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ABSTRACT. A MacMahon symmetric function is a formal power series in a finite
number of alphabets that is invariant under the diagonal action of the symmet-
ric group. We show that the MacMahon symmetric functions are the generating
functions for the orbits of sets of functions (indexed by partitions) under the
action of a Young subgroup of a symmetric group. As an application of this com-^
binatorial interpretation of the MacMahon symmetric functions we give a proof
of a special case of a conjecture of Gessel and we relate MacMahon^ymmetric
fanctions with Stanley's chromatic symmetric function of a graph. Finally, we
show how to compute the transition matrices as well as the scalar product and
the Kronecker product of the different bases for the ring ofMacMahon symmetric
functions.

1. INTRODUCTION

A MacMahon symmetric function is a formal power series in a finite number of
alphabets that is invariant under the diagonal action of the symmetric group.

'We study the relationship between the ring of MacMahon symmetric functions,
the partition lattice and Young subgroups of the symmetric group. We provide
a combinatorial interpretation for the MacMahon symmetric functions in _terms
of orbits of sets of functions (indexed by partitions) under the action of a Young
subgroup of a symmetric group.

As an application we define the chromatic MacMahon symmetric function of a
graph G. It determines the degree sequence of graph G. Moreover, it specializes
to the chromatic symmetric function of Stanley [15].

Finally, we show how to compute the transition matrices as well as the scalar
product and the Kronecker product of the different bases of the ring of MacMalion
symmetric functions.

MacMahon symmetric functions where introduced by MacMahon^ [10J, Vol. 11,
section XI, p. 281-332. MacMahon applied them to the problem of placing balls
into boxes and to the theory of Latin squares.

In [6] Ira Gessel used MacMahon symmetric functions to derive explicit formu-
lasforj the number of 2 x n Latin squares, of 0-1 matrices with trace 0, and of

words in a partially commuting monoid. Moreover, he extended the concept of
P-recursiveness to MacMahon symmetric functions and showed that for fixed k,
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the number of k x n latin squares is P-recursive as a function of n. Similarly,
he showed that for fixed k, the number of k x n 0-1 matrices with zeros on the
diagonal and every row and cloumn sum k is P-recursive as a function of n.

MacMahon symmetric functions appear in other areas of mathematics. For
instance, Gelfand and Dikki [4], and Olver and Shakiban [11] used them in connec-
tions with the theory of partial differential equations. Futhermore, Adem, Maginis
and Milgram [1] used them in the study of the cohomology of the symmetric group.

Let u be a vector in  ° = [j^^ Nfc. A vector partition of u is an unordered
sequence of vectors A adding to u.-We write A h- u to indicate that A is a vector
partition of u. The nonzero vectors are called the parts of A. Usually, we write

A = (6i, ri,..., wi)(&2, r2, ..., W2)....
We define A! = &i!ri! . --w^. b^. r^. ... w^. -- . .

Sometimes, it is convenient to write A using block notation. That is, if vector
partition A has m(&,, r,, - . . , w, ) copies of part (6,, r»- . . , w,) for each z, then we
write

>=]^{bi, ri,..., Wi)m(bi'r"-^.

We define |A|=n, m(6,, r,,..., w, )!.
The weight of a vector u, written as weight (u), is the sum of the coordinates of

u. LetX =Xi+X2+--- , Y=yi+y^+. -- ,..., sijidZ=Zi+z^+--- be infinite
alphabets. Given any formal power series in X, Y, --- and Z there is a natural
action ofpr e 5'oo on / called the diagonal action of TT in / and defined by

7T/(2;1, 2/1, --- , Zi, X2, y^, --- , 22, ---) =
f{^ni, yvi, ... , z^, x^, y^, ... , z^, ---}.

A formal power series / in the k alphabets X, Y, --- , Z is called a MacMahon
symmetric functions in k systems of indeterminates if it is invariant under the
diagonal action of each TT e 5'oo and if the multidegree of / is bounded. Let WtW
be the ring of MacMahon symmetric functions on k systems of indeterminates. We
have that

SOT(I) c m^ c... c mi^) c...

