INTERSECTIONS OF SCHUBERT CELLS AND GROUPS GENERATED BY SYMPLECTIC TRANSVECTIONS

B. Shapiro ${ }^{\ddagger}$, M. Shapiro ${ }^{*}$, and A. Vainshtein ${ }^{\dagger}$
\ddagger Department of Mathematics, University of Stockholm
S-10691, Sweden, shapiro@matematik.su.se
* Department of Mathematics, Royal Institute of Technology
S-10044, Sweden, mshapiro@math.kth.se
\dagger Dept. of Mathematics and Dept. of Comp. Science, University of Haifa Mount Carmel, 31905 Haifa, Israel, alek@mathcs11.haifa.ac.il

Abstract

We prove that the number of connected components in the intersection of two open Schubert cells in relative position w in the space of complete real n-dimensional flags equals $3 \cdot 2^{n-1}$ for a generic permutation $w \in S_{n}$. Our construction combines the machinery of pseudo-line arrangements with the theory of groups generated by symplectic transvections.

The point of departure for this talk is the following result obtained in [SSV2, SSV3]. Let N_{n}^{0} denote the semi-algebraic set of all unipotent uppertriangular $n \times n$ matrices x with real entries such that for every $k=1, \ldots, n-$ 1 , the minor of x with rows $1, \ldots, k$ and columns $n-k+1, \ldots, n$ is non-zero. Then the number $\#_{n}$ of connected components of N_{n}^{0} is as follows: $\#_{2}=2$, $\#_{3}=6, \#_{4}=20, \#_{5}=52$, and $\#_{n}=3 \cdot 2^{n-1}$ for $n \geqslant 6$.

Let $F l_{n}$ be the space of complete flags in \mathbb{R}^{n}. Given any $f \in F l_{n}$, the Schubert cell decomposition assigns to each $w \in S_{n}$ a Schubert cell C_{w}^{f} whose dimension equals the number of inversions in w. For any $g \in \mathrm{Fl}_{n}$ we put $C_{w_{1}, w_{2}}^{f, g}=C_{w_{1}}^{f} \cap C_{w_{2}}^{g}$. Recall that $C_{w_{1}, w_{2}}^{f, g}$ depends only on the relative position of f and g, that is, $C_{w_{1}, w_{2}}^{f, g_{1}}$ and $C_{w_{1}, w_{2}}^{f, q_{2}}$ are isomorphic, provided g_{1}, g_{2} belong to the same C_{w}^{f}. For this reason, we write $C_{w_{1}, w_{2}}^{w}$ instead of $C_{w_{1}, w_{2}}^{f, g}, g \in C_{w}^{f}$. The geometry and combinatorics of pairwise intersections $C_{w_{1}, w_{2}}^{w}$ for arbitrary w_{1}, w_{2}, w was studied in [SSV1].

Let $C^{w}=C_{w_{0}, w_{0}}^{w}$, where $w_{0}=n n-1 \ldots 1$ is the longest permutation in S_{n}. Intersections C^{w} appeared in the literature in various contexts, and were studied (in various degrees of generality) in [BFZ,BZ, R1,R2]. It is easy to

[^0]see that $N_{n}^{0}=C^{w_{0}}$, so the result cited above gives the number of connected components in $C^{w_{0}}$. The main result of the present talk is the following generalization of the above result.

Theorem 1. For a generic $w \in S_{n}$ the number of connected components in C^{w} equals $3 \cdot 2^{n-1}$.

Our basic construction relies on the machinery of pseudoline arrangements associated with reduced expressions in the symmetric group developed in [BFZ]. Let $w \in S_{n}$ be an arbitrary permutation, and let $\omega=s_{i_{1}} s_{i_{2}} \ldots s_{i_{m}}$ be an arbitrary reduced expression for w. We denote by $\sigma=\sigma^{\omega}$ the sequence $12 \ldots n-1 i_{1} \ldots i_{m}$, and by σ_{i} the i th element of σ. A pair (σ_{i}, σ_{j}), $i<j$, is called a chamber (of level k) if $\sigma_{i}=\sigma_{j}=k$ and $\sigma_{p} \neq k$ for $i<p<j$. A chamber $\left(\sigma_{i}, \sigma_{j}\right)$ is called bounded if $i>n-1$ and unbounded otherwise.

