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Abstract

The coordination sequence {5(m)} of a lattice gives the number
of lattice points that are m bonds away from a given pomt. This se-
quence may be useful m applications of lattices as vectors quantizers,
for instance, in stUl unage and video codmg. We show here several
combinatorial equalities between expUcit formulae for the coordination
sequences of two unportant lattices. A combinatorial explanation for
these formulae is also provided.

Abstract

La sequence de coordination {S(m)} d'un reseau donne Ie num^ro
de points qui sont a distance m d'un certam pomt. Cette sequence
s'avere utile lors de 1'application des reseaux en la quantification vec-
torielle des signaux, par exemple, dans la compression d'unages et de
video. On montre ici quelques egalites combmatoriques entre explicites
formules pour la sequence de coordmation de deux reseaux importants.
On fournit aussi une explication combinatorique de ces formules.

Keywords: Coordination sequences; combmatorial equalities; lattice enumeration.

1 Introduction

The coordination sequence of an infinite graph G is the infinite sequence
{5(0), 5(1), 5(2),... }, where 5(m) is the number of vertices at distance m
from some fixed vertex of G.
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A ri-dimensional lattice A^ in Rd, is a set of points such that

Ad={3; Rd : x=^M},

where ̂  = (^i, 6,.., d)   Zd aiid M is a generator matrix whose rows are the
basis vectors ̂ , ^2,... , ^, each of dimension d. The definition of the different
lattice types is postponed to the following sections.

Throughout this paper, G is the contact graph of a ri-dimensional lattice
packing, formed by taking the vertices to be the points of the lattice and
joining each point to its closest neighbors. Notice that G is a regular and a
distance-regular graph.

If G' is a distance-transitive graph with some fixed choice of origin, and v
is a vertex of G, then ht{v), the height of u, is the number of edges in the
shortest path from v to the origin. Then

S{m~) = #{u   G : ht(v) = m}.

In case ofsubband coding applications, as still images or video, lattices are
commonly used as vectors quantizers, thus reducing the exponential increase
in computational search and storage that most of the VQ techniques suffers
when the vector dimension grows [4], and taking advantage of the optimality
conjecture of lattices in the high rate [5]. To this goal, lattice points should
be enumerated, and due to the statistics of images, the /i norm is preferable
to the l-i norm [3], therefore making useless the 6 series of a lattice [1].

From now on let A^(d, m), the contour points, denote the number of points
2;   Ad such that ||a;[|i = m,

d

7VA(d, m) = #{^   Ad : \\x\\, = ^ |^| = m}.
!=1

Usefulness of N^m) becomes now clear: given an available finite bit
rate per dimension R, the maximum number oflattice points to be encoded is
T = 2dR {R = ^logaT), which is equivalent to finding the maximum l[ norm
L such that

L

^N^(d, m)<T.
m=0

In 1997 Conway and SIoane [2], extending work of O'KeefFe and others,
propose explicit formulae for the coordination sequences of some of the root
lattices.
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In 1998 we have proposed combinatorial expressions for computing the
contour points for some of the most used lattices [9].

In this paper the equivalency of coordination sequences and contour points
for the Zd and Ad lattices is shown by giving combinatorial proofs. Moreover,
a combinatorial explanation of the coordination sequences formulae is now
provided.

2 Integer Cubic Lattice
The cubic lattice can be defined as follows

Zd={2;= {Xi, X<2,..., Xd)  

Proposition 1 From [2],

5z(^)=Ei^
i=0

d-i+m- I
d-1

Proposition 2 From [9],
min{d, m}

Nz{d, m)= ^ 21^
1=1

min{d, m} m - 1

i-1

Lemma 3 Since the height of any point a; 6 Zd is ht(x) = E^=i 12;il' then

5z(m) =Nz{d, m).

Proof: We shall use here the 'Snake Oil' method [11]. The ordinary power
series generating function (opsgf) of the identity left hand side is first com-
puted:
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^-)=E-E(9(d-r_T-1)
m !=0

E(=Ef?)Efd -^T-l)2;md-1 X'

=S(:d~>
12;-(d-i-l)

^-^ fd-i+m-1'
^\ rf-1

m

-^(d}x-^d-i-l\xd~\

^m+(d-i-l)

z-^ (i - xy
. _^ (d}r-^-i-l)+(d-l)

==(T^FZ-U2:

'^-W^[z)xi
, (l+^=fl±?{1-x)^''^ ~\^x^

For the identity right hand side, proceeding as before:
min{d, m}

^M=E-ra"Ei i"<f)(m_-,1)
m i=l

m-r-yc^[m:^m
-E<d)-I:(m_-, 1)-1
-Y-o. ^^ ^=y[~i)x-(T^y
=E2'(U(d\ xi

i^ {1-xY

=^(?)(^ x

=(l+^r=(^r.
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Since the two generating functions are the same, the expressions must be
equal, i

Example 4 For Z3, 5z(2) = A^z(3, 2) = 18. The points are

(0, 0, 2), (0, 0, -2)
(0, 2, 0), (0, -2, 0)
(2, 0, 0), (-2, 0, 0)

(0, 1, 1), (0, -!, -!)
(1, 0, 1), (-1, 0, -!)
(1, 1, 0), (-1, -1, 0)

(0, 1, -1), (0, -1, 1)
(1, 0, -1), (-1, 0, 1)
(1, -1, 0), (-1, 1, 0).