We define the set of MacMahon symmetric functions, denoted by SDt, as

mt = U wiw.
k>l

Let / and g be MacMahon symmetric functions. Since f + g and fg are in SDT
when both / and g are, it follows that SDt has a ring structure. Moreover, it has a
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graded ring structure:

MACMAHON SYMMETRIC FUNCTIONS

mt=|j U ^-
weight(u)=7i

where 27tu is the vector space of MacMahon symmetric functions of homogeneous
multidegree u. Akin to the homogeneous pieces of the ring ofsymmetric functions,
the vector spaces 2Jtu have bases, indexed by vector partitions of u, called the
monomial, elementary, power sum, homogeneous, or forgotten MacMahon symmet-
ric functions, respectively. The first four basis were introduced by MacMahon^in
[10]. The forgotten MacMahon symmetric functions are defined following Doubilet
[3]. Finally, the one-dimensional MacMahon symmetric functions were introduced
by Gessel [7]. We follow the notation ofMacdonald [6, 9].
The Monomial MacMahon Symmetric Functions. We have that any vector parti-
tion A = (61, T-i,..., wi)(&2, 7-2, .. ., W2)... determines a monomial XA:

XA = ^I2/[l . . . zwvx^ .. .. ^2 ... x\ly\l . . . ^'.
The monomial MacMahon symmetric functions indexed by A is the sum of all

distinct monomials that can be obtained from x^ by a permutation TT in 5^, where
the action of TT in XA corresponds to the diagonal action. We have that

m^ r61«7
, x'iiVi,rl . . . -vwl 'r(>2-i,r2 . . . 7W2 . . .

'il " 'ziixi^yii ""^2 " ".

where the sum is taken over all different monomials with exponents (61, 7-1,..., Wi)
(&2, r2,..., W2)....
The Elementary MacMahon Symmetric Functions. We define e^,r,..,w) by

^ e^,.. ^sbtr---uw=Y[{l+x, s+yit+---+Ziu).
b,r, - ,w t

Let A be a vector partition. We set e\ = e(6i,n,..., u, i)e(&2, r2, -,w2) . " .

The Complete Homogeneous MacMahon Symmetric Functions. We define /2. (&, r,... ,w)
by

^ />,,,,., Ar... »-=n, _^_^_,. _^.
&,r,-,w »

Let A be a vector partition. We set h\ = ^(6i, n,..., wi)^(62, r2, -,u'2) " " .

The Power Sum MacMahon Symmetric Functions. We define P(&,r,...,w) by

P(b,r, -,w) = ^^i ... ZT= m(6, r, -,w)-2-r
!

Let A be a vector partition. We set p\ = P(fti,n,..., wi)P(i>2, r2, -,w2) "" .
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The Forgotten MacMahon Symmetric Functions. Let u be the involution in 2Jt
defined by ̂ (e^) = ^- The forgotten MacMahon symmetric functions are defined
by

a;(mA)=(signA)A.

The One-dimensional MacMahon Symmetric Functions. We define 9(b, r,...,w) by

^ E ^,r,-^)^r
b,r,-

00
. uw =

.,w
n (i+E^^-^)56'^---"")-

gcd(b, r, -,w)=l i=l

Let A be ̂ vector partition. We set ̂  == ff(6i, r,,.., wi)5(62, ^,..., w2) . . . .
A MacMahon symmetric functions is unitary if it is indexed by a partition of

(l)n=(l, l,..., l).
We assume the reader to be familiar with the partition lattice and its Mobius

function (See [2, 15]. ) Moreover, we assume the reader to be familiar with the
notions of alphabet, words and of Lyndon words (See [8, 12].)

