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ABSTRACT. In this paper we define and analyze convergence of the geometric random
walks. We show that the behavior of such walks is given by certzun random matroid
processes. In particiilar, the mucing time is given by the expected stopping time, and
the cutoff is equivalent to a threshold phenomenon.

In this extended abstract most proofs are omitted. A full version of the paper is
available here: http://www.math.yale.edu/users/paki/grw6.ps

Introduction

In the past decades there has been an explosion m the number of applications
of combinatorics to discrete probability and vice versa. In this paper we explore
this connection which enables us to analyze a special case of Markov chains we call
geometric random walks.

Here is a general setup of the problem. Let Gf be a finite group, and let 5 be a set

of generators of G. Consider a Markov cham Xf on G which starts at the identity
Xy = e and moves by the rizle Xf+i = Xf . s, where s 6 <S'is a random generator.
It is easy to see that (under mild conditions) after a while the walk will be at an
approximately uiiiform group element. The problem, however, is to quantify and
compute how long is "after a while". This tune is usually called mixing time. It
depends in a complicated way on the the walk and is normally very hard to estimate
even in nice examples. There is a large literature dedicated to finding bounds on
mbdng tune as well to comparison of diflferent definitions of mbdng time (see [AF,
Dl, D2, Pl] and references there.)

Suppose now we have a sequence of groups {GJ and their generating sets {Si},
where z G N. One can try to quantify how rapidly the walks moves from the state
of being "far from mbdng" to the state of being "weU mixed". Aldous and Dia-
corns observed (see [AD, Dl]) that in many natural cases this transition happens

Key words and phrases, random walk, Mzu-kov chain, random graphs, stopping time, separa-
tion distance, cutoff' phenomenon, threshold phenomenon.
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m a period of time small compared to the mbdng time. This is called cutoff phe-
nomenon and is somewhat analogous to the phase transition in statistical physics
and various 0-1 laws in discrete probability. While proven in many examples using
asymptotically sharp estunates on the mixing time, the cutoflr phenomenon remains
a mystery yet to be solved (see [D2]).

In this paper we introduce a notion of a geometric random walk. Let V = F^
be an abelian group of vectors in a finite vector space. A subset S C V is called
geometric if with each s 6 5' we have a-s   6'forall a 6 Fg. In other words, S
must be a union of Imes in V. Now let Xf be a random walk on V generated by 5'.
We call it a geometric random walk.

Consider now a vector matroid M corresponding to 5'. Define a random matroid
process as follows. Start with an empty set and add random matroid elements one
by one until we get a base. In this paper we show:

1) The mbdng time of a geometric random walk is equal to the expectation of
the corresponding random matroid process (see Theorem 3. 1).

2) The cutoflF for a geometric random walk exist if and only if the random
matroid process has a threshold phenomenon (see §5).

3) The cutoff exists if 5 is chosen randomly m a certain precise sense (see §6).
4) The cutoff can be proved in several cases (see §5, 7).
5) The expectation can be computed exactly in several natural cases (see §2, 4).
Our technique is based on the strong uniform time approach introduced by Al-

dous and Diaconis (see [AD, Dl]) and developed by the first author ([P1, P2, P3]).
We omit most proofs due to the space constrains.

We are grateful to Persi Diaconis for the introduction to the subject. We would
also like to thank Martin Hildebrand, Laszlo Lovasz, Gregory Margulis, and Richard
Stanley for helpful remarks.

Part of the research was done when the first author was an NSF Postdoctoral
Fellow at MIT.

1. Basic definitions

Let V be a d-dunensional space over the finite field Fg, and let 0   V be the
origin. Denote [k] = {!,..., fc}. Also, ifui,..., Ufc are vectors in V, denote by
(ui,..., Uk} C V their linear span.

Let A = {ui,..., Vm} C V be a set of vectors in V such that (ui, ..., Vm) = V-
Define a geometric random walk W(A) to be a Markov chain Xf on vectors in V,
such that XQ = 0 and

Xf = Xf-i + a(() . v^f)
where a(() 6 Fg and i(t) 6 [m] are uniform and mdependent random variables. One
can think of -Y( as a symmetric random walk on an abelian group B^ generated by
elements a- Vi, i ^[m].

Consider an example. Suppose g= 2, m= rf and A = {?/i,..., Vm}- Then W(A)
is equivalent to a lazy random walk on a cube Z^ which is defined by the following
rule:
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. Choose a coordinate direction i   [m] uniformly. Flip a fair coin. If heads,
move along that direction and if tails stay.