For the sake of clarity, the first values are tabulated:

1

2

3

4

5
8

10
16
24
32

2

4

6

8

10
16
20
32

2

8

18
32
50

128
200
512

2

12
38
88

170
688

1340
5472

2

16
66

192
450

2816
6800

44032
1 48 1152 18448 221952
1 64 2048 43712 700416

2

20
102
360

1002
9424

28004
285088

2141808
8991552

The combinatorial interpretation of Nz{d, m) was given in [9]; now we
provide it for 5z(m).

When the sign of each particular coordinate in a point is taken into account,
N^{d, m) can also be expressed as

Nz(d, m)=
'm - 1

,

d-l
d-1

+£(
p=l

+
d+m- I

d-1

§e^: f(d-p)+(m-k)-l
(d-p)-l

where the first binomial coefficient stands for those points in which all coor-
dinates are strictly positive; . the second binomial coefficient stands for those
points with no strictly positive coordinate; and the last term stands for those
points with both positive coordinates (p) and negative or zero coordinates.
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NowA^(ri, m)=

=(m~l}+(d+m-l}+dV-(d}\-fk-l}^-p)+(m-k)-^^d-lj+[ d-1 )+^[p)^[p-i)["~ Yd-p)"_i"
fm~l}+(d+m~l}^fd\1^f 3 \({d-p)+{m-{j+l))-l
d-1

+
d-1 ^W^YP-I.

d-1_f^-^^fd+m-l\ , ^fd\^/r j=^)+r^l)+^QE^)
(rf-p)-l

d-p+m-j-1''
d-p-1

'm-r
.

d-1 +
rd+m-lm- ̂  + V (d} ({d~ p+m~2)+ (0)+ n- l ^ +^ Ul(d -P - D +fr - 1')' +l)byle- s-261

fm-l\ , fd+m-l'
.
d-l)+[ d-

P-.

d-1
. m-l\ . ^

'7;r-^E(
rm-l\ , ^/fd\fd-p+m-l
^-^+^Wl rf-'i'

d\fd-p+m-l>
d-1

d

=s(
p=0

= 5(m).

p=[

d-p+m -1
d-1

3 Ad Lattice

The Ad lattice can be defined as follows

Ad={x=(xo, Xi, x^,..., Xd)^Zd+1 : (E^o^)=0} (ri^2).
Proposition 5 From [2],

rd\ fd-i+m-1's-(m)=S(^( d-1

Proposition 6 From [9],

^(ri, m)=^
i=l

'd+1' ^-lyri+i-z+^-r
^-iA ?
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Lemma 7 Since the height of any point a; 6 A^ is ht(x) = ^ Y,^ |a;, |, then

SA(m)=NA(d, 2m).

Proof: As in the previous proof, one would like to use the 'Snake Oil' method,
but while the ordinary power series generating function (opsgf) of the identity
left hand side can be computed:

F.(x) = ^ x:mv^
z-^

d^fd\2fd-i+m-\'
m i=0

2d=E(:)E
d-1

'd-i+m-r
d-1

la;,m

-^
.£

x-(d-i-l)

^d-i+m-l\^^_i_^
d-1

=?c
=Efd

d\\-u-i^ ^
x

(i - x)1
X1

-W (l-^)d
-r/<iY.i;

d Z^(i - xy
the ordinary power series generating function of the identity right hand side
can not, since no matter which variable one takes, d or m, they always appear
in two binomial coefficients and the method does not work.

We shall then use the 'WZ' method [7].
The identity left hand side is first studied: let

(d\'i(d-i+m-^
H, {m, i)=^) ^- -^_^ -),

then H^(m, i) satisfies the recurrence

m2^i(m, i) + (-2m2 - d2 -4m- d- 2)ffi(m + 1, 0 + (m+ 2)2ffi(m + 2, i)
=G, {m, i+l)-G^m, i}, (1)
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where
(-d+i-m)i'2{d-l) ^ , _ ,,

G'i(m't) = 7-^-^-^H^m^-(z - 1 - m)(i- 2- m)
The recurrence (1) is now summed over all integers ?,

00

E
I=-00

[m2Hi (m, i) + (-2m2 - ri2 -4m- d- 2)Hi (m+l, i)