A sentence in A* is a totally ordered multiset of words. We denote the set of
all sentences in A* by As The evaluation of a word LU, denoted by ev(^), is the
monomial xbyT ---^w in Q[a;, ?/,... , z] where b = \u}\x, r = \u\y, and w =\uj\z.
The evaluation of a sentence 5 = a;i^2 . . -^, denoted by ev(5), is the monomial
ev(a;i)ev(a;2)- . . ev(a;;_) where ev(a;i)= ̂ t^ . . -^. IfLis a set of words or sentences,
then the generating function of L is the sum of the evaluations of the elements of
L. For the rest of the paper, we let A = {X, Y, --- , Z} be a noncommutative
alphabet and we let {x, y, --- , z} be commutative variables.

2. BASIC CONSTRUCTIONS

Let u = (6, r,... , w) be a vector in  ° of weight n. (That is, the sum of the
coordinates of u is n). Let S^ be a Young subgroup of Sn. We have that Sy.
acts on [n] by restricting the canonical action of S^ on [n] to permutations in S^.
Moreover, this action partitions [n] into equivalence classes. Two elements belong
to the same equivalence class if and only if there is a permutation a in Su such
that o-ni = na. We order the equivalence classes using the smallest element in each
of them.

Let [n]u be the set of ordered pairs (i, k) where i belongs to the kth equivalence
class of [n] under the action of 5'u Sometimes, we denote the pair (?, k) by putting
k dots over i. Ifu = (6, r,... , w), then we may think of b as the number of blue
elements in [n]u, of r as the number of red elements in [n]u, and so on. Similarly,
let pn)u be the lattice of partitions of [n]u. Given a partition TT in Hn, the action
of S^, on [n] defines a partition TTy in (H^)u by replacing element i in TT by the
ordered pair (i, k). The elements of (H^)u are called colored partitions.
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Let u be a vector of weight n. The type of TT^, written type(7T^), is the vector
partition of u defined by saying that type(TTu) has part (&,, r,, . . . , Wi) with multi-
plicity mi if and only if there are exactly mi blocks of ?Tu with bi elements in the
first equivalence class, r, elements in the second equivalence class, and so on until
the last equivalence class that has w» elements.

If TT is a partition of [n], then type(Tr) is a unitary vector partition. Moreover,
the partition TT can be recovered from type(Tr). In the rest of this paper, we identify
a given partition TT with the unitary vector partition type(7r).
Example 1 (5I (i, 2) acts on Hs). We explore the action of 5(i, 2) on II3- First; we

have that [3] is partitioned into two equivalence classes: {1} and {2, 3}.
1. Set partition TT = 1|2|3 has type (1, 0, 0)(0, 1, 0)(0, 0, 1)^.

Under the action of 5'(i,2), TT is colored as 7T(i,2) = 1|2|3.
Moreover, type(7T(i, 2)) = (1, 0)(0, 1)(0, 1).

2. Set partition TT = 12|3 has type (1, 1, 0)(0, 0, 1).
Under the action of5'(i, 2), TT is colored as 7T(i, 2) = 12|3.
Moreover, type(7T(i, 2)) = (1, 1)(0, 1).

Definition 2. Let Fn to be the set of all functions from [n] to P. That is,
Fn={f:[n}-. -P}.

We say that ball i is in box j if f{i) = j.
Let / be a function from [n]u to P. We weight / by

7(/) = n c(ri)/w
d£[n]

where c(d) denotes the color of ball d and we use variables x, y, .. , z to denote
the colors of the balls. To any set T we associate the generating function:

7(T)=E^)-
/eT

Given any / G F, we define a partition of [n], denoted ker/, by saying that ni
and ri2 are in the same block of ker/ if and only if /(ni) = , (^2).

Following Doubilet, we define a placing p to be an arrangement of the balls (that
is, the elements of [n}) into the boxes (that is, the positive numbers, P), in which
the balls in each box may be placed in some configuration. Note that any function
is a placing where the balls are in no special configuration.

Define P^ to be the set of all placings from [n] to P with prescribed configuration
c.