This walk was analyzed m a number of papers (see e.g. [Dl, DGM, Pl]).
Roughly, the walks mbces after O(nlogn) steps. The problem is in many ways
simUar'to the coupon collector's problem (see [F, Dl]). We will give a careful
analysis of this walk in section 3 where the connection is made precise.

Denote by Qk the probability distribution of the walk after k steps:
Qfe(u) = P(Xfc =^), ^ e V

Observe that the Markov cham Xf is irreducible, aperiodic and reversible (see
e.g. [F, AF]). Thus it is ergodic and the Qk converges to a uniform stationary
distribution [7= l/gn as fc -^ oo.

There are several ways to quantify how fast Qk converges to U. The most
commonly used are the variation distance

tv(k) = ^ |Q-fc(5) - U{B)\ = | ̂ ; Qfc^) - ^
and the separation distance

v^V

, (fc)=W. B^^-Q-(«)J
where N == \V\== qn w the total number of vectors in V.

For random walks on groups both distances have a sunilar asymptotic behavior,
but the latter will suit better for our purposes. The separation distance has nice
submultiplicativity property

s(m + fc) ̂  s(m) . s(fc) , m, k>0
Note also that s(0) = 1 and tv(k) ^ s{k) for all fe > 0 (see [AD, AF, Dl]).

Often it is useful to define a mixing time which is a single measure of the con-
vergence. Again, there are several different measures which include (but do not
exhaust) the followmg two:

ni/2 = min{z: s(z) ̂  J) == min{? : Pl(u) ̂  ^ for all z; 6 V}
and

  
= 1 + s(l) + s(2) + ...

The latter is called the total separation and the submultiplicativity property implies
that ^ < oo. It has same order of magnitude as 7^1/2:

^ ^ "1/2 ̂  2^
(see [Pl]) and will be the main object of our study.

It is convenient to consider a generation function for the separation distances
^(z) = 1 + s(l) . z + s(2) . 22 + ...

which is called separation series. Clearly, $ = ^(1). The function C(z) is known to
be rational in z and has no poles inside a disc \z\ <, 1 (see [Pl]).

We show that m case of the geometric random walks one can give an explicit
combinatorial formula for the separation series and the total separation. This is
done m the next section.
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2. EXPLICIT FORMULAS

Let A = {ui,..., Um}, and let [m] = {l, 2,..., m}. For every subset I =
{zi,..., ^} c [m] define a subspace Li = (^,..., ^). Denote £, =r (A) the
lattice of subspaces Li for aU J c [m]. We say that A is proper if there vexist a
vector z?   V such that v ^Lf for all Lj -^ V.

Theorem 2. 1 Let AeV be a proper set of m vectors, let W(A) 6e the cor-
responding geometric random walk, and let C, = r(A) 6e the lattice of subspaces.
Then the separation series ̂ {z] for the random walk W(A) is given by the formula

w= £
L^C, L^V

\n-dim(L)+l

^-3(L)z

where n = dim(V), j{L} == |A n L\/m.
From Theorem 2. 1 one can hnmediately deduce various properties of the random

wallc W(A). In particular, one can obtain the second largest eigenvalue, which can
be interpreted as a radius of convergence p of the separation series ̂ {z) (see [Pl])

Corollary 2. 2 Let A, W(A), anri r(A) be as in Theorem2. 1. Then

s{k) ̂ C-pk

where s(k} is the separation distance for the random walk W(A), and

p = L^A)3W ' c = 1^ ̂ ^{A\j{L} = ^}| .

Before we move to particular cases, let us point out to the following straightfor-
ward generalization of the results in this section.

Let Q be any set of subspaces of the vector space V ^ ffi^. Assume that the
vector spaces in Q generate V. Let P be a probability distribution on Q. Consider
a Markov chain Xf on V such that JTo = 0 and

Xt+i = Xf+v

where v =v{t) is a vector chosen uniformly randomly from the subspace L(t) e Q,
and^the subspace L(t) was sampled from Q accordmg to the probabmty distribution
P. Denote this Markov chain by W(Q, P). Cleariy, ~when Q is a set of lines and P
is uniform, W(Q, P) is a geometric random walk.

Theorem 2.3 Let Q be a proper set of vector subspaces. Then

P.W«2)°. _..?_..^
L^£.{Q), L^V m z

where j(L) = ^L'CQ, L'CL PW .
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Clearly, this theorem generalizes Theorems 2. 2 - 2.4.

