.c. if and only if $k \equiv 1(\bmod 2 m)$ and $m \geq 2$.
(iv) $\vec{C}_{3}[\alpha]$ is v.c. if and only if k is odd;
$\vec{C}_{17}\left(I_{8,5}\right)[\alpha]$ is v.c. if and only if $k \equiv 3(\bmod 5)$;
$\vec{C}_{17}\left(I_{8,7}\right)[\alpha]$ is v.c. if and only if $k \equiv 5(\bmod 7)$;
$\vec{C}_{17}\left(I_{8,6}\right)[\alpha]$ is v.c. if and only if $k \equiv 5(\bmod 6)$.
Finally, applying Theorems 4.5 and 4.6 we can obtain
Theorem 4.7 [19] For every integer $k \geq 3, k \neq 7$ there exists an infinite family \mathcal{F}_{k} of pairwise non isomorphic vertex critical k-dichromatic circulant tournaments.

Considering Lemma 4.4 it is worth introducing the next definition:
A tournament T is said to be a Λ-tournament of index r whenever $H_{1}(T)$ contains an isomorphic copy of $\Lambda_{n, r}$ where n is the order of T and $r=\vec{\beta}(T)$. Thus $\tilde{n}\left(H_{1}(T), \mathbf{k}\right)=\lceil k n / r\rceil$ for every Λ-tournament of index r and order n. Moreover \mathbf{k} is subcritical whenever $k n \equiv 1(\bmod r)$ and upcritical whenever $k n \equiv 0(\bmod r)$.

Theorem 4.8 If $r \leq m-1,2 r \geq m+2 \geq 5$ and $2 m+1 \neq 3 r$ then $\vec{C}_{2 m+1}\left(I_{m, r}\right)$ is a Λ-tournament of index r.

5 The dichromatic number of a graph.

The dichromatic numbers of a graph G is the maximum of the dichromatic number of all its orientations $[4,7]$.

For complete graphs we have the following results:
Let W, W_{0} and W_{1} be the tournaments such that $V(W)=\left\{w_{0}, w_{1}^{-}, w_{2}^{-}, w_{3}^{-}, w_{1}^{+}, w_{2}^{+}, w_{3}^{+}\right\} ; A(W)=\left\{w_{i}^{+} w_{j}^{-}: 1 \leq i, j \leq 3\right\} \cup$ $\left\{w_{0} w_{i}^{+}: i=1,2,3\right\} \cup\left\{w_{j}^{-} w_{0}: j=1,2,3\right\} \cup\left\{w_{i}^{+} w_{i+1}^{+}: i=1,2,3\right\} \cup\left\{w_{j}^{-} w_{j+1}^{-}: j=\right.$ $1,2,3\}$ (the sum taken $\bmod 3$).
$W_{0}=W+\left\{w_{1}^{-} w_{1}^{+}, w_{2}^{-} w_{2}^{+}, w_{3}^{-} w_{3}^{+}\right\}-\left\{w_{1}^{+} w_{1}^{-}, w_{2}^{+} w_{2}^{-}, w_{3}^{+} w_{3}^{-}\right\}$and $W_{1}=W+$ $\left\{w_{2}^{-} w_{2}^{+}, w_{3}^{-} w_{3}^{+}\right\}-\left\{w_{2}^{+} w_{2}^{-}, w_{3}^{+} w_{3}^{-}\right\}$.

There are exactly four 3-dichromatic tournaments of order 7 (7 is the minimum order of a 3-dichromatic tournament): $\vec{C}_{7}\left(I_{3,2}\right), W, W_{0}$ and W_{1}, see Figures. Two of them $\left(\vec{C}_{7}\left(I_{3,2}\right)\right.$ and $\left.W_{0}\right)$ are minimal, the others have just one unessential arc. There is only one 4-dichromatic oriented graph of order at most 11: $\vec{C}_{11}\left(I_{5,2}\right)$ which is minimal [16].