P^ == {p : [n] ̂  P with configuration c}.
We define the underlying function of the placing p to be the function obtained

from p if we forget about the extra data given by the configuration of the balls. The
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weight of a placing is defined as the weight of its underlying function. The kernel
of a placing p, written as kerp, is defined as the kernel its underlying function.
Definition 3 (The projection map). Let S^ be a Young subgroup of Sn acting on
Tin. Let p:[n]-^P be a placing. We define pu : [n]u ->P ~by

Pu((i, k))=p^.

The map sending p i-^ ?" is called the projection map and denoted by pu.

3. A COMBINATORIAL INTERPRETATION OF THE MACMAHON SYMMETRIC
FUNCTIONS

In this section we define three classes of sets of functions and two classes of
sets of placings. Each of these is indexed by partitions in Hn. We show how
their corresponding generating functions are related to the homonymous basis of
the space of unitary MacMahon symmetric functions. Moreover, we show that
any of monomial, elementary, power sum, homogeneous, or forgotten MacMahon
symmetric functions can be obtained as the generating function of the image of
one these sets under the action of a Young subgroup of the symmetric group."
Definition 4. Let TT be a set partition of [n].

1. Let Mv be the subset of Fn defined by

^. ={/:/ ^n, ker/=7T},

and let m^ be its generating function, m^. = 7(^1^).
2. Let PT, be the subset of Fn defined by

^={/:/ ^, ker/^7r},

and let p^ be its generating function, p^ = 7(^).
3. Let 8^ be the subset of Fn defined by

^={/:/ Fn, ker/A7r=6},

and let e^. be its generating function e^. = 7(^).
4. Let Hv be the set of placings p such that within each box the balls from

the same block of TT are linearly ordered. Let h^ = 7(^^) be its generating
function.

5. Let Tv be the set of placings such that balls from the same block of TT go into
the same box, and within each box the blocks appearing are linearly ordered.
Let f^ == 7(J, r) be its generating function.
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Main Theorem. Let Sn be a Young sugroup of Sn. Let TT be a partition of [n]
and let A be the type o/TTu. We have that

?": ajt(i)r> ^ mtu
m^ ̂  |A|mA
PTT^PA
e^ i-4> A'e^
^ ^ A!/IA
/. ̂  |A|A

For a proof of the Main theorem see [13]. In Example 5 we try to give the idea of
the proof. (To proof that h^ ̂  X\hx we first show that /i(b, r,... ,w) is the generating
function for sentences S in As such that \S\x=b, |5|y=r, and|5|z=w.)

Example 5 (5(4, 2) acts on He). Let TT be 12|35|46. The type of ̂4,2) is given by
vector partition A = (2, 0)(1, I)2.

1. If / e M^, then ker/ = TT. It follows that i, 2 ^ t, 3, 4 >-). j, and 5, 6 .-> k,
and i, j, and k are different indices. Therefore 7(/) = x^Xjyj XkVk- Moreover,

7(A^^) =^^XjyjXkVk = 2 ^ x^yjXkVk = 2m(2, o)(i, i)2.
i, ],k i,3<k

2. If / 6 P^, then ker/ ̂  TT. Hence, 1, 2 i-^ ?, 3, 5 i-^ j,^ and 4, 6 ^ k, where
i, j, k are not necessarily different. Therefore, 7(/) = x^XjyjXkVk- Moreover,

7(^) = S a;? ̂  ̂ ^- S 2;fcz/fc = P(2>0)(1'1)2 .
i j k

3. If/ £ ^ then ker/ ATT = 6. It follows that 1 and 2 should be in different
blocks of ker/, and that 3 and 5 (and 4 and 6) also should be in different
blocks of ker/. We have that,

7(^) = S ̂^- S xiyj £ ̂ ^
i^3 i^3 W

= 2 ̂  XiXj ^ 2;, yj ^ XiVj = 2e(2, o)(i, i)2.
i<3 W W

4. Let /   %.. We have that ̂ {Ux} = 7(^[i, 2])7(^[3, 5])7(%[46])- Therefore,

7(^A) = 2(^2;? + S 3;t^") (2 S xiyi + S:I;i^')2
i i<j i W

= 2/1(2, 0) ̂ (i, i)2 = 2^A-
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Corollary 6. Let Sn be the symmetric group. Let TT be a partition in Tin a-nd let
A be the type TTn. (Note that \ is a partition of n. ) We have that

pn : 2Jt(i)n -^ ^

where 3Jtn is the vector space of symmetric functions of degree n. Moreover, we
obtain that m^, P),, e\, h\, and /^ are the usual symmetric functions.