+(m+2)2J¥i(m+2, z)]
00

= ^ [G^m, i+Y)-G, {m, i)}, (2)
!=-00

which, in its turn, and letting

^ (d\2fd-i+m-\>
Ai(m)=^ ^) (" ^ -) (=^(m)),

!=-00

satisfies the recurrence

m2/ii(m) + (-2m2 -d2 - 4m- d- 2)Ai(m + 1) + (m + 2)2/ii(m + 2) = 0,
(3)

since the right side of (2) telescopes to 0.
One proceeds as before for the identity right hand side of Lemma 7; let

fd+l\fm-l\fd+l-i+m-V
ff2(ro. i)=(, ~, 'A. -l-A~" m'

then H'i{m, z) satisfies the recurrence
miH-2(m, i) + (-2m2 -d2 -4m-d- 2)^(171 + 1, ?) + (m+ 2}'2Hi{m + 2, i}

=G'2(m^'+l)-G'2(m, t), (4)
in which the left side is the same recurrence as in (1) above; but on the right
side G-2[m, i) is now

m(-d +i-m- l')i(i - l)d
J2lm't; = (z-l-m)(z-2-m)(m+l)-

Again, the recurrence (4) is summed over all integers i,
00

^ [m2H-2(m, i) + (-2m2 -d2 - 4m- d- 2)^(m + 1, i)
!=-00

+(m+2)2H^m+2, i')]

= ^ [G2(m, z + 1) - G2(m, i)], (5)
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which, in its turn, and letting

<ri+l\/m-l
i-1h^m)= ^ d+1- i+m- 1

m
(=N^d, 2m)),

satisfies the recurrence

m2/i2(m) + (-2m2 -rf2 -4m - ri- 2)/i2(m + 1) + (m+ ^h^m + 2) = 0,
(6)

since the right side of (5) telescopes to 0.
And, since the two sums in question, hi {m) and hy(m), satisfy exactly

the same recurrence of the second order, together with the same two starting
values, they must be identical, for all values of m. i

Example 8 For A^, 5'A(3) = ^(2, 6) = 18. The points are

(3, -3, 0), (-3, 3, 0)
(3, 0, -3), (-3, 0, 3)
(0, 3, -3), (0, -3, 3)

(3, -1, -2), (-3, 1, 2) (-1, 3, -2), (1, -3, 2)
(3, -2, -1), (-3, 2, 1) (-2, 3, -1), (2, -3, 1)
(-1, -2, 3), (1, 2, -3) (-2, -1, 3), (2, 1, -3).

For the sake of clarity, the first values of N^(d, 2m) are tabulated:

lrf+1
1

2

3

4
5

8

10
16
24
32

0 8 10
0

2

6

12
20
56
90

240
1 552

0

2

12
42

110
812

2070
14520
76452

0

2

18
92

340
5768

22530
. 400080
4756952

0

2

24
162
780

26474
151560

6447660

0

2

30
252

1500
91112

731502
70006512

169447302 3956576472
1 992 246512 27390112 1728939192 70807488864

All entries corresponding to a column for an odd norm are 0.

Combinatorial interpretation of these results is best captured by an alter-
native expression for TV^ (d, 2m):

d+l /J , -, \ c-1

^(d, 2^=E(d^l)E
c=2 v " / p=l

/c\fm-\\f m - 1
, p-lj\(c-p}-l}'
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where c counts how many coordinates different from 0 there are (at least 2,
one positive and one negative, and at most, all of them); the first binomial
coefficient gives the ways to place them; p counts how many strictly positive
coordinates there are (at least 1, at most c- 1); the second binomial coefiicient
gives the ways to place these; and the third and fourth binomial coefficients
respectively count the different combinations of strictly positive and negative
coordinates that add up to half the norm.
Now7V^(ri, 2m)=

^d+1^
c

^d+P
c

'm-1

<p-l
^m-1
<p-l

c-1

I:
p=l

E
p

m - 1

c- p- 1

m - 1

c-p-1

d+1

=§(d
c=2

=^(

=E(::OE(
=E(;:OE('

/m-l\/'d+l\^-^fd+l-p\/r m-1
, p-l/V P ]^\ c-P /Vc-p-1^

'm - 1

<p-l.
'm - r

<p-l.
d+

c

d+l\fd+l-p
P / \ c-p

l)(;)Cm ;-\)
m-1

c-p-1, by [8, (iv)]

p

=£
p

p

m - 1

p-1
m- 1

p-\
d+l>

p

d+1
p

ri+1
p

d+1
p

(ri+l-p)+(m-l) ^^^^(d+i-p)"_(o)+(:'^byi6-5-23i
d- p+m'

d-p

m-l\ fd- p+m
p-lj\ m

= NA{d, 2m).

4 Concluding remarks

No closed form has yet been found for any of the given combinatorial ex-
pression. To find them or to prove that they do not exist remains an open
question.

Extension of this work to lattices A^, Dd, D^ D^ (including Gosset lattice
£;g == D^) is also being investigated and will be reported somewhere else [10].
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