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ABSTRACT. We prove that the number of connected components in the in-
tersection of two open Schubert cells in relative position w in the space of
complete real n-dimensional flags equals 3 . 2n-l for a generic permutation
w £ 5n. Our construction combines the machinery of pseudo-line arrange-
ments with the theory of groups generated by symplectic transvections.

The point of departure for this talk is the following result obtained in
[SSV2, SSV3]. Let N°^ denote -the semi-algebraic set of all unipotent upper-
triangular n x n matrices x with real entries such that for every fc = 1,... , n-
1, the ininor of x with rows 1,... , fc and columns n-fc+1,... , nis non-zero.
Then the number ^n of connected components of N^ is as follows: 7^2 = 2,
^3 = 6, #4 = 20, #5 == 52, and ̂ ^ = 3 . 2"-1 for n ^ 6.

Let Fin be the space of complete flags in R". Given any / 6 Fin, the
Schubert cell decomposition assigns to each w C .S'n a Schubert cell C(^
whose dimension equals the number of inversions in w. For any g   Fin, we
put c^g = c(, n C^ Recall that C^ws depends only on the relative
position of / and g, that is, C^'9^ and C(^9^ are isomorphic, provided
9i, Qi belong to the same C^. For this reason, we write C^ instead of
^'9, w2' 9 e <^(j- The geometry and combinatorics of pairwise intersections

for arbitrary u>i, W2, w was studied in [SSV1].
^o, wo' where WQ = nn- 1... 1 is the longest permutation in

'w

Wl, W2
Let Cw = Cw,,

Sn- Intersections Cw appeared in the literature in various contexts, and were
studied (in various degrees of generality) in [BFZ, BZ,R1, R2]. It is easy to
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see that N^ = Cwo, so the result cited above gives the number of connected
components in Cwo. The main result of the present talk is the following
generalization of the above result.
Theoreni 1. For a generic w   5'n the number of connected components in
Cu] equals 3 . 2"-1 .

Our basic construction relies on the machinery of pseudoline arrangements
associated with reduced expressions in the symmetric group developed in
[BFZ]. Let w £ 5'n be an arbitrary permutation, and let a; = 5^5,2 ... s^ be
an arbitrary reduced expression for w. We denote by o- = <T" the sequence
12... n - lii ... im, and by (T, the ith element of <7. A pair (a,, o-j), t < J,
is called a chamber (of level fc) if (T, =cTj = fc and(7p ^ fcfor z <p<J. A
chamber (o-», o-j) is called bounded ifi > n-1 and unbounded otherwise.

We assign to o-u an undirected graph G"^ in the following way Thevertices
of G^ are all the chambers of <TU; we denote the vertex set of Gw by F". Let
71 = (o-, i, o-^ ) be a chamber of level &i, 72 = (^zs, ̂ 2^ be a chamber of level
A;2; assume without loss of generality that ii < i^. The vertices 71 and 72
are joined by an edge in G^ if and only if one of the following two conditions
holds:

(i) fci = A;2 and <7, ^ fci for ji < i < i2,
(ii) \ki-k'2\=l and ̂  < Jl < J2.
Denote by V" = F[" the vector space over Fs with the basis e-^, 7 C Fu;.

The graph Gu> induces an alternating bilinear form ft" on Vw, namely,

^ = E_
(a, /?) Ga

e:Ae^̂ -

For any 7 e F" we define a linear transformation r-y: V" -^ V^ by the
following rule:

T- v= v - ftu(v, e^)e-y for any v   Vu;

T^ is called the symplectic transvection at 7 with respect to ̂ ". Let F^ C F"
be the set of bounded chambers of aw. We denote by ©u the group of linear
transformations Vu -f Vitl generated by {^, 7   r^}.

The following result is a generalization of the main theorem of [SSV2].
Theorem 2. For any w ^ Sn and any reduced expression a? for w, the
number of connected components of Cw equals the number of orbits of ©u in
vw.

Our construction of 0U is a special case of a more general construction,

which uses an arbitrary finite set F, an arbitrary undirected graph G without
loops and multiple edges on the vertex set F, and an arbitrary subset To C T.
The orbits of (S in V = F[ in case Fo = F were studied in [Ja] under certain
assumptions of general position; the number of orbits in this case is equal
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to 3. Here we prove that under similar assumptions the number of ©-orbits
in V equals 3 . 2r, where r = \F\ - \TQ\.

Let us define the linear operator L:V -^-V* by fl(x, y') = (x, Ly), where
(-, -) is the standard pairing between V and V*; evidently, L* = L. Let
Vo = I^° be the space spanned by e^, 7 eFo; by<. we denote the injection
VQ ̂  V, and by (, * its dual V* -^ VQ*. Combimng L with i. and \* we
get the maps \= LOL-. VQ -^ V* and LQ = L* O\:VQ ^ V^; evidently,
L^ =i* oL* oi=i* o Loi = LQ.

The following observation turns out to be crucial for our construction. Let
fl, o denote the restriction of the form Q, to VQ.
Theorem 3. Let Y, To and G satisfy condition

A : V-^-VQ* is a surjection,
then the e-action on Vo by symplectic transvections with respect to fl, o is dual
to the (6-action on Vyf induced by A*.

We say that a subset A C Fg is a transversal if (Fol - |A| = dimkerLo and
the restriction of ̂  to F^ is nondegenerate. A transversal is called nonspecial
if the subgraph of G induced by A is connected and contains six vertices that
span a subgraph isomorphic to the Dynkin diagram E@.
Theorem 4. Let V, To and G satisfy (*) and let there exist two nonspecial
transversals Ai, A2 C Fo suc/t that

(**) Ai U AZ = Fo,
(***) (7i»72)   G'/or some pair 71, 72 C Ai n As.
Then the number of orbits of <S on V equals 3 . 2r, where r = \T\ - \TQ\.

To apply Theorem 4 we have to verify its assumptions for the triple
(Tu, Fy, Gu). First of all, we have the following proposition.
Proposition 5. For any w ^ Sn and any reduced expression u for w, the
linear operator (A")* satisfies (*).

Let ̂  be a reduced expression for some w ^ Sn. If the subgraph G^ of G'"
induced by T^ is not connected, then w can be decomposed into the product
of two permutations on the index sets [l,..., i] and [i,..., n] with 1 <i < n;
moreover, G^ remains not connected for any other reduced expression u' of
w. Therefore, the fraction of permutations for which G^ is connected tends
to 1 with n -. oo, and hence this property is generic. On the other hand, the
existence of a reduced expression ̂  such that a" contains three consequent
indices i-1, i, i+1 at least k times is also generic for any fixed k.
Proposition 6. Let w e Sn possess a reduced expression u such that G^
zs connected and aw contains each of the indices i - 1, i, i + 1 at least 5
times for some i, 1 <i<n-2. Then there exist two nonspecial transversals
^I^AZ C F^ satisfying (**) anc? (***).

To get Theorem 1 from Theorem 4 it remains to observe that r" = [ru | -
\T"^\ is just the number of unbounded chambers, ru = n - 1.
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