4. THE CHROMATIC SYMMETRIC FUNCTION OF A GRAPH

The chromatic symmetric functions of a graph can be defined in terms of M^. We
introduce some terminology. A simple graph is a graph without loops or multiple
edges. Let G be a simple graph with vertex set [n] and edge set E. A function
/(: [?i] -> P is called a proper coloring of G if /c(u) ̂  /c(v) whenever u and v are
vertices of an edge of G.

A stable partition TT of Gf is a partition of [n\ such that each block of TT is totally
disconnected. Let S{G) be the set of all stable partitions of G.

Definition 7 (Stanley [16]). Let G' be a simple graph with vertex set [n] and edge
set E. The chromatic symmetric function is defined as

XG = ^_X^)X^) ... X^n).
K.

where the sum ranges over all proper colorings re : [n] ->P.
We define the set ^:n|c in terms of the MT: and show that the generating function

of this set is the chromatic symmetric function.

Definition 8. Let (7 be a simple graph with vertex set [n] and edge set E. Let
J:n\Q be the subset of Fn defined by

^n\G = {/: [n] ->P: for any {n^n^} e E, f(n^) ̂  f(n^}
= u u ^..

Ahd T65(G)

Proposition 9. Let Sn be the symmetric group. Let {^n\c}n be the image of J:n\y
under pn. We have that

7({^lo}J=^.
We obtain a MacMahon symmetric function if instead of Sn we have one of its

Young subgroup acting on M^. This may be desirable if we have a graph (or
directed graph) G and that we have some exceptional vertices that we want to
keep track of. Then, may distinguish between the different kinds of vertices by
using different kinds variables to weight them. For instance, suppose that we are
interested in the degree sequence of graph G. Then, we define the MacMahon
chromatic symmetric function as follows.
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Definition 10. Let G be a simple graph with vertex set [n] and edge set E. The
diromatic MacMahon symmetric function (in alphabets Xi, X2, . . .) is defined by

XG = > , 2;d(l),Ki^d(2),K2 . . . 2;d(n),ren-
K .

Proposition 11. Let XG be the chromatic MacMahon symmetric function of graph
G. Then we have that

1. There is a vector u = (ui, U2, . . . , "n) such that XG   33tu-
2. The degree sequence ofG is (1U12U2 .. -n"").
3. We can recover the chromatic symmetric function XQ from XQ:

pu(Xc) = XG

Example 12. In [15] Stanley computed the chromatic symmetric function for
graphs'G and H and showed that XQ=XH- See Figure 1.

Graph G Graph H
FIGURE 1.

The chromatic MacMahon symmetric function of G and H are given by
XG = 2m(Q, 2,0,0)2 (0, 0,0, 1) +4m(0, 2,0,0)(0, l, 0,0)2 (0, 0,0, 1) +m(0, l, 0,0)4 (0, 0,0, 1)-

XH = 2m(o, i, i)(i, o, i)(o, o, i) + 2m(i, o, i)(o, o, i)2(o, i,o)
+ m(o, i, i)(o, o, i)2 (1,0,0) + m(i, i,o)(o, o, i)3

+m(o, o, i)3(o, i,o)(i, o,o)-

That is, the chromatic MacMahon symmetric function distinguishes between these
two graphs. ^ ^.

We have that XG £ 3^(o, 4,o, i). Therefore, the degree sequence ot C; is (-2, 2, .̂  .z^).
Similarly, we have that X^'6 97t(i, i,3). Therefore, the degree sequence of H is

2. 3. 3,
'We~have/that p(o, 4,o, i) (^c) = P(i, i,3)(^H) is the chromatic symmetric function of

both graph G and graph H.
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5. THE ONE-DIMENSIONAL MACMAHON SYMMETRIC FUNCTIONS AND AN
SPECIAL CASE OF A CONJECTURE OF GESSEL.