Example 2. 4 Let g=2, m=d, V ^IFT, and A= { (0,.. . , 1,, ..., 0), 1 ^ ? ^
m}. Then a geometric random walk W(A) is equivalent to the lazy random walk
on a m-dimensional cube (see section 1).

Theorem 2. 5 The separation series ̂, {z) for the random walk W(A) is given by
the formula

-(-i)fc+l(T)
W = 2-/ \ /m-fc

fc=l " m

Proof. In this case £(A) is a Boolean lattice of coordinate subspaces (see e. g.
[BBR, S]). Thus the number of subspaces L   jC. (A~) of dimension k is equal to
(^), and'for each such L we have j{L} = "^fc. Also, A is proper since the vector
(Y,..., l)   V does not belong to any coordinate subspaces except V. Together
with Theorem 2. 1 this implies the result. D

3. RANDOM MATROID PROCESS

Let 5' be a finite set and r :2S -^Z+be a rank function. We say that a pair
M = (5, r) is a realizable matroid over the field Fg if there exist d and a map
v : S -^ F^ "which preserves rank function. An image A = v{S} is caUed realization
of a matroid M = (5, r). Theorem 2. 1 impUes the following result.

Proposition 3. 1 If A is a proper set of vectors, then the separation serzes
^(z) of the random walk W(A) depends only on a matroid (5, r) and not on the
realization A.

It is easy to see that if {S, r) is realizable over Fg then it is realizable over any
Wq-, such that q' > q (see e.g. [A]). Thus one can consider realizations over fields
with sufficiently large q.

Proposition 3. 2 If M is a realizable matroid over the field ¥q, and q is suffi-
ciently large, then every realization A c¥^ is proper.

Now consider the following random process B = B{M). Fbc a realizable matroid
M = (5, r), r(5) = d. Let Bo = 0, B^ = BfUs where s = s(t)   5'^is chosen
uniformly. Clearly r(Bt) <, r(Bt+i). Stop the first tune t such that r{Bt) = d.
We call Bf the random matroid processes. Denote by r the stopping time of the
process j8(M).

Theorem 3. 3 Let M = {S, r) be a realizable matroid such that r{S) = d. Let
A C F^ be a realization of M, and let r be the stopping time of the random process
j8(M). Consider a geometric random walk W(A). Then

s(k~) ̂  P(r > fc), for allk > 0, and ^ E{r)

Moreover, if A is proper, then the inequalities above become equalities.

Let us come back now to the walk on m-dimensional cube.
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Theorem 3.4 Let A be as in Example 2.4. Let ̂  = ^(1) be the total separation
for the random walk >V(A) . We have

^ = m . t){m)

where t)(m') =l+j+j+... +_.
Proof. Recall that A is proper. Then by Theorem 3. 3 we have ̂  = E{r}. Finding

the expectation of r is the classical coupon collector's problem (see. Indeed, we
check random coordinates one at a time and stop when all coordinates are checked.
Adding the expected tune to get the first coordmate, second coordinate, etc, we get

$=£W=^+:
m m

which proves the result. D

+... + -f- =m ln(m) + 0(m),
^ -

We finish this section by constructmg proper realizations of the graphical ma-
troids.

Let F be a simple connected graph (no orientation, no loops, no multiple edges)
with vertex set Y, and edge set EcYxY. Consider a rank function r :'2E -^~Z+
as follows:

r{H)=\Y\-c(Y^H)
where H C -B, and c(V, J?) is the number of connected components of a subgraph
(Y, H}. By definition, r{E} = |Y| - 1. We caU (£, r) a graphical matroid.

Now, choose any vertex ?/o   Vtobe a root. Fbc an orientation of the edges
towards the root. For any g ^ 2 consider the following realization A = v(S) C
F^rl-l ofamatroid(^, r):

v(y, yo) = ey, v{y, y') = Cy -  y, ,y' ̂ VQ

for all (y, yo), (y, y') e E, and where ey, y EY - yo\s a, basis in F^l-l.
1-1Proposition 3.5 For any q >^ 2 the set of vectors A = i/(5) C Fgyl-l is a

realization of a matroid {S, r). Moreover, if q^ \Y\, this is a proper realization.
Now consider the following random process. Let HQ = 0, Hf+i = HfU (2/1, 1/2)

where (?/i, ys) 6 -E1 is a edge of graph T chosen uniformly. Denote r the first tune (

such that subgraph (Y, Hf) is connected. By definition, the random graph process
Hf corresponds to a random matroid process for Bf in this case. As before, denote
by r the stopping time of this process. Theorem 3.3 combined with Proposition 3.5
gives us the following resiilt.

