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Abstract

The dichromatic number of a digraph is the minimum number of colours needed
to colour its vertices so that no monochromatic directed cycle appears. In this article
we will give a view of the present state of this invariant.
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1 Introduction.

Many fundamental concepts and invariants of Graph Theory are related to
connectedness. The chromatic number is one of such invariants. In this article
we will give a view of the present state of knowledge of the dichromatic number,
an invariant which generalizes the chromatic number.

The dichromatic number dc(D) of a digraph D is the least number of colours
needed to colour the vertices of D in such a way that each chromatic class
is acyclic ([4,13,14]). So dc(D) = 1 if and only if D is acyclic and dc(D) =
de(D) where D°P is obtained from D by reversing each one of its arcs. If G*
denotes the digraph obtained from a graph G by directing each edge in the
two opposite directions then de(G*) = x(G).

The dichromatic number has been used to prove the existence of objects such
as kernel perfect digraphs and kernel imperfect critical digraphs having ex-
tremely complex cyclic structure [10] and for a similar purpose in Continuum
Theory [20]. Another application has been given in [11].
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The acyclic disconnection of a digraph, which is the maximum number of
weak components which can be obtained in a digraph after deleting an acyclic
set of arcs, gives also a (decreasing) measure of the complexity of the cyclic
structure of the digraph. In [18,21] relations between the dichromatic number
and the acyclic disconnection are studied.

2 Preliminaries.

Let D = (V(D), A(D)) be a digraph. A*(D) and A~(D) (resp: 67 (D) and

6= (D)) will denote the maximum (resp: minimum) ~outdegree of D and maxi-
mum (resp: minimum) indegree of D respectively; 3 B(D) will be the maximum
cardinality of an acyclic set of vertices in D.

D is called r-dichromatic if de(D) = r, vertez-critical (v.c.) if de(D — u) <
de(D) for every u € V(D); arc-critical (resp: minimal) if de(D —uw) < de(D)
for every uw € A(D) (resp: de(Do) < dc(D) for every proper subdigraph Dy
of D). Obviously, a digraph without isolated vertices is minimal if and only if
it is arc-critical.

A digraph obtained from a graph G by assigning to each edge just one direction
is called an orientation of G.

In what follows, I, = {1,.. } Z, is the ring of integers modn and for any
nonempty set J C Z, — {0} C »(J) is the digraph defined by v(C, J )) = Z,
and A(C,(J)) = {(, §):i,j € Z, and j — i € J}. Notice that C.({1}) is
the directed cycle Cy, and that Com+1(J) is a circulant tournament if and
only if |{j,—j} N J| =1 for every j € Zym41 \ {0}. Finally we define I,; =

Im U {3} \ {5} for j € In..

For general terminology we refer the reader to [1,2].

3 The dichromatic number of digraphs.

Theorem 3.1 [14] dc¢(D) < min {A~(D),A*(D)} + 1.
Theorem 3.2 If D is vertez-critical then dc(D) > min{6~(D),é*(D)} — 1.

Let co(s,m) denote the maximum number of edge-disjoint cycles of length m
in K, passing by a given vertex and define ¢(s,m) = 2¢y(s,m) for2<m < s
and c(s,2) = co(s,2). Notice that co(s,m) > |(s — 1)/(m = 1)||[(m — 1)/2]
[14].
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Theorem 3.3 [14] If D is a minimal (k + 1)-dichromatic digraph, k > 2 and
m 18 an integer such that 2 < m < k. Then

(i) For any two adjacent vertices u,v in D, there ezists a set of c(k,m)
mutually arc-disjoint directed uwv-paths of length = 0 (modm).

(i) Any arc vw of D is contained in c(k,m) directed cycles of length =
1 (modm) such that any two of them share only one arc, namely: vw.

(iii) Ewvery vertez u of D is contained in c(k,m) pairwise arc-disjoint directed
cycles of length = 0 (modm).

In [6], Erdos and Hajnal proved that if x(G) > 3 then G contains an odd cycle
of length at least x(G) — 1. Taking m = |k/2] in Theorem 3.3 (iii), we obtain
the following version for digraphs.

Theorem 3.4 [14] If D is a minimal (k + 1)-dichromatic digraph with k > 2,
then every arc belongs to an odd directed cycle of length at least k.

As a direct consequence of Theorem 3.3 we also obtain the following

Theorem 3.5 [14] If D is a minimal (k + 1)-dichromatic digraph then D is
strongly k-arc connected.

For the composition D[H] of D and H holds

Theorem 3.6 [14] dc(D[H]) > dc(D) + de(H) — 1.

4 Lexicographical sums and dichromatic number.

Let D be a digraph and o = (;)icv(p) a family of nonempty (mutually
disjoint) digraphs. The lexicographical sum o (e, D) of o over D is defined by

V(o(a, D)) = Uiev(p) V (@);

A(o(a, D)) = Usey(p)Alas) U {vw:u € V(as), w € V(o) & ij € A(D)}.