We prove a special case of a conjecture of Ira Gessel using our combinatorial
interpretation for the MacMahon symmetric functions.

Conjecture 13 {Gesse\~). Let X be a vector partition of u. The sign of the coeffi-
dent of h\ in §u is (-1)^^-1.

We obtain that the following proposition holds.

Proposition 14. 1. Let n be a partition of (1)". Then,
[^(i)"=(-l)(;(7r)-l) )-l)!.

2. Let X be a vector parition of(l, n~). Then
(-l)(i(A)-i)(^(A)-l)!

!(i, ") = --n-^-^-.

In the proof of Proposition 14 we use the projection map and following charac-
terization of the one-dimensional MacMahon symmetric functions.
Proposition 15 (Gessel). Let 6, r, - . . , and w be coprime numbers. Let

G(nb,nr,...,nw) = {M : M is a multiset of Lyndon words in As and
\M\x = nb, \M\y = nr,... \M\z = nw.}

Then, 7(G'(n6, nr,..., nw)) = ^(n6, nr,..., nw).
6. THE SCALAR AND KRONECKER PRODUCTS OF MACMAHON SYMMETRIC

FUNCTIONS.

FoUowing Gessel [6] we define a scalar product on 2Jt by {h^m^} = S^. We
have that for any MacMahon symmetric functions / and for any vector partition
A' ^e in?er product <^' f} gives the coefficient of x[1--- zwlxb^ '. .. z^2--^ in /.

We define the Kronecker product in the ring of MacMahon symmetric functions
by P\*Pi^= (p\, p^p\ cmd extend by linearity.

We define a lifting map ?" : 2Jtu ̂  mt(i).. This map allows us to compute the
Kronecker product and the scalar product of Macmahon symmetric functions. To
prove proposition 16 and 17 we use the fact that the number of partition TT 6 Hn
such that TTy has type A is fi) = ^.

Definition 16 [The lifting map). Define M^ = Q)|A|m^. Then, we define the
lifting map p^, : 27tu ->. yjl^r. by

Pu{M^~)=^m^
7TGA

where the sum is taken over all TT of type X.
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(Similarly, we define PA = g)?A, E^ = g)A!eA, ̂ A = 0^'^. and FA =
g)|A|/A. Then, we obtain that ^(-PA) = E^eA^' P"(^) = E^eAeT ' Pu(H>) =
^^ h^, and that pu(^\) = E^eA ̂ -)
Proposition 17. The lifting map pu has the property that

PuPu = 1

Moreover, we have that for all f, g G. 27tu
{f, 9}=u\{pu(f), pu (g)}-

Proposition 18. Let f and g be functions in fJJtu. Then
1. The map pu satisfies

W*g}=u\pu{f)*pu(g')-
2. The Kronecker products on SDT(I)" and 27tu a»~e re;a*ed by

f*9=u\p(pM)*Pu{9})-
3. The homomorphism uj is an algebra homomorphism. That is,

u}{f)*uj{g~)= f*g-
for all f, geVftu.

Propositions 17 and 18 together with the Main Theorem and [3] allow us to
compute the scalar product of any two functions in 9Jt.
Example 19 (The inner product (px, P^ ). To compute (px, P^ we proceed as
follows:

{P^P,}=U\{p^P^, pn{Px)}=U\{^P^P-\
'n-eA o-e^

^,a _ ", (U\ ^,,=«.E^)=U!E^=U!^|^
weA
o-e/i

7T)|

Therefore, we have that (p\, p\) = u! ̂ M.. /'A _\i-

Example 20 (The Kronecker product hx * h^). To compute hx * h,, we proceed
as follows:

hA ./i" = 1^QBX * ff"= ̂Qps (p"(ffA) * p'(fl"))
^^^^y^^. ^)

. 7T£A <r p. T A
CT£^
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7TSA
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