Theorem 3. 6 Let F be a simple graph with n vortices, (S, r) be the corresponding
graphical matroid, and A = v{S) its realization over ¥q, q ^ n. Consider a geo-
metric random walk W(A) and its total separation distance ̂ . We have ̂ =E{r).

Remark 3. 7 Note that the random graph process we consider is somewhat
different from the random graph process normally studied in random graph theory
(see [Bo]). In the latter, no edges are allowed to be repeated.
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4. TWO EXAMPLES

Example 4. 1 (The case of complete graphs)
Suppose A contains vectors e;, 1 ^ Z ^n-1, and e, - e,, 1 ^ z <J ̂  n - 1,

where ei, ... , en-i isa basis inV ̂  F^-1. It is easy to see that_A is_a realization
of a graphical matroid which corresponds to the complete graph F = Kn. We have
y=M, |£|=

Theorem 4. 2 Let A be as above, W(A) be the corresponding random walk, and
^ be its total separation distance. Then

^ == ̂ nlogn+0(n)

Example 4. 3 (The case of vectors in generic position)
One of the interesting recently studied questions concerns the behavior of the

random random walks (see e.g. [DH,R,P4]). These are basically random walks on
a fixed group with a set of generators randomly chosen from a given distribution.
In this section we will study random geometric random walks which as we show
correspond to the case of lines in generic position.

Let A be a set of n vectors inV ̂  F;. We say that A is generic if every k vectors
in A are linearly independent.

Theorem 4.4 Let A be a set ofn vectors inV ̂ -^, q> (^). Let W(A)
be the corresponding geometric random walk, and ̂  be its total separation distance.
Then

^n. (f)(n)-f)(n-fe))
and the equality holds if and only if A is generic.

5. THE CUTOFF PHENOMENON

Let {Gi), (5, ), i = 1, 2,... be a sequence of groups and generating sets. Con-
sider a sequence of random walks (W, ). Denote by «, (. ) and ̂  the corresponding
separation distance and the total separation.

We say that a sequence of random walks (W, ), i= 1, 2,... has a cutoff if there
exist two mteger sequences (a, ) and (&, ) such that a, /&i -r 1' s^a»)^ o_and
^(^. ) -> 1 as i -». oo. This definition is due to Aldous and Diaconis (see [AD, D2]).

Example 5. 1 Suppose G> = Z^ and W is a random walk on a cube (see Example
2.4). Recall that the time T is defined as a time to collect all coordinate vectors.
We have

^ = E{r) = m . f)(m) = m logm + o(m)
Also, s(fc) = 1 - 2nPfc(v) = P(r ̂  fc). Now, a direct computation for the coupon
collector's problem shows that

m-1 ^ ^ 1 7^2
Var(T)=m^^-^<m2S^=^ m~
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(see e. g. [F, §9. 9]). By Chebyshev inequality we have

s{m . f)(m) - x-m) <-
X̂'

Cis(m . t)(m) +x-m) >il--^-
X'

for some absolute constant Ci. This shows cutoff for the random walk on a cube
of dimension m.

Now we can generalize this observation. LetV=F^, let A   Vbe a set of
vectors, and let W = W(A) be the geometric random walk. Consider the corre-
spondmg matroid M and the random matroid process B. Also, let r be the stopping
time of B.

We say that a sequence of random matroid processes {Bi) has a threshold if
there exist two integer sequences (a, ) and (6, ) such that ai/bi '-f 1, P(T-, > a, ) -^ 0
and P{Ti <bi) -^ 0 as i-> oo.

Theorem 5. 2 Let A, 6 V,, ?== 1, 2,... be proper sets of vectors. Then the
sequence of random walks (W, ) has a cutoff if and only if (Bi) has a threshold.

Proposition 5.3 IfVar{Ti)/E(n)2 -). 0 £(r)
threshold.

co asi -> 00, then (Bi) has a

Example 5. 4 (The case of complete graphs.)
Let An be a proper realization of a graphical matroid which corresponds to

complete graph F = Kn (see Example 4. 1). Consider the corresponding random
walk_>Vn = H7(An). Let us prove that ̂  = jnlogn + 0(n) and in fact we have a
cutoff m this case.