Using Theorem 4.1 we can construct a 5-dichromatic tournament of order 19. The minimum order of a 5 -dichromatic tournament is not known, but it can be proved that it is at least 17 .

Theorem 5.1 [7] There are positive constants c_{1} and c_{2} such that $c_{1} \cdot n / \log _{2} n \leq d c\left(K_{n}\right) \leq c_{2} \cdot n / \log _{2} n$ with $c_{1} \geq 1 / 3, c_{2} \leq 8 / 3$.

Let $f(n)$ be the smallest integer for which there is a graph $G_{f(n)}$ of size $f(n)$ and dichromatic number n. It is obvious that $G_{f(n)}$ is edge-critical. Moreover $G_{f(n)}$ is not always complete, for instance $d c\left(K_{7}\right.$ - one edge $)=3$ so $f(3) \leq 19$ and $G_{f(3)}$ is not complete [7].

Theorem 5.2 [7] The quotient $f(n) / n^{2}$ tends to ∞ as $n \rightarrow \infty$.
Lemma 5.3 [7] The number of acyclic orientations of $K_{m, m}$ is not bigger than $14^{[m / 2]^{2}}$.

Theorem 5.4 [7] There is a positive constant c and an orientation of $K_{n, n}$ such that every induced subgraph of $K_{n, n}$ isomorphic to $K_{m, m}$, such that $m \geq$ $c \log _{2} n$, contains a cyclically oriented square. (We can take $\left.c=\frac{2}{1-\left(\log _{2} 14\right) / 4}\right)$.
Denote by $K_{n}(n)$ the complete n-partite graph with independent sets of cardinality n.

Theorem 5.5 [7] For n large enough, there is an orientation $K_{n}^{\rightarrow}(n)$ of $K_{n}(n)$ such that $\vec{\beta}\left(K_{n}^{\vec{~}}(n)=n+1\right.$.

Corollary 5.6 [7] For n large enough, $d c\left(K_{n}(n)\right)=n$.
Theorem 5.7 [7] For every k and $r \geq 3$ there exist k-dichromatic oriented graphs with girth at least r.

Let $G[H]$ be the composition of G and H.
Theorem 5.8 [7] Let G be a graph. There exists an integer n_{0} depending only on $\chi(G)$ such that if $n \geq n_{0}, d c\left(G\left[\bar{K}_{n}\right]\right)=\chi(G)$.

Other results have been obtained in [5].
Recently, Th. Davoine and Neumann-Lara [3] proved that $d c\left(\vec{C}_{3}\left[\bar{K}_{3}\right]\right)=3$,
$d c\left(\vec{C}_{5}\left[\bar{K}_{3}\right]\right)=2, d c\left(\vec{C}_{5}\left[\bar{K}_{4}\right]\right)=3$. Let $\eta(G)=\min \left\{n: d c\left(G\left[\bar{K}_{n}\right]=\chi(G)\right\}\right.$. We have $\eta\left(\vec{C}_{3}\right)=3, \eta\left(\vec{C}_{5}\right)=4$ and in general $\eta\left(\vec{C}_{2 m+1}\right)=4$ for $m \geq 2$. Moreover $\eta\left(K_{4}\right) \leq 7, \eta\left(K_{6}\right) \leq 16, \eta\left(K_{7}\right) \leq 19$ and in general, $\eta\left(K_{n}\right) \leq n^{2}-3 n+3$.

Open Problems.

1.) Is there a function $f(m)$ such that $d c(G) \geq m$ whenever $\chi(G) \geq f(m)$? [7].
2.) Is $d c(G) \leq 2$ for every planar graph? It is easy to see that $d c(G) \leq 3$ (Neumann-Lara, Urrutia).
3.) Which is the minimum order of a 5 -dichromatic tournament? [16].
4.) If every ex-neighbourhood of a tournament T is acyclic, then $d c(T) \leq 2$. Is it true that if $d c\left(N^{+}(u, T)\right)$ is at most k-dichromatic then $d c(T) \leq c_{k}$ for some constant depending only of k ? It is not known even for $k=2$.