We assign to σ^{ω} an undirected graph G^{ω} in the following way. The vertices of G^{ω} are all the chambers of σ^{ω}; we denote the vertex set of G^{ω} by Γ^{ω}. Let $\gamma_{1}=\left(\sigma_{i_{1}}, \sigma_{j_{1}}\right)$ be a chamber of level $k_{1}, \gamma_{2}=\left(\sigma_{i_{2}}, \sigma_{j_{2}}\right)$ be a chamber of level k_{2}; assume without loss of generality that $i_{1}<i_{2}$. The vertices γ_{1} and γ_{2} are joined by an edge in G^{ω} if and only if one of the following two conditions holds:
(i) $k_{1}=k_{2}$ and $\sigma_{i} \neq k_{1}$ for $j_{1}<i<i_{2}$;
(ii) $\left|k_{1}-k_{2}\right|=1$ and $i_{2}<j_{1}<j_{2}$.

Denote by $V^{\omega}=\mathbb{F}_{2}^{\Gamma^{\omega}}$ the vector space over \mathbb{F}_{2} with the basis $e_{\gamma}, \gamma \in \Gamma^{\omega}$. The graph G^{ω} induces an alternating bilinear form Ω^{ω} on V^{ω}, namely,

$$
\Omega^{\omega}=\sum_{(\alpha, \beta) \in G^{\omega}} e_{\alpha}^{*} \wedge e_{\beta}^{*}
$$

For any $\gamma \in \Gamma^{\omega}$ we define a linear transformation $\tau_{\gamma}: V^{\omega} \rightarrow V^{\omega}$ by the following rule:

$$
\tau_{\gamma} v=v-\Omega^{\omega}\left(v, e_{\gamma}\right) e_{\gamma} \quad \text { for any } v \in V^{\omega} ;
$$

τ_{γ} is called the symplectic transvection at γ with respect to Ω^{ω}. Let $\Gamma_{0}^{\omega} \subset \Gamma^{\omega}$ be the set of bounded chambers of σ^{ω}. We denote by \mathfrak{G}^{ω} the group of linear transformations $V^{\omega} \rightarrow V^{\omega}$ generated by $\left\{\tau_{\gamma}, \gamma \in \Gamma_{0}^{\omega}\right\}$.

The following result is a generalization of the main theorem of [SSV2].
Theorem 2. For any $w \in S_{n}$ and any reduced expression ω for w, the number of connected components of C^{w} equals the number of orbits of \mathfrak{G}^{ω} in V^{ω}.

Our construction of \mathfrak{G}^{ω} is a special case of a more general construction, which uses an arbitrary finite set Γ, an arbitrary undirected graph G without loops and multiple edges on the vertex set Γ, and an arbitrary subset $\Gamma_{0} \subseteq \Gamma$. The orbits of \mathfrak{G} in $V=\mathbb{F}_{2}^{\Gamma}$ in case $\Gamma_{0}=\Gamma$ were studied in [Ja] under certain assumptions of general position; the number of orbits in this case is equal

INTERSECTIONS OF SCHUBERT CELLS

to 3 . Here we prove that under similar assumptions the number of \mathfrak{G}-orbits in V equals $3 \cdot 2^{r}$, where $r=|\Gamma|-\left|\Gamma_{0}\right|$.

Let us define the linear operator $L: V \rightarrow V^{*}$ by $\Omega(x, y)=(x, L y)$, where (\cdot, \cdot) is the standard pairing between V and V^{*}; evidently, $L^{*}=L$. Let $V_{0}=\mathbb{F}_{2}^{\Gamma 0}$ be the space spanned by $e_{\gamma}, \gamma \in \Gamma_{0}$; by ι we denote the injection $V_{0} \hookrightarrow V$, and by ι^{*} its dual $V^{*} \rightarrow V_{0}^{*}$. Combining L with ι and ι^{*} we get the maps $\Lambda=L \circ \iota: V_{0} \rightarrow V^{*}$ and $L_{0}=\iota^{*} \circ \Lambda: V_{0} \rightarrow V_{0}^{*}$; evidently, $L_{0}^{*}=i^{*} \circ L^{*} \circ i=i^{*} \circ L \circ i=L_{0}$.

The following observation turns out to be crucial for our construction. Let Ω_{0} denote the restriction of the form Ω to V_{0}.
Theorem 3. Let Γ, Γ_{0} and G satisfy condition

$$
\left({ }^{*}+\right) \quad \Lambda^{*}: V \rightarrow V_{0}^{*} \text { is a surjection }
$$

then the \mathfrak{G}-action on V_{0} by symplectic transvections with respect to Ω_{0} is dual to the \mathfrak{G}-action on V_{0}^{*} induced by Λ^{*}.