If the members of the family o are not mutually disjoint, we replace each of
them by one isomorphic copy so that the new family o/ becomes one of mu-
tually disjoint digraphs. Notice that the resulting digraph o(c/, D) is defined
up to isomorphism and that o(«, D) is just D[W] whenever ¢; = W for every
i € V(D).
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Let H be an hypergraph without isolated vertices and suppose a positive
integer &, has been assigned to each vertex u of H (such an assignement ¢ will
be called a weight function on H).

The covering number 7i(H,§) is the minimum cardinality of a family of non
necessarily different edges of H such that each vertex u belongs to at least
&, edges of the family. The covering number 7(H,1), where 1 denotes the
constant function of value 1, has been extensely studied (see [1]). In what
follows, k will denote a constant function of value k£ whenever k is a positive
integer. We define |€| = Cyev () &(u).

A weight function £ on H is said to be fi-subcritical (resp: fi-upcritical) if for
every weight function ¢ such that ¢’ < € and |¢'| = €| — 1 (resp: £ < £’ and
€' = |€] + 1), we have 7i(H, £') = A(H,€) — 1 (resp: A(H, &) = A(H, &) +1).

Let D be a digraph and H; (D) the hypergraph whose vertex set is V(D) and
has the maximal acyclic subsets of V(D) as hyperedges.

Theorem 4.1 [19] Let Q = (Qu)uev(p) be a family of digraphs and &g the
weight function defined by £g(u) = de(Qy). Then de(o(D, Q)) = f(Hi(D),&q)-
Moreover o(D, Q) is vertez-critical if and only if Q. is vertez-critical for every
u € V(D) and & is fi-subcritical.

Theorem 4.2 [19] Every acyclic 7i(Hy(D),&q)-colouring of o(D, Q) induces
in each Q. an optimal acyclic colouring if and only if &g is Ti-upcritical.

The instances of Theorems 4.1 and 4.2 given by D = C, were implicitly con-
sidered in [22] to prove the existence of an infinite family of vertex-critical
r-dichromatic regular tournaments for r > 3, 7 # 4 and in [23] to con-
struct uniquely colourable r-dichromatic oriented graphs. An 1nﬁmte family
of vertex-critical 4-dichromatic circulant tournaments (namely, Csm+ 1(I3m,2m)
for m > 2) was given in [17].

An application of Theorem 4.1 allows the construction of an infinite set of
mutually non isomorphic v.c. r-dichromatic tournaments of even order for
every integer 7 > 4 [19] solving a question of [22].

Some properties and the behaviour of the function 72(H;(G*),k) have been
studied in several papers [8,9,12,24].

Theorem 3.6 can be extended as follows:
Corollary 4.3 [19] If dc(e) = k then de(D[e])) = 7(H1(D), k).

Theorem 4.1 shows that the problem of computing the dichromatic number of
a lexicographical sum of digraphs over a digraph D reduces to that of comput-
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ing the covering number of H;(D) with respect to an adequate assignement
of weights.

The function 72 has the following simple properties.

P A(H,§+¢) < n(H, ) + a(H,¢) and 7(H, k€) < ki(H,§) for every
positive integer k.

Py: 7(H,€) < n(H, &) whenever € < €.

Py: 7(H,§) > [|€]/p(H)] where p(H) is the maximal cardinality of an edge
in H.

Py: If Hy is a spanning subhypergraph of H then 7i(H, &) < Ai(Hy, £).

Moreover if H' is the spanning subhypergraph of H whose edges are the max-
imal edges of H, then 7i(H, &) = a(H',§).

If r <n,let Ay, be the circulant r-graph such that V(An,) = Z,, E(An,) =
{oj:j € Z,} where a; = {j,j +1,...,j+r—1} for j € Z,.

Using the previous properties and applying Corollary 4.3 it is easy to prove
the following

Lemma 4.4 [19] Let D be a digraph of order n and o a k-dichromatic di-
graph. If Hi(D) contains an isomorphic copy of A,, where r = B(D) then
de(Dla])) = [k.n/r].

Lemma 4.4 yields the next result.

Theorem 4.5 [19] If dc(a) = k then

(1) de(Comsr(Im)[a]) = [k.2m + 1) /(m +1)] for m > 2.
(i) de(Comsr(Imm)[@]) = [k.(2m + 1)/m] for m > 3.
(iii) de(Coms1Tsmzm)[@]) = [k.(6m + 1)/2m] for m > 2.

(IV) dC(C—"17(Ig,5)[C¥]) = [17/??/5-', dC(éﬂ(IgJ)[C!]) = [17’6/7-‘ and
dc(C-"l—,-(Ig,s)[a]) = [17[2/6-‘

From Theorems 4.1 and 4.5 we obtain the next

Theorem 4.6 [19] Let o be a vertez-critical k-dichromatic digraph. Then
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(i) Coms1(Im)le] is v.c. if and only if k = m(modm + 1) and m > 2.
(i) Coms1(Imm)le] s v.c. if and only if k = 1(modm) and m > 3.
(iii) Coms1(Izmam)[] is v.c. if and only if k = 1(mod2m) and m > 2.