References

[1] C. Berge, Graphs and Hypergraphs, Amsterdam; North Holland Publ. Co. 1973.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier Pub. Co. (1976).
[3] Th. Davoine, V. Neumann-Lara, On Graphs whose chromatic and dichromatic numbers are equal, Preprint (1998).
[4] P. Erdös, Problems and results in number theory and graph theory, Proc. Ninth Manitoba Conf. Numer. Math. and Computing (1979) 3-21.
[5] P. Erdös, J. Gimbel and D. Kratsch, Some extremal results in cochromatic and dichromatic theory, Jour. of Graph Theory, Vol.15, No. 6 (1991) 579585.
[6] P. Erdös and A. Hajnal, On chromatic numbers of graphs and set-systems, Acta Math. Acad. Sci. Hungar. 17 (1966), 61-99.
[7] P. Erdös and V. Neumann-Lara, On the dichromatic number of a graph, in preparation.
[8] D.C. Fisher, Fractional Colorings with large denominators, J. Graph Theory, Vol. 20, No. 4 (1995) 403-409.
[9] D. Geller and S. Stahl, The chromatic number and other parameters of the lexicographical product, J. Comb.Theory B 19 (1975) 87-95.
[10] H. Galeana-Sánchez and V. Neumann-Lara, On the dichromatic number in Kernel Theory, Math. Slovaca Vol. 48 No. 3 (1998) 213-219.
[11] Y.O. Hamidoune, On the decomposition of a minimally strongly h-connected digraph into $h+1$ acircuitic subgraphs, Discrete Math. 31 (1980) 89-90.
[12] A.J.W. Hilton, R. Rado, and S.H. Scott, Multicolouring graphs and hypergraphs, Nanta Mathematica 9 (1975) 152-155.
[13] H. Jacob and H. Meyniel, Extension of Turan's and Brooks theorems and new notions of stability and colorings in digraphs, Ann. Discrete Math. 17 (1983) 365-370.
[14] V. Neumann-Lara, The dichromatic number of a digraph, J. Comb. Theory, Ser. B 33 (1982) 265-270.
[15] V. Neumann-Lara, The generalized dichromatic number of a digraph, Colloqia Math. Soc. János Bolyai, 37. Finite and Infinite Sets (1981) 601606.
[16] V. Neumann-Lara, The 3 and 4-dichromatic tournaments of minimum order, Discrete Math. 135 (1994) 233-243.
[17] V. Neumann-Lara, Vertex critical 4-dichromatic circulant tournaments, Discrete Math. 170 (1997) 289-291.
[18] V. Neumann-Lara, The acyclic disconnection of a digraph, Disc. Math. 197/198 (1999) 617-632.
[19] V. Neumann-Lara, Dichromatic number, circulant tournaments and Zykov sums of digraphs, Publ. Prelim. IM, UNAM, No. 577, ene. 1998.
[20] V. Neumann-Lara, Dendroids, Digraphs and Posets, Publ. Prelim. IM, UNAM, No. 613, 11.09.98.
[21] V. Neumann-Lara and M.A. Pizaña, Externally loose k-dichromatic tournaments, in preparation.
[22] V. Neumann-Lara and J. Urrutia, Vertex critical r-dichromatic tournaments, Discrete Math. 40 (1984) 83-87.
[23] V. Neumann-Lara and J. Urrutia, Uniquely colourable r-dichromatic tournaments, Discrete Math. 62 (1986) 65-70.
[24] S. Stahl, n-tuple colourings and associated graphs, J. Comb.Theory B 20 (1976) 185-203.

Fig. 1: W.

Fig. 2: W_{0}.

Fig. 3: W_{1}.