Indeed, consider the correspondmg random graph process Bn. We take an empty
graph and keep adding random edges until the obtained subgraph of Kn is con-
nected. Let Tn be the corresponding stopping time. By Theorem 5. 2, we need to
show that (ffn) has a threshold. But this is a known result in the theory of random
graphs.

Consider a random graph process B'^ which works m a sunilar way but when we
do not allow repetition of edges. In other words, each tune we choose an edge which

.

? randc)m edge which is not in our graph. The corresponding stopping time r^r
wiU always be bounded by Q), which is the total number of edges m Kn.

Now, for the random processes (5^) Erdos and Renyi showed a very sharp thresh-
old. Namely, they showed that for k = (n/2)(logn +x+ o(l))

,
-e~P(r' ^k)-^e-

(see [ER; Bo, §9. 1]).
To apply this result in our situation, observe that the Chernoff bound implies that

the probabUity to get more than 0 (log2 n) number of repetitions is exponentially
smaU. From here we have ̂ (r») = 1/2 TO log n + 0(n) and (^) has a-threshold.
Therefore, (Wn) has a cutoflF.
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Remark 5. 5 The cutoff considered in this paper is different from the cutoff
considered in [D2] and other papers, where the variation distance tv{k) was consid-
ered'mstead of the separation distance. While it is similar in flavor, it is not clear to
us whether either of them will imply the other one. The preliminary computations
seem to indicate that cutoff for the total variation distance is a somewhat stronger
condition.

It is important to mention here a general result of Margulis on existence of the
weak threshold for all graphs with high connectivity (see [Bo, M]).

6. THE AVERAGE CASE.

6. 1 The case of random graphs.
For a given n, q and m consider a random set of vectors AcV = ]F^, |A| = m.

What can we say about the total separation ̂  of the geometric random walk W(A).
Woiild there be a cutoff?

Clearly, n ^ m or otherwise vectors in A wUl not generate V. Suppose l=m-n
is fixed and n grows. Then roughly, we need to use almost aU the vectors to generate
the whole space V. Thus by coupon coUector's problem we need about n log n walk
steps. This'can be formalized by the followmg result.

We call a m-tuple a set of vectors AcV, such that |A| = m.
Theorem 6. 1 For any e, 5 > 0 there exist constants Ci, C2, ^i, ni such that for

every n>. n^, l^h a random n + l-tuple A satisfies the following inequalities

s(nlogn+cin) ^ e

s(nlogn+C2n) > 1 -e

with probability >l-S, and where s{k) is the separation distance after k steps of
the corresponding random walk W(A).

This roughly means that asn -> oo, a sequence of random (n + Q-tuples has a
cutoflF. Heuristically, this impUes that for. almost all sets A the mbdng time is about
the fastest possible. Thus we have a cutoff.

Notice that here q is fixed. When q grows much faster than n, we are back to
sets of vectors in generic position (see Example 4. 2 above)

Remark 6.2 There are various other results about the behavior of the so
caUed random random walks (see e. g. [DH, R, P4]) and the connection with_cytoff

phenomenon (see [D2] for review and references). Notably, m papers [G, W] the
cutoff in terms of variation distance was shown for almost all sets of generators of
Z?. While the latter results roughly corresponds to the case g = 2, the technique
is different from ours.

6.2 The case of random graphs.
By analogy with the previous subsection one can consider a threshold phenom-

enon of random graph process for graphs with n vertices and m edges. It turns
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out that one can prove results similar to those of the previous section. The appli-
cations to the cutoff of geometric random walks are clear, so we will deal directly
with graphs.

Let G be a graph on n vertices. We say that G is m-graph if \G\ = m, i.e. G has
m edges. We say that set H is l-subgraph if H C G and\H\ == L

It is known that for m = o(n log n) almost every random m-graph is disconnected
(see e.g. [Bo]). We will show that roughly jnlogn edges is enough not only for a
graph to be coimected but to have a threshold as well.

Theorem 6. 3 For any e, 5 > 0 there exist constants Ci, C2, ^i, ni such that for
every n>^n^, l>^l-^, a random ^nlogn+ln)-graph G on n vertices satisfies the
following inequalities

P(r < nlogn+ cin) ^ e
P{r ̂  nlogn+can) ^ 1 - e

with probability > 1 - S, and where T is the stopping time of the random graph
process B(G}.

7. THE CASE OF EDGE-TRANSITIVE GRAPHS.

In this section we show that if we have a sequence of edge-transitive graphs, it
will always have a threshold. Thus we effectively "derandomize" the result of the
previous section.