We say that a subset $\Delta \subseteq \Gamma_{0}$ is a transversal if $\left|\Gamma_{0}\right|-|\Delta|=\operatorname{dim} \operatorname{ker} L_{0}$ and the restriction of Ω to \mathbb{F}_{2}^{Δ} is nondegenerate. A transversal is called nonspecial if the subgraph of G induced by Δ is connected and contains six vertices that span a subgraph isomorphic to the Dynkin diagram E_{6}.
Theorem 4. Let Γ, Γ_{0} and G satisfy (*) and let there exist two nonspecial transversals $\Delta_{1}, \Delta_{2} \subseteq \Gamma_{0}$ such that

$$
\begin{equation*}
\Delta_{1} \cup \Delta_{2}=\Gamma_{0} \tag{}
\end{equation*}
$$

$\left(\gamma_{1}, \gamma_{2}\right) \in G$ for some pair $\gamma_{1}, \gamma_{2} \in \Delta_{1} \cap \Delta_{2}$.
Then the number of orbits of \mathfrak{G} on V equals $3 \cdot 2^{r}$, where $r=|\Gamma|-\left|\Gamma_{0}\right|$.
To apply Theorem 4 we have to verify its assumptions for the triple ($\Gamma^{\omega}, \Gamma_{0}^{\omega}, G^{\omega}$). First of all, we have the following proposition.
Proposition 5. For any $w \in S_{n}$ and any reduced expression ω for w, the linear operator $\left(\Lambda^{\omega}\right)^{*}$ satisfies $(*)$.

Let ω be a reduced expression for some $w \in S_{n}$. If the subgraph G_{0}^{ω} of G^{ω} induced by Γ_{0}^{ω} is not connected, then w can be decomposed into the product of two permutations on the index sets $[1, \ldots, i]$ and $[i, \ldots, n]$ with $1<i<n$; moreover, $G_{0}^{\omega^{\prime}}$ remains not connected for any other reduced expression ω^{\prime} of w. Therefore, the fraction of permutations for which G_{0}^{ω} is connected tends to 1 with $n \rightarrow \infty$, and hence this property is generic. On the other hand, the existence of a reduced expression ω such that σ^{ω} contains three consequent indices $i-1, i, i+1$ at least k times is also generic for any fixed k.
Proposition 6. Let $w \in S_{n}$ possess a reduced expression ω such that G_{0}^{ω} is connected and σ^{ω} contains each of the indices $i-1, i, i+1$ at least 5 times for some $i, 1<i<n-2$. Then there exist two nonspecial transversals $\Delta_{1}, \Delta_{2} \subseteq \Gamma_{0}^{\omega}$ satisfying ($* *$) and ($* * *$).

To get Theorem 1 from Theorem 4 it remains to observe that $r^{\omega}=\left|\Gamma^{\omega}\right|-$ $\left|\Gamma_{0}^{\omega}\right|$ is just the number of unbounded chambers, $r^{\omega}=n-1$.

B. SHAPIRO, M. SHAPIRO, AND A. VAINSHTEIN

References

[BFZ] A. Berenstein, S. Fomin, and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49-149.
[BZ 0] A. Berenstein and A. Zelevinsky, Total positivity in Schubert varieties, Comm. Math. Helv. 72 (1997), 128-166.
[Ja] W. A. M. Janssen, Skew-symmetric vanishing lattices and their monodromy groups, Math. Ann. 266 (1983), 115-133.
[R1] K. Rietsch, The intersection of opposed big cells in real flag varieties, Proc. Royal Soc. Lond. A 453 (1997), 785-791.
[R2] K. Rietsch, Intersections of Bruhat cells in real flag varieties, Intern. Math. Res. Notices (1997), no. 13, 623-640.
[SSV1] B. Shapiro, M. Shapiro, and A. Vainshtein, On combinatorics and topology of pairwise intersections of Schubert cells in $S L_{n} / B$, Arnold-Gelfand Mathematical Seminars, Birkhäuser, 1997, pp. 397-437.
[SSV2] B. Shapiro, M. Shapiro, and A. Vainshtein, Connected components in the intersection of two open opposite Schubert cells in $S L_{n}(\mathbb{R}) / B$, Intern. Math. Res. Notices (1997), no. 10, 469-493.
[SSV3] B. Shapiro, M. Shapiro, and A. Vainshtein, Skew-symmetric vanishing lattices and intersection of Schubert cells, Intern. Math. Res. Notices (1998), no. 11, 563-588.

[^0]: Key words and phrases. symplectic transvection, reduced decomposition, real flags, Schubert cell decomposition.

 The third author was supported in part by the Swedish Science Foundation during his visit to the Royal Institute of Technology in the Spring 1998 and Fall 1998.