(iv) Cslo] is v.c. if and only if k is odd;
Cir(Iss)a] is v.c. if and only if k = 3(mod 5);
Crr(Is7)[a] is v.c. if and only if k = 5(mod 7);
Crr(Iss)[a] is v.c. if and only if k = 5(mod6).

Finally, applying Theorems 4.5 and 4.6 we can obtain

Theorem 4.7 [19] For every integer k 2> 3, k # T there exists an infinite

family F, of pairwise non isomorphic vertez critical k-dichromatic circulant
tournaments.

Considering Lemma 4.4 it is worth introducing the next definition:

A tournament T is said to be a A-tournament of indez v whenever Hi(T)
contains an isomorphic copy of A, where n is the order of T and 7 = g (T).
Thus #(H;(T),k) = [kn/r] for every A-tournament of index 7 and order n.
Moreover k is subcritical whenever kn = 1(modr) and upcritical whenever
kn = 0(modr).

Theorem 4.8 Ifr <m—1,2r > m+2 2> 5 and2m+1 # 3r then C_"gmﬂ([m,,)
is a A-tournament of index T.

5 The dichromatic number of a graph.

The dichromatic numbers of a graph G is the maximum of the dichromatic
number of all its orientations [4,7].

For complete graphs we have the following results:

Let W, W, and W, be the tournaments such that

VW) = {wo,wi,ws,ws,wi,uwf,wi}l; AW) = {wfwj:1 < 4,j < 3}U
{wow;:i=1,2,3}U{wjwe:j = 1,2,3 U{wi w1 = 1,2,3}U{w;wj 1) =
1,2,3} (the sum taken mod 3).

Wo = W + {wiw], wywi, wywi} — {wfwy,wfw;, wiws} and Wy = W +
{wywf, wywi} — {wjwy, wiws}
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There are exactly four 3-dichromatic tournaments of order 7 (7 is the min-
imum order of a 3-dichromatic tournament): (_5"7(I3,2), W, Wy and W1, see
Figures. Two of them (Cy(Is ) and W) are minimal, the others have just one
unessential arc. There is only one 4-dichromatic oriented graph of order at
most 11: Cy1(s,2) which is minimal [16].

Using Theorem 4.1 we can construct a 5-dichromatic tournament of order 109.
The minimum order of a 5-dichromatic tournament is not known, but it can
be proved that it is at least 17.

Theorem 5.1 (7] There are positive constants ¢; and ¢y such that
c1.n/logyn < de(K,) < cp.nflogyn with ¢ > 1/3, ¢, < 8/3.

Let. f(n) be the smallest integer for which there is a graph G f(n) Of size f(n)
and dichromatic number 7. It is obvious that G f(n) 18 edge-critical. Moreover
G(n) is not always complete, for instance dc(K;— one edge) = 3so f(3) <19
and Gy3) is not complete [7].

Theorem 5.2 [7] The quotient f(n)/n? tends to oo as n — oo.

Lemma 5.3 [7] The number of acyclic orientations of Kpym s not bigger
than 14[m/21*

Theorem 5.4 (7] There is a positive constant ¢ and an orientation of Knn
such that every induced subgraph of K n isomorphic to Koy m, such that m >
clogy n, contains a cyclically oriented square. (We can take ¢ = IT(logz;lT/él 4.

Denote by K,(n) the complete n-partite graph with independent sets of car-
dinality n.

Theorem 5.5 (7] Forn large enough, there is an orientation K’ (n) of K, (n)
such that B(K;*(n) =n + 1.

Corollary 5.6 [7] For n large enough, dc(K,(n)) = n.

Theorem 5.7 [7] For every k and r > 3 there ezist k-dichromatic oriented
graphs with girth at least r.

Let G[H| be the composition of G and H.

Theorem 5.8 [7] Let G be a graph. There exists an integer ny depending only
on x(G) such that if n > ng, de(G[K,)) = x(G).

Other results have been obtained in [5).

Recently, Th. Davoine and Neumann-Lara [3] proved that dc(Cs[Ks)) = 3,
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dc(C’5[K3]) = 7% dc(C5[K4]) = 3. Let 7(G) = min {n: de(G[K,] = x(G)}. We
have n(Cg) =8, 77(6’5) — 4 and in general 7(Cam41) = 4 for m > 2. Moreover
n(K4) <7, n(Ks) < 16, n(K7) < 19 and in general, n(K,) < n® — 3n + 3.

Open Problems.

1.) Is there a function f(m) such that dc(G) > m whenever x(G) 2 f (m)?
[7).

2.) Is de(G) < 2 for every planar graph? It is easy to see that dc(G) < 3
(Neumann-Lara, Urrutia).

3.) Which is the minimum order of a 5-dichromatic tournament? [16].

4.) If every ex-neighbourhood of a tournament T is acyclic, then de(T) < 2.
Is it true that if de(N*(u,T)) is at most k-dichromatic then dc(T") < ck
for some constant depending only of £? It is not known even for k£ = 2.
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Fig. 3: W;,.
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