Graph G is called edge-transitive if for every pair of edges Ei and E^ there is
an automorphism n :G -> G such that 7r(Ei) = £'2. For example, both complete
graph Kn and complete bipartite graph Km, n are edge-transitive.

Let d = d{G) denote the minimum degree of G.

Theoreni 7. 1 Let (Gn) be a sequence of edge-transitive graphs on n vortices
such that log d/log n -^0 as n -> oo. Then a random graph process B'(Gi) has a
threshold.

The theorem covers many nice symmetric cases such as cycle, m-dimensional
cube, and many others.

Example 7.2 Let 0< a < 1 and n

an be the set of all [anj-subsets of

[n\. Consider a sequence of graphs Tn with vertices in \ n \ and edges (J, J),n

an

J, J6 ^ j, such that |Jn J| = [an\ -1. Clearly, Tn is edge-transitive. It is easy

to see that d(Tn) = n - [crraj = 0(n) while n

an = (la"nj) = 0(/3n/^), where
/? = (aa(l - o;)1-0')-1 > 1. Thus log d/log n ^- Oasn -> oo and by Theorem 7.1
the sequence of random graph processes B'("Tn') has a threshold.

Example 7.3 Let F = K^,n be a complete bipartite graph, m ^ n. We have
d= m and F is edge-transitive with m+n vertices. Theorem 7. 1 implies that the
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sequence of the corresponding random graph processes ff/(Xm(n), n) has a cutoflF if
logn/logm(n) -^ 0 asn-^ oo. For example, m(n) = nlos" will work.

Example 7.4 Let Tn be a sequence of Cayley graphs of finite groups generated
by small conjugacy classes. Then Fn are all edge-transitive graphs and the theorem
implies that "we have a threshold for the corresponding random graph processes.

For example, let G= 5n be a symmetric group, and T be a set of all transposi-
tions. Let Fn be the corresponding Cayley graph. It is clearly edge-transitive. We
have

d(T»). M=(D^Oa. n-
]Tn\~ ~ \Sn\ n\

00

Now use Theorem 7. 1 to establish the threshold.

Theorem 7. 1 can be generaUzed to transitive matroids. We call matroid M =
?, r) transitive if for any two elements si, 53 e 5 there exist a permutation TT .

5->/5 such that 7r(si) = «2 and r^{X)) = r{X) for every X C S. A matroid
of the form M' = {S', r\s'), S' C S ]s caUed submatroid. A matroid^(5, r) is
called connected if it is not a sum of two sumbmatroids (5/, r') + (5//, r//), where
S=S'U S", S' n S" == 0, and r(X) = r'{X H 5/) + r//(X H 5//) for all X C 5.

The role ofvertices (or rather their complements) ofamatroid M play connected
submatroids M/ such that r(M/) = r(M) - 1. We call these generalized vertices.
Let the degree of such a generalized vertex be the number of elements s 6 5 such
that r(M/D{s}) = r(M). "Define the degree of a matroid to be the minimum degrees
of its generalized vertices.

Theorem 7. 5 Let (Mn) 6e a sequence of transitive matroids with n generalized
vertices and degree d = d(n) such that logd(n)/logn -^ 0 asn-^ oo. Then a
random matroid process B'(Mn) has a threshold.

Note that Theorems 7. 1, 7. 5 are false if the (crucial) transitivity assumption is
dropped. For instance, consider two copies of the hypercube graph of dimension d.
In the first copy, delete an edge uv (say), and in the second copy delete an edge u'v'.
Draw two new edges uu' and vv'. The resulting graph G is connected, d-regular
and has 2d+1 vertices. But u(G, e) ~ e/(l - e) for all small e.

When the degree d is large, a similar result can be proved under somewhat
different assumption. We say that two subgraphs G'i and  2 of G are equivalent
if there is an element TT £ Aut{G) such that d = -^(Gs). For a subforest F
on s vertices, let g{F) be the number of subforests of G equivalent to F. Let
g{s) = mmp Q(F). Assume w(n) is a function tending to infinity.

Theorem 7.6 There is a function f{C~) such that for any C > 0, there is
no =n{C) such that if G is a connected graph on n > no vertices and e(f{C)) >
(w(n)d(G'))/^ thenu(G, e) > 1/C.

This theorem covers several nice examples such as complete graphs Kn (cf. Ex-
ample 4. 1) or complete bipartite graphs Kn,n. Note that Theorem 7.6 can be
generalized to matroids as well.
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